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SUMMARY

Neuronal motor commands, whether generating
real or neuroprosthetic movements, are shaped by
ongoing sensory feedback from the displacement
being produced. Herewe asked if cortical stimulation
could provide artificial feedback during operant
conditioning of cortical neurons. Simultaneous two-
photon imaging and real-time optogenetic stimula-
tion were used to train mice to activate a single
neuron in motor cortex (M1), while continuous feed-
back of its activity level was provided by proportion-
ally stimulating somatosensory cortex. This artificial
signal was necessary to rapidly learn to increase
the conditioned activity, detect correct performance,
and maintain the learned behavior. Population
imaging in M1 revealed that learning-related activity
changes are observed in the conditioned cell only,
which highlights the functional potential of individual
neurons in the neocortex. Our findings demonstrate
the capacity of animals to use an artificially induced
cortical channel in a behaviorally relevant way and
reveal the remarkable speed and specificity at which
this can occur.

INTRODUCTION

Brain-machine interfaces (BMIs) impose arbitrary associations

between neural activity patterns and prosthetic actions. A neuro-

prosthetic skill is considered successfully acquired when this as-

sociation is learned and the prosthesis can be controlled in a

goal-directed manner. The underlying principle is that neural

activity, reinforced via operant conditioning, can be volitionally

generated. Operant conditioning of cortical neurons has been

successfully achieved in monkeys (Engelhard et al., 2013; Fetz,

1969; Fetz and Baker, 1973; Hwang et al., 2013; Moritz et al.,

2008; Sadtler et al., 2014), rodents (Arduin et al., 2013; Clancy

et al., 2014; Gage et al., 2005; Hira et al., 2014; Koralek et al.,

2012), and humans (Cerf et al., 2010) by translating their activity

into auditory or visual feedback signals and reinforcing desired

patterns with reward. Because this paradigm specifies which
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neurons control an action, it circumvents the neural complexity

associated with natural behavior. Its use goes, therefore, beyond

BMI applications; it can serve as a research tool that facilitates

dissecting the involved plasticity mechanisms (Sadtler et al.,

2014). A closed-loop implementation in which the feedback

takes the form of direct cortical activation (i.e., an artificial sen-

sory channel) would offer the advantage of having full control

of the neurons directly involved in the association to be learned.

Implementing such an ‘‘artificial position sense’’ (Lebedev et al.,

2011) in a BMI setting could not only offer more flexible and

faster feedback mappings, but, more importantly, substitute

the position sense of a neuroprosthetic device when natural

sensation is lost.

Stimulation of sensory cortex can create behaviorally distin-

guishable percepts (Romo et al., 1998, 2000; Tabot et al.,

2013); bias (Salzman et al., 1990), mimic (O’Connor et al.,

2013; Sachidhanandam et al., 2013; Tabot et al., 2013), or

even augment (Thomson et al., 2013) natural perception; and

cue goal-directed movements (Fitzsimmons et al., 2007; Huber

et al., 2008; Jazayeri et al., 2012). It can also be optimally inte-

grated with natural sensory cues during real reaching move-

ments (Dadarlat et al., 2015). However, in conjunction with voli-

tional neural control, cortical stimulation has only been able to

provide cues for choosing (O’Doherty et al., 2009) or for discrim-

inating (O’Doherty et al., 2011) between virtual targets, while nat-

ural sensory feedback was used to guide learning and the actual

execution. The feasibility of artificial sensations to not only cue,

but to actually instruct in real time the generation of conditioned

neural patterns, remains currently unexplored. This would mean

that the brain can create an association between an action and

its real-time sensory consequence when both are restricted to

activities of different sets of cortical neurons.

Stable activity patterns of local populations of motor cortex

neurons have been found to emerge during motor learning

(Peters et al., 2014), and highly interconnected cortical ensem-

bles (Harris and Mrsic-Flogel, 2013) might be responsible for

the emergence of such population dynamics where individual

neurons matter little. Operant conditioning of a single motor cor-

tex neuronmight thus be expected to entrain its ensemble during

learning and just be a participant of a changing population

code. Recent findings, however, suggest that learning might

be confined to the conditioned neurons rather than involving

a cortical ensemble (Arduin et al., 2013; Clancy et al., 2014).

Conclusive evidence of such learning specificity requires
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conditioning single neurons and simultaneous unambiguous

tracking of a large number of neighboring non-conditioned

neurons.

In the present study, we therefore address the following ques-

tions: Can mice learn to use a fabricated feedback channel to

control single-neuron activity? How do responses of the condi-

tioned and neighboring cortical neurons change with learning?

For this purpose, we developed an all-optical BMI, a system

for simultaneous wide-field two-photon population imaging of

neurons expressing genetically encoded calcium (Ca) indicators

in primary motor cortex (M1) and simultaneous activation of neu-

rons expressing optogenetic actuators in primary somatosen-

sory cortex (S1). Operant conditioning of a single M1 neuron

was performed by reading out its activity in real time, transform-

ing it into a rate code of optogenetic stimulation pulses in S1

and reinforcing above-threshold activations with reward. We

tested the necessity of the optogenetic feedback signal for iden-

tifying the reinforced activations and for learning to produce

them more often over time. We then analyzed learning-related

changes observed in conditioned neurons in comparison to

those in neighboring, longitudinally tracked, non-conditioned

neurons. Our results unveil basic properties of L2/3 processing,

which may also characterize cortical activity during, but not be

delineable with, natural behaviors.

RESULTS

Operant Conditioning of L2/3 M1 Neurons under
Artificial Sensory Feedback
To test if artificial sensory feedback can guide operant condition-

ing of cortical neurons, we first developed a novel two-photon

imaging system designed for simultaneous optogenetic stimula-

tion of cortical areas in head-fixed mice (Figures 1A–1D; see

STAR Methods). Mice expressed the genetically encoded Ca in-

dicator GCamP6f in forelimb M1 and the optogenetic actuator

channelrhodposin-2 (ChR2) in the corresponding somatosen-

sory representation (Figure 1A). We used a Cre-dependent re-

porter mouse line (Ai32) to ensure a stable level of ChR2 expres-

sion over time. To monitor the effect of the optogenetic

stimulation, we measured the local field potential in the contra-

lateral S1 with electrocorticograms (ECoGs; Figure 1B). This

signal originated from the prominent callosal axonal fibers

(Mao et al., 2011; Petreanu et al., 2007). Experimental animals

were either classified as ChR2 mice (n = 8) or control mice (n =

11) depending on whether ECoG responses were detectable

upon optogenetic stimulation (Figures 1C, S1A, and S1B, avail-

able online). The absence of optogenetically driven responses

in control mice was due to insufficient or lack of expression of

ChR2 (see STARMethods). Two-photon images of large popula-

tions of individual L2/3 neurons (461 ± 164, mean ± SD) were ac-

quired at z30Hz and simultaneously streamed to a dedicated

computer for real-time processing (Figure 1D).

To condition the activity of a single neuron, we extracted its

fluorescence changes from the image and used it as a proxy

for its neuronal activity. The fluorescence transients were trans-

formed directly into a rate code dictating the frequency of the op-

togenetic stimulation pulses targeting S1. A water reward was

delivered whenever the conditioned neuron’s activity and, by
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extension, the rate of optogenetic stimulation crossed a chosen

threshold, thereby reinforcing high activation levels (Figure 1E).

We trained the ChR2 and control mice in the operant condition-

ing task for at least 15 consecutive daily sessions, for 30–40 min

per session (Figure S2A; see STAR Methods for details). Poten-

tial visual cues from the optogenetic stimulation were effectively

masked with blue light flashes (Figure S1C).

Artificial Sensory Feedback Leads to Rapid Learning of
Volitional Neuronal Activation
Learning was defined as significant increases in threshold

crossing rate (TCR) of the conditioned neuron’s (CN) Ca

response between session start and end (two-tailed paired

t test, p < 0.05). According to this definition, ChR2 mice learned

on averagewithin single sessions (Figure 2A), with six out of eight

individuals showing significantly increased TCRs. A significant

increase in TCR compared to session start was already

observed in the second time bin (p < 10�3), suggesting that op-

erant control of the CN ensued after 4.9 ± 1.64 min (mean ± SD)

of conditioning. Control mice, which underwent identical exper-

imental procedures and were rewarded at similar rates as ChR2

mice (Figure S2B), did not learn on average, with only one out of

eleven showing an increase in the TCR (Figure 2B). Baseline TCR

at the start of a session did not differ between mice that learned

and the ones that did not learn (non-paired t test, p = 0.15; Fig-

ure S2C). Sessions with significant learning (linear regression,

p < 0.05) became more frequent across successive days of

training in ChR2 mice only (Figure 2C). After more than 10

consecutive days of conditioning, the probability of observing

learning in a given ChR2 animal reached z40%. During these

learning sessions, the number of threshold crossings increased

by 0.66 ± 0.08 (mean ± SEM) every minute. Movement artifacts

in the two-photon images and activation of the CN by the opto-

genetic stimulation via direct inputs from S1 were negligible and

did not contribute to threshold crossings (Figures S2D–S2G and

S3). Learning was also not accompanied by more frequent

contralateral forepaw movements (Figure S2H). In previous

studies, operant conditioning of cortical neurons in the absence

of sensory feedback (reward only) was found to be either not

possible (Koralek et al., 2012) or only successful in experienced

animals previously trained with visual feedback (Fetz, 1969) or

extensively exposed to reward-based learning (Hira et al.,

2014). Our results indicate that in naive animals, providing feed-

back by ChR2-based cortical stimulation can expedite operant

conditioning of cortical neurons when compared to reward rein-

forcement only. Therefore, the brain is able to form associations

between the activity of a single neuron and proportional feed-

back stimulation in S1 within single behavioral sessions.

