
 

Supplementary Figure 1  Hypothetical illustration of the processes that can generate 

phylosymbiosis. The host phylogenetic tree is represented in brown as bifurcating tubes. Three 

examples of host-bacteria associations are shown. All three are correlated with host phylogenetic 

distances and can contribute in generating a signal of phylosymbiosis. The evolutionary trajectory 

of OTU1, which evolves in close association with hosts, is represented in green lines. OTU1 

undergoes co-speciation with the host, but may experience host swap along host evolution. The 

degree of topological congruency between the symbiont and host phylogenies sheds light on the 

dynamics of bacteria-host associations. If topological congruency is high, the rate of co-

speciation is high, meaning that bacteria have restricted host-specific ranges and co-diversify 

with hosts. If topological congruency is low, the rate of host-swap is high, meaning that bacteria 

have wide host ranges and can be easily transferred. Weak topological congruency is also 

expected for OTU2 and OTU3, which are evolving independently from hosts: the origin of OTU2 

predates the origin of hosts in which it is observed, and the origin of OTU3 postdates the origin 

of hosts. However, their distribution across hosts is correlated with host phylogenetic distances: 

hosts 3, 4 and 5 select OTU2 but not OTU3, while hosts 1 and 2 select OTU3 but not OTU2. 

Consequently, while these three presence/absence patterns significantly correlate with host 

phylogeny (e.g. with a Permanova test, as done in Figure 1B in the Main Text), the processes 

generating these patterns are very different. To distinguish between these scenarios, a modelling 

of symbiont evolution along the host tree accounting for both the information in the symbiont 

phylogeny and the rates of co-speciation and host-swap is necessary to compute the most likely 

scenario.  

OTU1
Mammalian Host

Phylogeny

Process 1:

Vertical inheritance / Co-speciation

 (OTU1)

H1 H2 H3 H4 H5

Two processes can generate

the same pres/absence profiles of bacteria that

correlate with host phylogenetic distances

(generating phylosymbiosis)

Bacteria and hosts 

evolve in association

Bacteria and hosts 

evolve independently
OTU2OTU3

Process 2:

Similar traits (e.g. host genetics) 

select the same bacteria 

from the environment 

(OTU2 and 3)
(postdates origin 

of hosts)

(predates origin 

of hosts)



 

 

Supplementary Figure 2  Principles and validation of the BDTT approach.  
a: Description of the BDTT procedure (see Main text (Results & Methods sections) for a 

complete description). b, c: BDTT decomposes the UniFrac. We report a comparison between 

UniFrac dissimilarities and integrated BDTT profiles of dissimilarity. b: hypothetical BDTT 

dissimilarity profile for two communities, for which the Area Under the Curve (AUC) is 

computed. c: AUC for all pairwise BDTT profiles were computed on our mammalian dataset. 

AUC (X-axis) is plotted against the UniFrac dissimilarity (Y-axis).  



 

 

Supplementary Figure 3  BDTT captures phylogenetic scale disparities between the effects 

of environmental factors on community compositions. The four panels depict the correlation 

between beta-diversity and environmental distances (defined by distances between fixed 

environmental values of communities) (Y-axis) along the phylogenetic time scale (X-axis, left: 

tips of the tree; right: root of the tree). Each panel corresponds to different pairs of simulated 

environmental preferences (traits) of species: the blue correlation profile corresponds to 

environmental preferences of species simulated under a BM model, while the red correlation 

profile corresponds to environmental preferences of species simulated under an EB model. The 

EB parameter on top of each panel indicates the rate at which trait evolution slows through time 

along the phylogeny. The more negative this parameter is, the faster the rate of trait evolution 

slows from the root, creating trait disparities mostly in the deepest regions of the tree. Light 

colours represent the correlation profiles of each simulated tree averaged across the 10 simulated 

sets of traits. Plain colours represent profiles averaged over the 10 phylogenies (i.e. mean 

correlation profile over all simulations).   



 



 

 

Supplementary Figure 4  Control experiments for the scale disparity between the effects of 

host phylogeny and diet on mammalian gut microbiome compositions. We performed 

correlations between microbiome compositions and host phylogeny and diet using BDTT in 

different conditions: (1) with all 16S sequences or 16S restricted to Firmicutes or Bacteroidetes 

sequences; (2) with a rooting of the bacterial phylogenetic tree on Actinobacteria or on 

Firmicutes; (3) with branch lengths expressed in “time” units or in substitutions/site and (4) using 

rarefied or non-rarefied OTU tables. We also controlled for the influence of topological 

uncertainties in the bacterial tree on the construction of OTU tables along the tree. Conclusions 

drawn in Figure 1A hold true in these different control conditions.  