Artificial Feedback Is and Remains Necessary for
Detecting Conditioned Activity Patterns after Learning
Given that learning occurs surprisingly fast, have the mice truly

formed an association between activity increases of the CN

and the reward outcome? Is optogenetic feedback a necessary

cue for maintaining this association after the initial learning has

occurred? Contrary to normal task conditions where rewards

were automatically delivered, these questions were addressed

with a ‘‘lick-triggered reward’’ condition, during which mice



Figure 1. Experimental Overview

(A) Dorsal view of the cranial window showing the expression patterns of GCaMP6f and ChR2 (green) and the intrinsic signal (red) of contralateral forepaw

stimulation. The blue laser was either aimed at the S1 forepaw site (blue dot) or a control non-ChR2 site (gray dot), while the two-photon imaging plane (red square)

covered the forepaw M1, all within the objective’s field of view (white square).

(B) Schematic of our chronic preparation for simultaneous two-photon imaging and optogenetic stimulation. The two-photon infrared laser (red) was scanned,

through a cranial window, across a population of neurons expressing GCaMP6f (green), and a blue laser was aimed through the same objective at neurons

expressing ChR2 (blue) for optogenetic stimulation. Electrocorticogram (ECoG) electrodes were implanted in the contralateral hemisphere for measuring neural

responses evoked by the optogenetic stimulus in the callosal projection neurons.

(C) Event-related potentials (averages of 30 repetitions) evoked by optogenetic stimulation pulses as measured by the ECoG electrodes in an example ChR2 and

control mouse.

(D) Schematic of the experimental setup showing the head-fixedmouse under the two-photonmicroscope. The two laser beams for imaging and stimulation were

controlled independently, but focused through the same microscope objective. To protect the sensitive photomultiplier tubes of the imaging system during the

optogenetic blue light pulses, we combined optical filters and gated detection electronics. Two-photon images were acquired on a PC running Scanimage and

streamed to a control PC that extracted in real time the Ca-dependent neural activity; generated the feedback signal (inset: transfer function between neural

activity and feedback pulse rate; see STARMethods for details); acquired ECoG, lick, and forepawmovement sensor data; and controlled the blue light mask. S1,

S2, scanning mirrors; D1, D2, dichroic mirrors; EF, emission filter; gPMT, gated photomultiplier tube. A conditioned neuron (CN) (blue) was chosen among

hundreds of simultaneously imaged neurons (gray).

(E) Example Ca-dependent activity of a CN (blue), its real-time transform into a rate signal of optical pulses, reward times, and lick sensor recordings.
had to initiate licks upon threshold crossings to receive the

reward. This condition therefore tested if the mice can behavior-

ally detect instances of threshold crossings (i.e., the actions that

lead to reward) and was introduced for brief intervals of time at

the end of the last five experimental sessions (Figure S2A). To

learn and maintain an association between above-threshold

activation and the reward outcome, mice could also rely on inter-
nal predictions related to the generation of the neuron’s activity

(i.e., analogous to efference copies). To assess the relative

contribution of the involved cues, we uncoupled the optogenetic

feedback from the CN’s activity in feedback removal and ‘‘play-

back’’ conditions.

In the normal feedback condition, detection probability,

defined as the proportion of threshold crossings successfully
Neuron 93, 929–939, February 22, 2017 931



Figure 2. Importance of Artificial Sensory Feedback for Execution and Learning

(A) Within-session changes of normalized average threshold crossing rate (TCR) of eight ChR2mice (n = 127 sessions) calculatedwithin eight equally sized time bins.

Non-normalized TCRswere significantly different between the first and last time bins (two-tailed paired t test, p < 10�7, t(126) = 5.69). Populationmean error bars are

SEM. Individual mice with significantly different TCRs between the first and last time bins (p < 0.05) were classified as learners and as non-learners otherwise.

(B) Same data as in (A) for eleven control mice (n = 158 sessions).

(C) Fraction of ChR2 and control mice yielding ‘‘learning sessions’’ (linear regression, p < 0.05) over successive training days.

(D) Examples of feedback, feedback OFF, and playback conditions under lick-triggered reward delivery.

(E) Median (with 40% and 60% quantiles) detection probability (proportion of threshold crossings followed by licking and reward) was significantly impaired,

compared to the optogenetic feedback condition, only when the feedback was either removed or directed to a non-ChR2 site, in eight ChR2 mice (n = 39

sessions). The eleven control mice showed near-zero detection probability across all conditions (n = 46 sessions). *p < 0.01; n.s., p > 0.05; Kruskal-Wallis test.
detected by subsequent licking, was close to unity (Figures 2D

and 2E). When feedback was transiently removed, detection

probability significantly dropped (p < 10�5, Kruskal-Wallis test)

and became no different than would be expected by chance

(Figure S4; see STAR Methods for details). These results reveal

that the association has indeed been learned, that the optoge-

netic stimulus remains necessary, and that potential internal

cues alone are not sufficient for detecting correct performance.

To assess if optogenetic stimulation alone was sufficient for

identifying the rewarded actions, we also introduced a ‘‘play-

back’’ condition, during which the stimulation pattern was tran-

siently decoupled from the CN’s real-time activity and controlled

by a recording from a previous day (Figures 2D and 2E). During

playback, because rewarded ‘‘actions’’ were not generated

anymore by the animal, their identification could only be based

on the S1 stimulation pattern. Detection probability during play-

back was not different compared to normal feedback periods

(p = 0.33), demonstrating the importance optogenetic stimula-

tion acquired during learning (Figures 2D and 2E). To exclude
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reliance on any other sensory cues, such as visual percepts

evoked by the blue light pulses, we also delivered playback stim-

uli to a control area not expressing ChR2 (Figure 1A). Under

these conditions, detection ability was significantly compro-

mised (p < 10�6) and indistinguishable from either the stimulus

removal condition (p = 0.84) or chance occurrence (Figure S4).

Detection probability in control mice was at chance levels across

all conditions. These results indicate that the artificial sensory

signal is not only needed for learning to rapidly occur, but also

to behaviorally identify correct performance during the task

and remain the sole necessary cue for this purpose thereafter.

Neuronal Specificity and Day-to-Day Flexibility of
Learning-Related Changes
What leads to increased threshold crossings of the CN’s activity

during learning? Ca events might occur more frequently over

time and thus the rate of those that cross threshold also in-

creases. Alternatively, the Ca events might become larger and

thereby cross threshold more often. To examine this, we looked



at activity changes of the CNs in all sessions with significant

learning (n = 33). Within-session increases in TCR were guided

by increases in the rate of Ca events (i.e., occurrence of spike

bursts), as well as increases in their individual amplitudes (i.e.,

number of spikes in a burst) (Figures 3A and 3B). While both

changes in Ca event rate and amplitude contributed to TCR

increases, event amplitude changes accounted significantly

more on average for the variability in TCR during a session (gen-

eral linear model; Figure 3B, inset).

How is the animal’s performance affected if optogenetic

stimulation is suddenly turned off? A decrease in TCR would

confirm the behavioral necessity of this signal. Furthermore, if

either increase of the amplitude or rate of the conditioned

events still persists, it would indicate that this activity change

might be the result of learning-related plasticity. We found

that upon feedback removal event rate significantly dropped,

leading to a decreased number of threshold crossings, yet

the event amplitude remained elevated (Figure 3B). The persis-

tence of the elevated amplitude might therefore be an indica-

tion of lasting plasticity changes in the system. The immediate

decrease in the rate of events, on the other hand, indicates

that feedback remains necessary for maintaining the learned

behavior and that the observed increases in CN’s activity are

not signs of irreversible Ca accumulation or related to the

acquisition of a habit.

We next asked if these learning-related changes are specific

to the CN or if they can also be found in simultaneously imaged

neighboring neurons. We found that 6.4% (quartiles, 2.3% and

10.6%) of neighboring neurons had significant within-session

linear increases in either event rate or amplitude and were there-

fore labeled as ‘‘increasing neurons’’ (INs) These increases,

however, did not match the characteristics of the learning-

related activity changes of theCNs (Figures 3C andS5).Whereas

the rate changes of INs were similar to those of CNs (two-sided

paired t test, p = 0.51, t(26) = 0.661), the mean changes in event

amplitude, which are mostly responsible for learning, were

statistically different (p < 0.001, t(26) = 4.257). Furthermore, the

onset of Ca events in INs lagged both rewarded Ca events of

the CN and reward onsets (Figure 3D). Thus, activity increases

observed in non-conditioned neurons probably reflect the

behavioral consequences (e.g., reward anticipation, collection,

or consumption) rather than causes of above-threshold

activations of the CN.

It follows that learning-related changes are restricted to theCN

and do not involve the collective activation of a local population

of M1 neurons. Because the feedback signal represents a

pseudo-random stimulation pattern for all neurons other than

the CN, the observed neuronal specificity suggests that it is

the activity-locked feedback signal, and not just the S1 optoge-

netic stimulation per se, that is important for learning. The

neuronal specificity further suggests that the conditioned activity

was not primarily related to other variables such as forelimb

movements that would most likely result in driving all forelimb-

related neurons in concert.

In spite of an absence of learning-related activity increases in

neighboring neurons, it is still possible that the CN is driven by

activity in the local network. Indeed, we found that a small frac-

tion of neighboring neurons (2.5%; quartiles, 0% and 8.2%) ex-
hibited Ca events that preceded those of the CN more often

than would be expected by chance (p < 0.01, hypergeometric

probability) (Figure 3E) and could therefore potentially constitute

pre-synaptic inputs. These events occurred sparsely (30% ±

10%, mean ± SD of threshold crossings), and in only 16% of

these ‘‘leading neurons,’’ an ideal observer could discriminate

whether a conditioned Ca event would cross threshold or not

(p < 0.05, permutation test, receiver operating characteristic

[ROC] analysis; see STAR Methods for details). We found that

the ‘‘leading neurons,’’ but not the INs, were situated in closer

spatial proximity to the CN than a size-matched random

neuronal sample (Figures 3E and 3F). Small spatially organized

functional clusters of neurons might therefore exist in L2/3 of

M1, as previously suggested (Hira et al., 2013), and sporadically

drive CN’s activation. These putative local pre-synaptic drivers

might actually be more numerous, yet be individually weak

and therefore below the detection threshold of Ca imaging

used in this study. Therefore, even if the animals learned to con-

trol a single neuron instead of an M1 subpopulation, the nearby

neurons might still play an active role in providing part of the

drive to the CN.

Long-term tracking of individual L2/3 neurons has revealed

that their population representation might be stable, but their in-

dividual responsiveness and/or functional tunings are flexible

day to day in motor (Huber et al., 2012; Peters et al., 2014),

as well as sensory (unpublished data) cortices. Similarly,

consistent cross-day learning of multi-unit neuroprosthetic con-

trol has been found to require either daily retraining or iteratively

adapting the decoder to the day-to-day variability of neuronal

activity (Orsborn et al., 2014; Taylor et al., 2002). Redundant

representations of a motor or sensory function across many

neurons might allow such flexibility and reflect a necessary

adaptability of neural responses. However, operant condition-

ing of a single M1 neuron attributes a functional role to that

neuron only. It might therefore be expected that its responses

would become more stable and stereotyped over time. We

analyzed the stability of the CNs across multiple days of

learning. Despite their exclusive status, CNs were readily found

inactive at the start of a new session and often remained silent

for several consecutive days (Figures 4A and S6). This pre-

vented further conditioning with the same neuron and forced

us to choose a new one. The decision to switch conditioning

to a new neuron was based on a baseline recording prior to ses-

sion start (see STAR Methods for details), whereas the data in

Figure 4A depict the neuron’s average activity during the entire

session. The distribution of day-to-day changes in the overall

Ca event rate of the CNs was not different from that of

the non-conditioned neurons (Figure 4B; two-sample Kolmo-

gorov-Smirnov goodness-of-fit test, p = 0.15). Conditioned

L2/3 neurons seem therefore not to be immune to flexibility,

even when they acquire an exclusive functional role, which

further highlights the robustness of this seemingly intrinsic

property of L2/3 representations.

Taking together the remarkable speed and specificity with

which the conditioned neuron adapts to the imposed con-

straints, our results suggest the existence of functionally and

spatially specific plasticity mechanisms able to tune the activity

of an L2/3 neuron on very short timescales.
Neuron 93, 929–939, February 22, 2017 933



Figure 3. Learning-Related Changes Are Confined to Conditioned Neurons

(A) Ca-dependent activity, average fluorescence images, and reward times of the CN during the course of an example learning session and subsequent feedback

removal period.

(B) Within-session changes of mean (±SEM) TCR, Ca event rate, and event amplitude of learning sessions (n = 33, 8 mice) and during feedback removal (shaded

region). The TCR (paired two-tailed t test, p < 10�4, t(32) = 4.6) and event rate (p < 10�4, t(32) = 5.13) significantly decreased upon feedback removal, whereas event

amplitude (p = 0.095, t(32) = 1.72) did not. *p < 0.01; n.s., p > 0.05. Inset: individual (gray) and average (black) estimated parameters (bEr and bEa) of the general linear

model with the TCR Z score as the dependent and the Z scores of the event rate (Er) and event amplitude (Ea) as the independent variables for the 33 learning

sessions. On average, changes in Ea accounted for more of the variance in TCR than changes in Er (paired two-tailed t test, p = 0.034, t(32) = 2.213). *p < 0.05.

(C) Event rate and event amplitude changes of CNs and INs between the first and last time bins of an example (left) and all learning sessions (right, average IN

changes are shown, n = 27 sessions with at least three INs). Dotted contour: 95% confidence ellipse.

(D) Left: median (±quartiles) Df/f0 traces aligned to threshold crossings of the CNs (n = 33) and INs (n = 1,314) during feedback and playback conditions of all 33

learning sessions. Right: distribution of cross-correlation lags between event traces of INs/CNs and the reward trace.

(E) Mean (±SEM)Df/f0 traces aligned to threshold crossings of the CN, INs (n = 43), and ‘‘leading neurons’’ (n = 27) of an example session and their spatial location

in the imaged field of view relative to the CN.

(F) Mean distances of INs (n = 30 sessions with at least one IN) and ‘‘leading neurons’’ (n = 24 sessions with at least one neuron) relative to the CN compared to

mean distances of size-matched random samples (color, individual sessions; black, median values). Bold lines are individual sessions with significantly different

distances (p < 0.05, two-sided bootstrap test). *p = 0.0048 (z = 0.126); n.s., p = 0.89 (z = 2.82); Wilcoxon two-sided rank-sum test.
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Figure 4. Flexible Day-to-Day Activity of

Conditioned Neurons

(A) Cross-session changes of mean event rate

relative to the first day of conditioning (session

#1) for the 20 neurons (y axis) conditioned across

the eight ChR2 mice. Neurons from the same

mouse are delineated by the y axis ticks. A value

of 0.5 indicates that the event rate has been

halved relative to session #1. Red lines denote

the last conditioning session with that neuron

enforced by either activity drops or experi-

ment end.

(B) Distribution of event rate change ratios be-

tween successive sessions of conditioned and

median ratios of non-conditioned neurons.
Rapid Learning of Multi-neuron Conditioning under
Artificial Sensory Feedback
To determine if more complex mappings can also be rapidly

learned with artificial feedback, we trained mice to modulate

the activity of three neurons simultaneously. ChR2 mice previ-

ously trained on the single-neuron task were taught to co-acti-

vate two arbitrarily chosen M1 neurons, while silencing a third

neuron to gain reward. The amplitude of the fluorescence signal

of each neuron was transformedwith a logistic function. The out-

puts of neurons 1 and 2 were summed and that of neuron 3 sub-

tracted to obtain an ensemble signal (Figure 5A). The ensemble

signal dictated the frequency of optogenetic stimulation pulses

according to the same transfer function as in Figure 1D, and

above-threshold crossings triggered reward. The threshold level

was chosen so that only simultaneous activations of neurons 1

and 2, and near-baseline activity of neuron 3, led to reward.

Any activation, no matter how strong, of either neuron 1 or 2

alone was not sufficient for threshold crossing, and any above-

baseline activity of neuron 3 prevented it (Figure 5B). We found

that ChR2 mice can also learn this more complex mapping, as

indicated by within-session linear increases in TCRs (Figure 5C).

As imposed by the mapping rule, neurons 1 and 2 were co-

activated at threshold crossings of the ensemble activity

(Figure S7B). The probability of these co-activations might fortu-

itously increase during a session as the rate of Ca events in-

creases in the two neurons, or even in only one of them. Both

neurons indeed increased their overall activity throughout a ses-

sion (Figure S7A). But to test whether mice also generated more

co-activation per se, we analyzed if the number of co-activations

per produced Ca event changes during learning. We found that

this ratio significantly increased between session start and end

for both neuron 1 (p = 0.003, Kruskal-Wallis test) and neuron 2

(p = 0.03), demonstrating that more frequent co-activation did

not occur fortuitously. A comparison of each neuron’s activity

aligned on any Ca event of the other, between the start and

end of a session, confirms that they became more co-active

during learning (Figure S7B).