  



 

Supplementary Figure 5  Correlation profiles between microbiome composition and host 

phylogeny and diet expected under a null model. The null model controls for the effect of the 

hierarchical structure of the phylogenetic tree on correlations with host phylogenetic (dark blue) 

and dietary (orange) distances. The distributions of null correlation profiles are represented in the 

form of a 95% null envelope. The time scale of the bacterial phylogeny is represented in the X-

axis. Observed correlation profiles are identical to those in Figure 1A (Main Text). See section 

2.3.4 in Supplementary Discussion for more details about the null model. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 6  Control for the impact of intra-host variability on the scale 

disparity between the effects of host phylogeny and diet. The BDTT analyses were run as in 

Fig. 1A. The plain blue and orange lines show the original correlation profiles with host 

phylogeny and diet, respectively (Fig. 1A). The dashed lines show the correlation profiles with 

both factors that we obtained when using the gut microbiome of alternative individuals for 7 host 

species. This control confirms that the intra-host compositional variability is much weaker than 

the inter-host compositional differences and that our main conclusions regarding associations 

between microbiomes and host phylogeny and diet drawn in our manuscript are not biased by our 

choice of individuals within each host species. 

 

 

 

  



Supplementary Figure 7 

| The high correlation 

with host phylogeny in 

recent regions of the 

bacterial tree does not 

depend on the fine 

granularity of the 

matrix of host 

phylogenetic distances. 

The top left panel shows 

the distribution of all 

pairwise host distances in 

time units (Ma) between 

our 33 mammals. The 

other panels are replicates 

of Fig. 1A, using different 

granularities for the 

matrix of host 

phylogenetic distances, 

from fine-grained (top 

right panel) to coarse-

grained (bottom panels) 

matrices. PHPD: Pairwise 

Host Phylogenetic 

Distance. For a given 

plot, all PHPDs below a 

given distance threshold 

are set to 0, decreasing 

the granularity of the 

original distance matrix. 

When the granularity of 

the host phylogenetic 

distance matrix is getting 

coarse, the correlation 

with gut microbiome 

compositions is 

decreasing, as expected. 

However, the maximum 

of this correlation is not 

shifting towards more 

ancient regions of the 

bacterial tree, and the 

scale disparity between 

the effects of host 

phylogeny and diet is still 

observed. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 8  The peak in correlation between diet and gut microbiome 

compositions at ancient timescales is not simply an echo of phylogenetic history written in 

diet. We simulated phylogenetically-conserved traits that evolved along the mammalian 

phylogeny at the same rate as diet does (100 replicates), and compared the correlation profiles 

between these simulated traits and microbiome compositions with the correlation profile obtained 

with observed diets. The distributions of simulated correlation profiles are represented in the 

form of a 95% null envelope. The dark red plain line connects the medians of these distributions. 

The dark red dashed line connects the 95% quantiles. The original correlation profile with 

observed diets is in orange and is the same as in Fig. 1A. The high correlation with observed diets 

at ancient timescales is significantly higher than the null, showing that there is a genuine signal 

associated with diet that is independent from the host phylogenetic history written in diet. 
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Supplementary Figure 

9  Bacterial lineages 

correlating with host 

phylogeny and diet 

lowly overlap. a, 

Diagram depicting the 

possible relationships 

between bacterial 

lineages that are 

significantly correlated 

with host phylogeny 

and/or diet. Lineages that 

are correlated to host 

phylogeny at shallow 

phylogenetic scales may 

or may not be nested 

within lineages 

correlated to diet at 

higher scales. b, 

Correlations with host 

phylogeny are weakly 

affected when lineages 

correlated to diet at the 

slice where the 

community-level 

correlation with diet is 

maximal (Fig. 1A) are 

removed. c, Variance in 

microbiome composition 

explained by the 

covariance between 

dietary and phylogenetic 

distances. The overall 

contribution of the co-

variance of host 

phylogeny and diet in 

shaping microbiome 

compositions is weak 

(the maximum observed 

R
2
 value is about 4%).  