To illustrate a practical neuroprosthetic application of this

mapping, we also translated the imposed rules into mechanical

constraints governing the multi-joint displacement of a robotic

arm (Figure 5A; Movie S1). The activity of each neuron was trans-

formed into a joint angle, rendering the ensemble activity propor-

tional to the distance (in joint angle coordinates) from the arm’s
endpoint to a target area. The optogenetic stimulation thus pro-

vided feedback of the arm’s position relative to the target. The

increased number of threshold crossings was therefore akin to

more frequent target hits (Figure 5C). Although unbeknownst to

the mouse, increases in the rate of successful displacements

toward the target illustrate how multiple L2/3 neurons can be

conditioned to execute goal-directed movements of a prosthetic

device under the guidance of artificial sensory feedback.

DISCUSSION

Practical Relevance of Artificial Cortical
Communication
This study reveals that artificial sensory feedback about the cur-

rent activity state of one or multiple volitionally modulated neu-

rons can guide rapid learning during operant conditioning. We

effectively fabricated an optical version of an artificial cortical

communication channel (Jackson et al., 2006), which was

used by mice to rapidly (i.e., in less than an hour) learn to pro-

duce reinforced neural activity patterns in a goal-directed

manner, similarly to using natural sensorimotor associations.

Schematic depictions of such a channel are readily included in

idealized views of neuroprosthetic control where artificial sen-

sory information from the prosthetic device is fed back directly

to the brain (Bensmaia andMiller, 2014; Kwok, 2013). Our exper-

iments provide a seminal proof of concept of such a system us-

ing an adaptation-based approach (Bensmaia and Miller, 2014)

and illustrate that it could in principle be used to modulate mul-

tiple neurons in concert for executing goal-directed multi-joint

prosthetic movements. A more biomimetic implementation

(Bensmaia and Miller, 2014) might also be feasible. It would

necessitate that multiple instances of the artificial channel be

learned in parallel, each activating and providing ‘‘propriocep-

tive’’ feedback of a single joint.

Graded stimulation of the cortex has previously only been

used to guide natural forelimb reaches (Dadarlat et al., 2015),

albeit under the assistance of proprioception and a lengthy

(i.e., several months) learning procedure involving pairings with

visual cues. In contrast, we demonstrate that both sensory and

motor peripheries can be bypassed and that unassisted, arbi-

trary associations can be fashioned between activities of two

different sets of cortical neurons (not necessarily invoking direct

anatomical pathways).
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Figure 5. Multi-neuron Conditioning

(A) The Df/f0 activities N1, N2, and N3 of three CNs were first transformed by a logistic function (see STAR Methods) into f(N1), f(N2), and f(N3), and the ensemble

activity computed by adding f(N1) and f(N2) and subtracting f(N3). Each activity transform dictated the angular position of a robotic actuator and the ensemble

activity was proportional to the effector distance to target.

(B) Example Df/f0 traces of the three simultaneously conditioned neurons, their ensemble activity computed as in (A), and its real-time transform into a rate signal

of optical pulses encoding the distance to target.

(C) Mean and individual session (n = 8, two mice) target hit rates indicate that mice could learn the multi-neuron conditioning task under the guidance of op-

togenetic feedback.
What Does the Neural Specificity of Learning-Related
Activity Imply?
A key component in our experiments was the wide-field imaging

of a large number of cortical neurons and their longitudinal

tracking during conditioning. It enabled us to peek into cortical

mechanisms underlying volitional neural control and how the

brain drives its own activity. Conceptually, the reinforced activity

of the conditioned neuron (i.e., the controlled variable) is driven

by a ‘‘volitional controller’’ (Fetz, 2007). Our results suggest

that this controller is only sparsely represented in local neigh-

boring neurons. This might seem surprising given that cortical

networks are locally highly interconnected (Harris andMrsic-Flo-

gel, 2013). It is, however, consistent with the general sparseness

of L2/3 neuronal firing (Petersen and Crochet, 2013) where pop-

ulation activity is thus not expected to reflect a common motor

function and might be less correlated compared to the output

neurons of the deeper layers of cortex. Previous studies actually

report a similar confinement of learning-related activity to condi-

tioned cortical neurons (Arduin et al., 2013; Clancy et al., 2014).

The original single-neuron conditioning experiments of Fetz and

Baker (Fetz and Baker, 1973) targeted deeper cortical layers

(probably layer 5) using microelectrodes to simultaneously re-

cord the conditioned and an adjacent neighboring neuron. Their

findings revealed that in about half of the recorded pairs, the re-

sponses were correlated during threshold crossings. We can

therefore hypothesize that spatial specificity is more prominent

in L2/3 and might be related to the necessary flexibility of this

cortical layer for the purposes of learning new skills and adaptive

mechanisms in general (Huber et al., 2012; Rokni et al., 2007). It

follows that the ‘‘volitional controller’’ driving L2/3 neurons most

likely involves other, more distributed or distant cortical activa-

tions or subcortical pathways (Koralek et al., 2012).

Our results also demonstrate that when reward is contingent

on the volitional activation of a single neuron, neural mechanisms
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can home in on that cell and ignore its immediate cortical neigh-

bors. In a way, this mirrors a concept put forward by in vivo sin-

gle-cell stimulation experiments (Brecht et al., 2004; Houweling

and Brecht, 2008). The latter suggests the existence of circuits

downstream of the stimulated cortical neuron capable of reading

out single-cell activity. Our finding, on the other hand, suggests

that activity in circuits upstream of the conditioned neuron can

be routed to a single cortical cell. Both emphasize the behavioral

relevance of single-neuron activity, which might be more signif-

icant than previously thought.

Parallels with Previous Findings
The closest direct precedent to our study is the work of Clancy

and colleagues (Clancy et al., 2014). They also used wide-field

imaging to condition cortical neurons and were thus also able

to unambiguously track activity of a local subpopulation of indi-

vidual neurons during learning. Instead of conditioning a single

neuron, they conditioned ensembles of up to eleven neurons.

The auditory feedback and reward delivery were dependent on

the summed activity of the ensemble. Additionally, they cali-

brated the feedback transform coefficients and reward thresh-

olds daily based on baseline activity levels, whereas we kept

them the same throughout the experiment for each conditioned

neuron. Their approach was hence more immune to day-to-day

fluctuations in the activity of single neurons and probably ex-

plains why apart from observing within-session learning as we

did, their mice also learned across days. Neurons within their

conditioned ensembles developed coordinated, synchronous

activity during learning. Similar coordination between non-

conditioned neurons, those outside the ensembles, was not

present and did not increase over time. Such specificity of

learning-related changes to conditioned neurons is confirmed

in the present study, but our findings go further by demonstrating

that this remains true even when conditioning is restricted to just



a single neuron. Clancy and colleagues also identified that some

non-conditioned cells were activated around threshold cross-

ings, whichwasmore evident for those nearby than those distant

from the conditioned ensemble. Although a direct comparison is

not possible because they do not report precise temporal rela-

tionships, these nearby cells might be similar to our spatially

clustered ‘‘leading neurons,’’ which represent a putative pre-

synaptic drive of operant activity in the local network.

Neural Plasticity Might Underlie Learning and Does Not
Involve Direct Inputs from the Stimulated S1 Site
The finding that increased amplitudes of theCa events (reflecting

stronger bursts) guided learning and persisted despite a perfor-

mance drop after feedback removal led us to speculate that

learning might in part be the result of neuronal plasticity, such

as synaptic potentiation or more synchronous inputs to the

conditioned neuron. Future experiments could thus be aimed

at identifying potentiated synapses and subsequently tracing

the source of the related pre-synaptic input (Wickersham et al.,

2007). Since the ‘‘volitional controller,’’ again conceptually,

uses the feedback signal to modify the controlled variable

(Fetz, 2007), the fact that we could artificially constrict the

feedback to a set of cortical neurons might further facilitate its

identification. A potential site of plasticity could be the CN’s

synapses receiving direct input from S1. In the mouse vibrissal

system, S1 projections directly target L2/3 neurons in M1 (Mao

et al., 2011), and analogous inter-areal connections most likely

exist between motor and sensory forelimb representations.

The sequential activation of the CN and S1 afferents might

have, by design, led to a Hebbian-like spike timing-dependent

plasticity (Markram et al., 1997) and have been a contributing

factor to producing more post-synaptic spikes over time. This

could therefore constitute a potential mechanism of how optoge-

netic feedback expedites learning. If that were the case, it is ex-

pected that S1 stimulation would evoke higher Ca levels in the

CN after, as compared to before, learning. However, we were

not able to detect any significant fluorescence transients in the

CN upon optogenetic activation of S1, neither before nor after

learning (Figure S3C). Learning-related activity increases in the

CN therefore do not seem to be mediated by direct S1-to-M1

projections, reinforcing the idea that more intricate pathways

are involved. Actually, because S1 stimulation does not lead,

but follows, the CN’s activation by a few milliseconds, it is

more likely that the synapses in question were depressed and

not potentiated (Jacob et al., 2007). Indeed, stimulation of a

cortical site proportional to real-time activity recorded at another

site induces neural plasticity that is consistent with synaptic

potentiation of pathways from the recording to the stimulation

site, and not vice versa (Jackson et al., 2006). Further work

is therefore required to unequivocally identify the recruited

pathways and the source of the input driving the conditioned

neurons in M1.

Outlook
Our experiments demonstrate that a fabricated cortical commu-

nication channel can rapidly gain behavioral relevance. In prac-

tical terms, thismeans that attaching an ‘‘artificial position sense’’

to neuroprosthetic actuators is feasible and can in principle be
rapidly learned (Figure 5A; Movie S1). These findings in rodents

might also be applicable to humans and pave the way toward

developing artificial feedback systems for patients, which could

be implemented even with currently available electrode-based

approaches. Besides neuroprosthetic applications, our study

also provides a novel behavioral tool for in vivo circuit dissection:

an ‘‘in cerebro’’ learning paradigm that bypasses sensory and

motor peripheries by imposing the learned action and its feed-

back directly in the cortex. This approach can potentially substi-

tute for natural behavior and thereby facilitate dissecting neural

circuits underlying sensorimotor learning. For instance, trans-

synaptic tracing (Beier et al., 2011; Wickersham et al., 2007)

can identify the presynaptic drivers of the conditioned neuron

and the postsynaptic targets of the stimulated neurons, thus

revealing how the feedback signal is routed to instruct volitional

control and what ultimately drives the output. In addition, struc-

tural imaging and functional manipulations of the spines of condi-

tioned neurons or the boutons of stimulated cells can provide

insights into the synaptic plasticity mechanisms at play. Finally,

the accuracy of circuit dissection can be improved by producing

a more specific feedback signal aimed at individual neurons with

two-photon targeted activation and simultaneous imaging

(Packer et al., 2015; Rickgauer et al., 2014). The latter will also

allow exploring multiple channels of graded feedback.
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Antibodies

Anti-CHR2 MFD Diagnostics clone 15E2

Biotinylated Goat Anti-mouse IgG Vector Labs Cat# BA-9200; RRID: AB_2336171

Bacterial and Virus Strains

AAV2.1-Syn-GCaMP6f.WPRE.SV40 University of Pennsylvania Cat# CS0201

AAV2.1-hSyn-Cre.WPRE.hGH University of Pennsylvania Cat# CS0342

Chemicals, Peptides, and Recombinant Proteins

Sigma Fast DAB tablet Sigma-Aldrich Cat# D4293-50SET

Experimental Models: Organisms/Strains

Mouse: Ai32: Rosa-CAG-LSL-

ChR2(H134R)-EYFP-WPRE

Jackson Laboratory RRID: IMSR_JAX:012569

Mouse: Wild type: C57BL/6NCrl Charles River Cat# 027
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Daniel

Huber (daniel.huber@unige.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used 8 to 12 weeks old Ai32 transgenic homozygote male mice carrying a floxed ChR2(H134R)-EYFP fusion gene inserted in the

Gt(ROSA)26Sor locus in a C57/Bl6 background mouse strain (Madisen et al., 2012) (Jackson Labs). The animals were housed in an

animal facility, maintained on a 12:12 light/dark cycle and were placed under a water restriction regime (1 ml/day) (median weight:

22.5 g, range: 19.2 g to 24.1 g). The experiments were performed during the light phase of the cycle. The animals did not undergo any

previous surgery, drug administration or experiments and were housed in groups of maximum 5 animals per cage.

All procedures were approved by the Institutional Animal Care and Use Committee of the University of Geneva and Geneva vet-

erinary offices.

METHOD DETAILS

Surgeries and viral injections
All surgeries were conducted under isoflurane anesthesia (1.5%–2%) and additional analgesic (0.1 mg/kg buprenorphine intramus-

cular (i.m.)), local anesthetic (50-100 mL 1% lidocaine subcutaneous (s.c.) under the scalp) and anti-inflammatory drugs (2.5 mg/kg

dexamethasone i.m. and 5 mg/kg carprofen s.c.) were administered as necessary. A custommade titanium head bar was implanted

in the skull to allow for subsequent head fixation. A craniotomy was performed over the left frontal cortex and two viral injections (30-

50 nL each) were delivered (10-20 nl/min) into the forepaw representation in S1 (0.75 mm anterior, 2.25 mm or 1.75 mm lateral to

Bregma) and two in the forepawM1 (1.75 mm anterior and either 2 mm or 1.5 lateral). In 8 mice, the S1 injections consisted of diluted

‘‘Cre-virus’’ (AAV2.1-Syn-Cre, 1:100 for 2 mice and 1:1000 for 6 mice, 0.2% FastGreen in sterile saline, virus stock titer 1.46 3 1013

genome copy per ml (GC/ml)). In M1, a ‘‘GCamP6f-virus’’ (AAV2.1-Syn-GCaMP6f, 1:10, 2.96 3 1013 GC/ml) was injected. The co-

ordinates for the somatosensory representation of the forepaw were based on a series of intrinsic signal imaging sessions (7 addi-

tional Ai32 mice). After virus injection, cortex was rinsed for 1-2 min with dexamethasone (0.03%). Two hand-cut glass coverslips

(150 mm thick) that matched the shape of the craniotomy were glued together with optical adhesive (Norland 61). The cranial window

was placed on top of the cortex, glued to the bone with cyanoacrylic glue and secured with dental cement. The correspondence be-

tween the S1 injection sites and the sensory forepaw representation was confirmed post-operatively with intrinsic signal imaging in

eachmouse. TheM1 injection coordinates were calculated relative to the S1 coordinates and based on a database of cortico-cortical

projections in somatic sensorimotor areas (Zingg et al., 2014). In addition, all mice were implanted with cortical surface electrodes

(Teflon coated gold wires, AU-3T, Science Products, Germany) in the contralateral somatosensory (0.75 mm anterior, 2 mm lateral to

Bregma) and visual cortices (3 mm posterior, 1 mm lateral to Bregma). After a four day recovery period, mice were placed under a
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water restriction regime (1 ml/day). Experiments began on the 15th day after surgery. Neural responses could be evoked by opto-

genetic stimulation of S1 in all 8 mice (Figures S1A and S1B). Histological verification of ChR2 expression revealed dense labeling

of cell bodies and neuropil in L2/3 and L5 at the S1 site, whereas no neurons were retrogradely labeled in M1; only axonal projections

of Chr2 neurons from S1 could be observed (Figure S8A).

11 additional male mice that underwent identical surgery and injection procedures were used as controls as they did not exhibit

ECoG responses to the optogenetic stimulus (Figures S1A and S1B) and showed no or only sparse expression of ChR2:

4 animals were wild-type siblings not carrying the floxed ChR2-EYFP gene.

2 Ai32 mice were heterozygote siblings

4 Ai32 homozygote mice received a highly diluted Cre-virus injection in S1 (1:10’000).

2 Ai32 homozygote mice received a diluted Cre-virus injection in S1 (1:1000), but showed only very sparse expression of ChR2

(Figure S8B). We explain the low ChR2 expression levels and lack of evoked responses in thesemice by the failed virus delivery

during surgery.
Histology
At the end of the experiments, mice were deeply anesthetized with pentobarbital, transcardially perfused with cold saline and para-

formaldehyde 4% (PFA) and the brains were removed and stored overnight in PFA 4%. Then, the brains were transferred to a sucrose

solution (20% in PBS 0.1M) for at least 24 hr and sliced in 50 mm coronal sections with a freezing microtome. Tissue was stored in a

solution of sodium azide (0.01% in PBS 0.1M) until histological processing. We performed immunohistochemical analysis to deter-

mine the level of ChR2 expression. Slices were incubated with a mouse primary monoclonal antibody anti-ChR2 (clone 15E2, MFD

Diagnostics) and with a biotinylated secondary antibody anti-mouse (Vector Labs). The tissue was finally processed with diamino-

benzidine (Sigma-Aldrich) for the colorimetric reaction. Slices were mounted and imaged with a wide field scanner microscope

(Olympus VS120) at 10x.

Intrinsic signal imaging
Mice were head-fixed and placed on a heated platform under light isoflurane anesthesia (0.75%). Ten 1 s vibrotactile stimuli consist-

ing of a 100 Hz sinusoidal vibration were delivered to their forepaw with a 10 s inter stimulus interval. The cranial window was illumi-

nated by a collimated red light LED (630nm) and imaged at 10 fps with a 256 by 332 pixels resolution. The average difference image

between the stimulation period and a 1.5 s baseline period was processed by a 50 by 50 pixels spatial averaging filter and subse-

quently smoothed by a 5 by 5 pixels Gaussian low pass filter with 0.5 pixels standard deviation. Stimulus presentation and image

acquisition were controlled by Ephus software (scanimage.org).