Supplementary Figure 10 | Microbiome-based method to infer ancestral host diets. a. Model 

selection (using AIC) for the multinomial logistic regression used to predict diet from 

microbiome compositions. Here, AIC selects the regression model containing only three 

independent predictors (components of the PCA computed from gut microbiome compositions, 

see Figure 2). b, c, Cross-validation experiments performed to measure the accuracy of 

microbiome-based predictions of diet. 100 cross-validations were performed, by defining the 

Training set of mammalian gut microbiome with either 90% or 80% of the total number of hosts. 

The red dotted line represents the mean accuracy over the 100 simulations. d, e, f, Trait-based 

and microbiome-based inferences of ancestral diets in mammals. Microbiome-based predictions 

are significantly more precise than trait-based predictions performed with a similar taxonomic 

sampling. Two-tailed Wilcoxon rank-sum tests. ***: p-value < 0.001. 

  



Supplementary Figure 11  Multiple convergent acquisitions of herbivorous-specific 

bacterial lineages during dietary transitions towards herbivory. a, Detailed diagram of the 

reconstruction of ancestral microbiome. g: rate of OTU gain. l: rate of OTU loss. Both gain and 

loss rates are branch-specific. 0 -> 1 means that the OTU is inferred to be gained along the 

branch. ML rate estimates allow us to compute posterior probabilities of ancestral OTU presence 

for all OTUs at each node. b, Boxplot of the number of gains per type of dietary transition. c, 

Reference trait-based inference of ancestral diets using 1,534 mammals (same as in Figure 2C). 

This plot is only for illustration purposes, to visualize the locations of transitions towards 

herbivory. d, Heatmap of the OTU gains across all mammalian lineages. Branches N1 to N5 are 

shown in c. This heatmap highlights the convergent gain events of several OTUs during 

adaptation to herbivory. 

  



 
 

Supplementary Figure 12  The effect of dietary shifts on the phylosymbiosis signal. These 

plots represent the relationship between the magnitude of phylosymbiosis (Y-axis) and the extent 

of dietary shift at each node. Phylosymbiosis at each node is expressed as the residual of the 

regression between phylosymbiosis and age at this node (see also Results – The phylosymbiosis 

is strong in mammals and Figure 3). Dierary shifts were computed using ancestral diets 

reconstructed both with the trait-based approach using the dietary data of 1,534 mammals and 

with the microbiome-based approach (see Methods – Reconstruction of ancestral diets). Slope 

values were negative but weak  (r = -0.15 and r = -0.1 when ancestral diets were predicted with 

the trait-based and microbiome-based methods, respectively). 

  



 

 

Supplementary Figure 13  The phylogenetic signal of co-speciation between bacterial 

lineages and their mammalian host. At the phylogenetic scale that we used to perform 

measurements of co-speciation rates (see Methods), 620 bacterial lineages are present in at least 4 

hosts. a, The phylogeny of the 620 representative sequences of these OTUs is represented. The 



outer circle depicts the co-speciation rates of all OTUs, along a colored gradient (white: only 

host-swap events, blue: only co-speciation events). b, c, d, Co-speciation rates by bacterial order 

(b), family (c) and genus (d). For an OTU, the co-speciation rate is defined as the number of co-

speciation events divided by the total number of co-speciation and host-swaps. Within a given 

bacterial taxonomic rank, co-speciation rates were computed for all OTUs. Average co-speciation 

rates are reported on the X-axis. Only bacterial ranks having a minimum of 2 OTUs are reported 

here.  



Supplementary Figure 14  Co-speciating bacterial genera present in humans and that are 

strongly correlated with inflammatory bowel diseases (IBD). 20 highly co-speciating OTUs 

(co-speciation rate ≥ 0.8) are present in humans. 13 belong to five bacterial genera that were 

previously found to be accurate predictors of IBD (see Supplementary Discussion section 2.9). 

The data shown here were extracted from this previous study. Two-tailed Wilcoxon rank-sum 

tests were used to compare the means of relative abundance between populations. 
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Afr. Elephant 100 0 0 0 0 0 0 0 0 