2-photon imaging and optogenetic stimulation
Imagingwas performedwith a custombuilt two-photonmicroscope (MIMMS; https://openwiki.janelia.org/wiki/display/public/Home)

controlled by Scanimage 4.2 (scanimage.org) using a 16x 0.8 NA objective (Nikon) and with excitation wavelength at 940 nm (Ultra II,

tunable Ti:Sapphire laser, Coherent). 512 by 512 pixel images covering 626 by 665 mm of cortex were acquired at 29.57 Hz using

bidirectional scanning with a resonant scanner system (Thorlabs). The power was modulated with pockels cell (350-80-LA-02, Con-

optics) and calibrated with a photodiode (Thorlabs). Optogenetic stimuli were generated with a 473nm laser (DHOM-W473-200mW,

Ultralasers) whichwas custommodified to be gated electronically using TTL pulses. Pulse length was 5ms. The power was calibrated

before each session to be�20mW at the stimulation site on the brain surface. The beam was positioned with a pair of galvanometric

mirrors (Cambridge Technology). The imaging and optogenetic beams were combined using a longpass dichroic mirror (700dcxxr,

Chroma) between the scan lenses and the tube lens. The primarymirror for imagingwas a custompolychroic (Chroma, zt470/561/nir-

trans) transmitting the infrared and blue light, while reflecting the green. Before detection, the remaining IR light was filtered with a

colored glass band pass filter (BG39, Chroma), whereas the remaining blue light was removed with a short pass filter (CG475,

Chroma). Images were continuously acquired using gated photo multiplier tubes (gPMT) (H11706P-40 SEL, Hamamatsu) and written

in 16 bit format to disk in separate files (1110 frames/file). The start/end of file trigger was issued by a separate PC and later used for

temporal alignment of Ca traces with behavioral variables. The objective was aligned perpendicular to the imaging window for each

mouse using a custom built laser-based alignment device. At the start of each session, the imaging field was manually located using

reference images of previous recording days and slow drifts manually corrected for throughout the session.

Image analysis
To correct for lateral movements, a custom MATLAB registration algorithm was used to align each image to a template taken as the

average image of a 30 s resting baseline period recorded at the start of each session. The cross-correlation was computed between

each image and the template by multiplying the two-dimensional discrete Fourier transform of one with the complex conjugate of the

Fourier transform of the other and taking the inverse Fourier transform of the product. The row and column location of the peak cross-

correlation value was taken as the vertical and horizontal shift, respectively. 10% of each image was cropped at the boundaries for

the purposes of this computation.
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Semi-automatic custom MATLAB routines were used to draw regions of interests (ROIs) for individual neurons using the session

average image. The drawn ROIs were then automatically aligned and iteratively updated over subsequent sessions. The Ca-depen-

dent fluorescence time series were extracted by averaging pixels within each ROI. The time-varying baseline f0 of a fluorescence

trace was computed as the average value in a 20 s moving time window by excluding values that surpass 20% of this average.

At each time point, the updated baseline value f0 was subtracted from the raw fluorescence value f to yield Df and compute the rela-

tive change to baseline as Df/f0.

Technical details and task design
Images of scanned brain tissue acquired with ScanImage were streamed on the local network using the user datagram protocol

(UDP). Each end-of-frame signal triggered a custom coded MATLAB routine that sent, in succession, 32 equal-sized lines of

the 512 by 512 pixel image (i.e., 16 packets/image) over the network. The packets were read on the appropriate UDP port on a

separate PC, the images reassembled and the relative change with respect to baseline of the conditioned neuron(s) computed

by extracting the average pixel intensity in a defined region of interest comprising a single cell. The extracted activity was down-

sampled toz0.2 s by averaging blocks of 6 consecutively received images and changes relative to a preceding 20 s moving base-

line window were computed (Df/f0). Df/f0 values exceeding 20% were excluded when updating the baseline value. A second

custom written MATLAB instance running on the same PC transformed, at every time sample t, Df/f0 into a frequency value f(t) ac-

cording to fðtÞ=AenðtÞ � A where n(t) is the Df/f0 value at time t. The obtained frequency value was then binned into one of 17 bins

ranging from 1 Hz to 15.12 Hz in quarter-octave increments and produced a rate signal for the optogenetic pulses. The pulse rate

was updated whenever the binned f(t) differed from the binned f(t-1). Linear changes in neural activity therefore resulted in expo-

nential changes in the feedback signal (Figure 1D, inset). A third custom written MATLAB instance used the rate code to generate

an analog output signal on a Data Acquisition Board (National Instruments, Austin, TX) that produced the optogenetic feedback to

the mouse. The optical stimulus consisted of 5 ms squared pulses sampled at 44 kHz. The same instance also triggered a 0.35 s

auditory beep and a reward pulse that opened a valve to deliver a drop of water to the mouse whenever the signal crossed a

threshold level. The water drop was sucked away with a peristatic pump (Minipulse 2, Gilson, Middleton, WI) right upon delivery,

thereby requiring immediate consumption and instigating anticipatory licking. Rewards were always delivered automatically upon

threshold crossings except in the lick-triggered reward condition of the last 5 sessions (see Behavioral Training section below). The

threshold level was initially chosen for each neuron on a trial-and-error basis to yield a minimum of approximately two rewards per

minute, based on a baseline recording period, and was kept fixed thereafter. The threshold corresponded to the lowest Df/f0 that

was binned in the maximum 15.12 Hz bin and was set by adjusting the coefficient A. Only threshold crossings triggered a reward

and the 15 Hz stimulation was turned off if a sustained activity above threshold continued in excess of 1 s. The optogenetic feed-

back was reinstated once such sustained activity came back below threshold. This was done to pair the maximum stimulation fre-

quency (15 Hz) with activity threshold crossings only, as this is what we sought to reinforce. By turning the stimulus off we avoided

optogenetically reinforcing high levels of activity sustained above threshold that did not lead to reward. This had to be done in less

than 1% of all threshold crossings.

The total median time delay between frame completion and feedback generation was uniformly distributed between 19.2 ms and

219.2 ms (see table).
Median (5% and 95%quantiles) time delays incurred by the different processing stages

Frame transmission 11.2 (9.2, 13.0) ms

Signal extraction 7.1 (6.8, 10.1) ms

Rate code computation 0.84 (0.8, 5.4) ms

Feedback generation 0.052 (0.05, 3.2) ms
The choice of the conditioned neurons was biased toward neurons in themiddle of the imaged field of view. Other selection criteria

were a clear identifiable morphology and aminimal Ca event rate of 2 events / minute (assessed during initial baseline measurements

lasting 2 to 3 min). Once a neuron was chosen, it was used for conditioning on all subsequent sessions as long as it remained active

(produced more than 2 Ca events / minute). If the criterion was not met, conditioning was switched to a new neuron meeting the cri-

terion before the start of the session. The functional role (relationship to movements) of the chosen neurons was not assessed and

therefore remained unknown.

Because image movement correction was not performed for the real-time data, we quantified the artifactual transitions in the

conditioned Df/f0 traces that were induced by lateral motions (Figures S2D–S2G). They were found to be negligible and did not

contribute to threshold crossings.

The optogenetic feedback was guided bymirrors through the imaging objective and visually aligned on the ChR2 expression site in

forepaw S1 using a CCD camera and a reference image of the blood vessel map. The squared pulses were used to electrically switch

the laser on and off creating as such a fast and silent shutter for the blue light stimulus. The same pulse signal elongated by 1 ms

turned off the gPMT used for imaging during photostimulation periods. This resulted in at most one band of z92 lines of the 512
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by 512 pixel images to be blacked out over a two frame period for the maximal 15 Hz stimulation level. Eventual blanking of the CN

was detected online and the frame in question was ignored in subsequent processing stages. As a visual mask, a collimated blue light

LED (473 nm, Roithner) was turned on and the gPMT turned off during flyback periods of scanning (1.5 ms pulses at the 29.57 Hz

acquisition rate), thus not affecting the acquired images while providing a perceptually stable visual stimulus. This pulsated blue light

illuminated the otherwise dark setup from session start to session end. The feedback signal was delivered continuously without any

trial structure but was paused for 1 s at 37.5 s intervals to allow for logging acquired data to separate files. This end/start of file trigger

was also used to periodically update the saved image files on the Scanimage PC and later used for aligning extracted Ca traces with

behavioral variables.

Behavioral procedures
Mice sat head-fixed in a tube (25 mm inner diameter). The forepaw contralateral to the imaged and stimulated cortical sites was

resting on a hold bar to maintain balance while the ipsilateral forepawwas restrained inside the tube. The water reward was delivered

through a spout placed at licking distance below the snout. The tube and the mouse were connected to a 5 V node and, when

touched, the conductive hold bar and reward spout shunted the 5 V to a circuit that pulled a respective analog input signal to the

Data Acquisition Board to high. Licks and forepaw rests were in this manner continuously acquired at a sampling rate of 1 kHz. Re-

leases of the hold bar were used to assess if mice consistently used contralateral forepawmovements to solve the task (Figure S2H).

We used 4 control mice to test the efficacy of a blue visual mask in suppressing visually evoked ECoG responses by the optoge-

netic stimulus.With themask turned off, visually evoked potentials were observed in response to the onset and offset of the blue laser

pulse train, but were completely suppressed when the mask was turned on (Figures S1C and S1D).

Mice were trained in the operant conditioning task for 15 to 17 consecutive daily sessions. The experimental timeline of each ses-

sion was divided into condition blocks (Figure S2A). Each conditioning session began with a three minute period of playback where a

neural activity recorded on a previous day controlled the optogenetic feedback and reward delivery, in otherwise identical experi-

mental settings. The Df/f0 trace of the conditioned neuron saved in a previous session was used for this purpose. Instead of the

Df/f0 values extracted from the streamed images at each time sample in real-time, the optogenetic feedback and threshold crossings

were determined by theDf/f0 values of that saved trace. Control was then switched to the conditioned neuron and after an average of

25 min of real-time conditioning, the optogenetic feedback was removed for 3 min and reinstated thereafter. The blue light mask was

present throughout.

In the last 5 experimental sessions, lick-triggered rewards were introduced during the first 3 min of playback and 3 min before,

during and after optogenetic feedback removal. Instead of being automatically delivered, mice had to initiate licking in a 500 ms

time window following threshold crossings to obtain the reward. Because rewards were otherwise always automatically delivered,

these brief introductions of the lick-triggered reward condition were not significant enough to incentivize mice to engage in contin-

uous licking as is sometimes observed in such lick-triggered reward paradigms. Additionally, each session ended with 6 min of play-

back under the lick-triggered reward condition. In the first 3 min, optogenetic stimulation was applied to a control non-ChR2 site and

moved back to the S1 ChR2 site in the last 3min of playback. The positions corresponding to the ChR2 and control sites were located

on the blood vessel map using a CCD camera and their image coordinates recorded. The optogenetic beamwas then positionedwith

a pair of galvanometric mirrors on those same image coordinates (using a reflective surface) and the corresponding voltages applied

to the twomirrors were recorded for each site. The beamwas thenmoved between ChR2 and control sites, during the experiment, by

applying the appropriate voltage levels at relevant times. All transitions between different experimental conditions were not cued by

experiment interruptions or additional sensory stimuli.

In the three neuron conditioning experiments, each neuron’s activity n was transformed by a logistic function according to

fðnÞ= 1

2
½1+ tanhðAðn� cÞÞ�:

The ensemble activity fðn1Þ+ fðn2Þ � fðn3Þ controlled the rate of optogenetic feedback pulses and reward delivery.A and cwere set

to 2.2 and 0.6, respectively and the reward threshold to 1.75. This mapping constrained neurons N1 and N2 to co-activate and N3 to

remain silent to bring the ensemble activity above threshold and trigger a reward. More specifically, Df/f0 values of N3 above z0.36

prevented threshold crossings irrespective of N1 and N2 activity. Concomitant Df/f0 values of N1 and N2 above z1.15 resulted in

threshold crossings provided the activity of N3 remained at zero.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample size and all trained animals were included in the analysis. Two-tailed Stu-

dent’s t test (for samples with equal variances) or Welch’s t test (for samples with unequal variances) were used where appropriate.

Equal variances were determinedwith the two-sample F-test and the normality assumptionwas testedwith the Kolmogorov-Smirnov

test. Non-parametric tests were used when the normality assumption was not met. All data analyses were performed with custom

written routines in MATLAB.

The efficacy of ChR2 activation (Figures S1A and S1B) was assessed by measuring differentially between the two contralateral

cortical electrode responses evoked by a 0.5 s train of 5ms optical pulses delivered at 15 Hz. Peak responses in a 20ms timewindow
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following the onset of each 5ms light pulsewere compared across all stimulation trials (n = 30) to peak responses to the same number

of simulated light pulses in the 0.5 s baseline period preceding the stimulus train onset. Animals with significant differences (paired t

test, p < 0.05) between true and simulatedmean peak valueswere classified asChR2mice and as controlmice otherwise. Nomethod

of randomization was used and the investigator was not blind with respect to the classification of 5 control animals, but was blind for

the other 6 and for all ChR2 animals.

Learning curveswere calculated for the conditioning period between the end of the initial playback and either the onset of feedback

removal or onset of the lick-triggered reward condition that precedes feedback removal. Threshold crossing rate (TCR) was calcu-

lated for each of 8 equally sized time bins in this window. Learning sessions were defined as those with significant linear increases of

TCR across the 8 bins (linear regression, p < 0.05). Mice with significantly bigger TCR in the last compared to the first bin across all

sessions were labeled as learners and as non-learners otherwise. TCR normalization was performed by offsetting individual session

learning curves to the same TCR value in the first bin, taken as the mean of all first bin TCR values, and dividing the rate of each bin

by it.

Chance levels of detection probability of threshold crossings assessed in the lick-triggered reward condition (Figure S4) were simu-

lated separately for each mouse and each experimental condition as follows: 1. We identified the experimental epoch corresponding

to each individual data point included in the mean value calculations of Figure 2E. 2. Within that epoch, we isolated licks that occur

only during baseline stimulation (i.e., 1 Hz) and attributed them to spontaneous licking. 3. We then simulated spontaneous licking for

the whole epoch by randomly reproducing the isolated lick sequences, thus preserving their temporal statistics (i.e., the inter-lick-

interval and lick duration). 4. Chance detection probability was then calculated using these simulated licks and the same neural ac-

tivity as for the actual data. As such, this procedure yielded for each individual data point a corresponding chance level and allowed

paired statistical comparisons.

Ca events were detected by taking the first derivative of the smoothed Df/f0 trace (Savitzky-Golay filter, second order polynomial,

15 data points) and an event onset was defined when the z-scored trace crossed a value of 2 and event end when it decreased again

below 0. Event amplitude was defined as the difference of the Df/f0 values between event end and event onset time points. Event rate

and average event amplitude were calculated for the same 8 time bins as the learning curves. A general linear model with the

threshold crossing rate (TCR) z score as the dependent and the z scores of the event rate (ER) and event amplitude (EA) as the in-

dependent variables was fit to each of the 33 learning sessions as follows:

TCR=bErER+bEaEA:

The relative contribution of ER and EA changes to TCR increases was evaluated by comparing the distributions of the fitted bEr

and bEa values expressed in terms of number of standard deviations across all learning sessions. Event rate and event amplitude

change factors correspond to the ratios between the last and first time bins of the two measures, respectively. Temporal Ca

event probability (Figure S3A) was computed by transforming each Df/f0 trace into an event trace which was set to 1 between

each event onset and end, and to 0 otherwise. The reward-triggered average of all event traces of a given neuron yielded the

event probability.

Increasing neurons were defined, in a given learning session, as those having significant linear increases (p < 0.05, linear regres-

sion) of either their EAs or ERs between the start and end of learning, evaluated with the 8 time-binned values.

Leading neurons were identified, in a given learning session, by computing the hypergeometric cumulative distribution function

value for each non-CN according to

p= 1�
Xx
i = 0

�
K
i

��
M� K
N� i

���
M
N

�
;

where x is the number of instances in which the non-CN produced a Ca event in a 1 s interval preceding the onset of the CN’s

threshold crossing Ca event. K is the product of the number of time samples in the 1 s interval and the number of threshold crossings

in a given session (number of samples drawn), M is the product of the number of time samples in a 4 s interval preceding the CN’s

event onset and the number of threshold crossings (size of the population) and N is the number of instances in which non-CN events

occurred in the 4 s interval (number of items with the desired characteristic in the population). Non-CNs with p < 0.01 were defined as

leading neurons (i.e., those that produceCa events that precede theCN’s threshold crossingCa eventmore often thanwhat would be

expected by chance).

A receiver operating characteristic (ROC) analysis was carried out on the leading neurons to assess whether their activity can pre-

dict threshold crossings of the CN’s Ca trace. For each learning session, the CN’s Ca events were classified into rewarded (those that

crossed threshold, event type X) and unrewarded (those that did not cross threshold, event type Y), and each leading neuron’s Df/f0
trace in a 1 s interval preceding the onset of these events was taken into account. A discrimination score (DVX) was computed for each

leading neuron for the ith event type X as the dot-product of the neuron’s Df/f0 trace (Xi) and the mean trace across all type X events

(excluding the ith event, X) minus the dot-product of Xi and the mean trace across all type Y events ðYÞ. The discrimination score DVY

was analogously obtained for the ith event type Y and, thus, according to

DVX =Xi

�
Xcjsi � Y

�
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�

DVY =Yi X � Ycjsi

�
:

An ROC curve was constructed by plotting, for each criterion value c varied across the range of DVX and DVy values, pðDVX >cÞ
(i.e., the fraction ofDVX values exceeding the criterion) against pðDVY >cÞ (i.e., the fraction ofDVY values exceeding the criterion). The

area under the ROC curve (AUC) was computed using trapezoidal numerical integration (trapz() function in MATLAB) and corre-

sponds to the fraction of events correctly discriminated by an ideal observer using the obtained discrimination scores. A permutation

test, consisting of shuffling the X and Y event labels and calculating AUC values with 1999 shuffled subsets, yielded a p value for each

leading neuron, taken as the fraction of shuffled AUC values that weremore extreme than the AUC corresponding to the non-shuffled

data. Leading neurons with p < 0.05 were deemed to correctly predict, above chance level, weather a CN’s Ca event would cross

threshold.

Bootstrap hypothesis testing of a test statistic being different from zero was performed by taking at random, with replacement, N

values from the total set of N measurements of a variable, 1999 times. The two-tailed bootstrap p value was then computed from the

1999 sample measurements of a test statistic x as follows:

p= 2min

 
1

B

XB
j = 1

Iðxj%0Þ; 1
B

XB
j = 1

Iðxj > 0Þ
!
;

where B = 1999, xj is the jth bootstrap sample of x and I() is the indicator function, which is equal to 1 when its argument is true and

0 otherwise.
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Figure S1. Related to Figure 1. Mouse classification and efficacy of the visual mask.  
 
(A) Average event  related potentials  (ERPs) measured differentially between  the S1 and V1 cortical  surface 
electrodes (left panels) and example mean ERP peaks (right panels) evoked by optical pulses (blue) and during 
time‐matched baseline periods (grey) are shown for one ChR2 and one control mouse. Mean (± s.e.m.) peak 



size was compared between stimulation  (blue data points) and baseline periods  (grey data points)  for each 
mouse (paired t‐test).  
(B) Dashed black line denotes the p=0.05 (paired t‐test) classification criterion.  
(C)  Left panels: with the mask turned off, visually evoked potentials were apparent at the onset and offset of 
the optogenetic stimulus for 4 tested control mice. Right panels: these neural responses were supressed when 
a visual mask consisting of continuous ≈30 Hz blue light pulses illuminating the experimental setup was turned 
on.  
(D) A comparison of visually evoked ERP peaks for the 4 control mice shown in (C) between the mask ON and 
OFF test conditions depicts the consistent efficacy of the visual mask. 
 

 



 
Figure S2. Related to Figure 2. Effects of initial levels of reward reinforcement, lateral image displacements 
and forepaw movements.  
 
(A) Experiment timeline.  
(B) Non‐normalized population mean (± s.e.m.) TCRs of ChR2 (8 mice, 127 sessions) and control (11 mice, 158 
sessions) animals. Because controls lacked optogenetic feedback a wider range of baseline conditioned activity 
levels  (i.e.  TCR  in  the  first  time  bin) was  explored  in  that  group  to  test  for  the  effects  of  initial  reward 
reinforcement on  learning. Control mice  therefore on average  started a  session with  slightly higher  reward 
levels.  
(C) No significant effect of baseline TCR was however observed as it did not differ between learners (n=7) and 
non‐learners (n=12) (two‐tailed non‐paired t‐test, p=0.15, t(17)=1.513).  
(D) Example activity  trace of a conditioned neuron  (bottom) extracted  from  the  two‐photon  images  in real‐
time, and after offline correction for the measured vertical and horizontal image motion artefacts (top).  
(E) Mean  (± s.e.m.) TCR  for the 33  learning sessions  in ChR2 mice recorded during conditioning  in real‐time 
and simulated offline with the motion corrected images. Higher reward rates obtained after motion correction 
indicate that image movements were detrimental and not assistive to threshold crossings.  
(F) Individual (grey) and mean horizontal and vertical image motion (green and blue) aligned to reward onset 
for all threshold crossings across the 33  learning sessions  in the first and  last time bins. Both horizontal and 
vertical motion were not significantly different between  the  last and  first  time bins  in  the 1 s  interval both 
before and after reward onset  (t‐test, p>0.05). Motion artefacts were therefore not a contributing  factor to 
reward rate increases during learning.  
(G) Average  conditioned  neuron  contour  (black)  and  probability  of  any  image  pixel  to  be  included  in  that 
contour computed for all threshold crossings across the 33  learning sessions  in a 1 s period before and after 
reward delivery.  Image motions preferentially occurred post‐reward and did not overtly differ between  the 
first and last time bins of conditioning.  
(H) Hold probabilities, aligned to threshold crossings, in the first and last time bins across 33 learning sessions. 
Ticks  delineate  time  points when  the  two  probabilities were  different  (p<0.01,  two‐tailed  bootstrap  test). 
Because touch sensor releases preceding threshold crossings decreased over time,  it  is unlikely that  learning 
was mediated by more frequent forepaw movements.   
 
 
 

 
 
Figure S3. Related to Figure 2. S1 stimulation alone does not evoke activity in the conditioned M1 neurons.  
 
(A) Ca event probability of CNs aligned to threshold crossings in the feedback and playback conditions of the 
same sessions. The direct effect of S1 activation on the conditioned M1 neurons can be measured at times of 



threshold crossings  in the playback condition. These  instances provide maximal optogenetic stimulations not 
paired to the CN’s activity, but in otherwise identical experimental settings.  
(B) Distribution of mean Δf/f0 values of CNs (n=2440 threshold crossings  in 33  learning sessions)  in the ‐0.5 s 
and 0.5 s relative to threshold crossings compared to time‐matched baseline periods (chance) in the feedback 
condition. *: p≈0, k‐s=0.634, two‐sample Kolmogorov‐Smirnov goodness‐of‐fit test.  
(C) Same data as in (B) for the playback condition (n=382 threshold crossings), n.s.: p=0.13, k‐s=0.0838. Inset: 
pre‐ and post‐learning distributions of the same data in 11 learning sessions for which the playback condition 
was  tested  both  at  the  start  (i.e.  pre‐learning:  n=96  threshold  crossings)  and  end  (post‐learning:  n=97 
threshold crossings) of the session and thus involving data from the same neuron, n.s.: p=0.87, k‐s=0.0842.   
 
 
 
 

 
Figure S4. Related to Figure 2. Comparison of detection probability to simulated chance levels. 
 
Same data as  in  Figure 2E  compared  to  simulated  chance  levels  (see Methods  for details). *: p<10‐11, n.s.: 
p>0.05, Kruskal‐Wallis test. 
 
 



 
 
Figure S5. Related to Figure 3. Activity changes of CNs and INs during learning.  
 
(A‐I) Event rate and event amplitude changes between the first and last time bins of CNs and INs in 9 example 
learning sessions. Dotted contours are 95% confidence ellipses. 
 



 
 
Figure S6. Related to Figure 4. “Dropping‐out” of conditioned neurons.  
 
Two example neurons conditioned under optogenetic feedback in the same animal over 4 and 3 consecutive 
days, respectively. Within session changes  in threshold crossing rate (small green circles) and their  linear fits 
(dashed black  lines) are shown for sessions #2 through #7. Cross session averages of reward rate (big green 
cricles), event  rate  (blue  squares) and event amplitude  (red  squares)  together with  the  calcium dependent 
activity  traces  (top)  depict  the  flexible  day  to  day  activity  of  the  conditioned  neurons.  Insets  are  session 
average  two‐photon  images  zoomed  in on  the  conditioned neurons  (arrowheads).  *:  learning  session.  The 
mouse learned to increase TCR on the second day of training, still attempted to do the same on the third day, 
albeit less successfully, after which point the conditioned neuron became inactive preventing further learning 
to  take place. We were  then obliged  to  switch  to a different, active neuron, on  the  following  training day 
where a non‐significant  increase  in TCR was observed. The  second day of  conditioning,  significant  learning 
occurred throughout the session. Once again, the neuron became relatively inactive thereafter. 
 
 
 
 
 
 
 
 



 
 
Figure S7. Related to Figure 5.  Increased co‐activation of neuron 1  (N1) and neuron 2  (N2) guides  learning 
during multi‐neuron conditioning. 
 
(A)  Within  session  changes  of  average  Ca  event  rate  (blue),  event  amplitude  (red)  and  number  of  co‐
activations per Ca event (green) for N1 (left panels) and N2 (right panels) during the multi‐neuron conditioning 
experiment  (n=8  sessions,  2 mice). Gray  lines  depict  data  from  individual  sessions.  Significant  increases  in 
event  rates  (N1: p=0.0046, N2: p=0.25, Kruskal‐Wallis  test) and amplitudes  (N1: p=0.21, N2: p=0.02, Kruskal‐
Wallis  test)  between  session  start  and  end were  observed,  but  also  in  the  co‐activations/event  ratio  (N1: 
p=0.0033, N2: p=0.035).  
(B) Comparison of mean (± s.e.m.) N1 and N2 activity between session start (left panels) and session end (right 
panels)  aligned  on  reward  onset  (top  panels),  all N1  event  onsets  (middle  panels)  and  all N2  event  onsets 
(lower panels). 
 
 
 
 



 
 
Figure S8. Related to STAR Methods. Histological verification of ChR2 expression in representative ChR2 and 

homozygous control mice. Coronal sections immunostained against ChR2 (DAB reaction). 

 

(A) ChR2 expression in a ChR2 mouse at the injection site (S1FL) corresponding to the Cre‐virus dilution 1:1000 

and at the imaged M1 site. 

(B) Reduced ChR2 expression in S1FL in a homozygous control mouse that received a Cre‐virus dilution 1:1000.   

 
Movie S1. Related to Figure 5. Multi‐neuron conditioning.  

The head‐restrained mouse under the two‐photon microscope was required to coactivate two neurons (green 

and  blue)  while  keeping  a  third  one  inactive  (red)  to  bring  the  ensemble  activity  (i.e.  the  rate  of  the 

optogenetic stimulus) above reward threshold. The calcium fluorescence of each neuron controlled the  joint 

angle of a robotic arm and the arm’s distance to target was proportional to the feedback rate. The blue light 

mask pulses  (1.5 ms)  as well  as  the optogenetic  stimulus pulses  (5 ms) were undersampled by  the mouse 

video acquisition rate  (120 Hz). The undersampled  light  flashes apparent  in the mouse video emanate  from 

the blue light mask. In reality, the mask produced a perceptually stable illumination of the setup.  
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