Armadillo 0 0 0 20 0 0 0 0 80 

Baboon 80 0 0 0 0 10 0 0 10 

Bighorn Sheep 100 0 0 0 0 0 0 0 0 

Black Bear 30 0 0 50 0 0 10 10 0 

Black Lemur 70 0 0 30 0 0 0 0 0 

Black Rhinoceros 100 0 0 0 0 0 0 0 0 

Bush dog 0 0 0 0 0 0 0 100 0 

Callimicos 0 0 0 50 0 10 0 0 40 

Capybara 90 0 0 10 0 0 0 0 0 

Chimpanzee 30 0 0 60 0 0 0 0 10 

Colobus 70 0 0 30 0 0 0 0 0 

Human 30 0 0 60 0 0 0 0 10 

Gazelle 100 0 0 0 0 0 0 0 0 

Giraffe 100 0 0 0 0 0 0 0 0 

Gorilla 90 0 0 10 0 0 0 0 0 

Horse 100 0 0 0 0 0 0 0 0 

Hyena 0 0 0 0 0 0 0 100 0 

Hyrax 100 0 0 0 0 0 0 0 0 

Kangoroo 100 0 0 0 0 0 0 0 0 

Lion 0 0 0 0 10 0 0 90 0 

Okapi 100 0 0 0 0 0 0 0 0 

Orang-outan 0 0 0 80 0 10 0 0 10 

Polar bear 0 0 0 0 0 0 10 90 0 

Rabbit 100 0 0 0 0 0 0 0 0 

Ring-Tail Lemur 20 0 0 80 0 0 0 0 0 

Saki 30 0 10 30 0 0 0 30 0 

Spectacled bear 20 0 0 80 0 0 0 0 0 

Springbok 100 0 0 0 0 0 0 0 0 

Squirrel 30 20 0 20 0 10 0 0 20 

Urial 100 0 0 0 0 0 0 0 0 

Visayan Warty Pig 60 10 0 0 10 10 0 0 10 

Zebra 100 0 0 0 0 0 0 0 0 

 

Supplementary Table 1: Dietary information extracted from the EltonTraits database for the 33 

mammals investigated in this study.  



Supplementary Methods 

 

Phylogenetic reconstructions 

We used PATHd8 
1
 to produce a cladogram from the ML tree reconstructed by FastTree. 

We set the origin of Cyanobacteria at >2.5 Ga Ma 
2
. The divergence between Rickettsiales and 

the rest of Alphaproteobacterial sequences was set at >1.6 Ga, since the ancestor of the 

mitochondrion was likely a sister to Rickettsia, and the eukaryotic ancestor is likely to be older 

than 1.6 Ga 
3
. We calibrated the divergence between Chlorobium and Bacteroidetes at >1.64 Ga, 

since Chlorobium is the sister clade of Bacteroidetes and Chlorobium-specific biomarkers were 

found in rocks at 1.64 Ga 
4
. Finally, the divergence between Chromatiales and other 

Gammaproteobacterial sequences at set at >1.64 Ga, since purple sulphur bacterial biomarkers 

were also found in rocks at 1.64 Ga 
4
. A maximum divergence time of 3.8 Ga was set at the root 

of the tree. As there are few time calibrations in comparison with the number of leaves in the tree, 

the calibrations have a very little influence on the computation of divergence times, which are 

very similar to those obtained when assuming a strict molecular clock.  

 

Validation of BDTT on simulated data 

 Below, we describe in more details the simulation framework that we used to validate our 

approach on simulated data and show that BDTT can extract signals of phylogenetic scale 

disparity between the effects of different factors on community compositions. 

 

 i) Phylogenies – We simulated 10 pure birth phylogenies of 200 species using the 

function bdtree implemented in the geiger R package.  

 

ii) Traits – For each phylogeny, we simulated 10 independent sets of continuous traits 

using classic models of trait evolution. Because we aimed to test if BDTT was able to disentangle 

factors acting at different phylogenetic scales, we simulated traits that harbour phylogenetic 

signals at different scales. To do so, we used an early burst (EB) model of evolution 
5,6

. This 

model is an extension of the classic Brownian Motion (BM) model of trait evolution and allows 

the rate of evolution to exponentially decrease with time as radiation of species proceeds 
6
. This 

exponential decrease is parameterized and can be slow or fast. When the rate at which trait 

evolution slows through time (called r) equals 0, the EB model is reduced to a BM model. When 



r is negative, the rate of trait evolution progressively slows toward the tips of the phylogeny (= 

toward the present), so that most of the phylogenetic signal of the trait is concentrated in early 

regions of the phylogeny. As a consequence, the use of multiple traits with different values for 

the r parameter allows us to simulate traits that harbours phylogenetic signal at different 

phylogenetic scales. We simulated traits according to a classic BM and four types of EB models 

with 4 values of r (-20, -10, -5, -2). Overall, we simulated 100 replicates per each combination of 

BM and EB models: 10 different phylogenies × 10 pairs of simulated traits for all species. 

 

iii) Community Assembly – The rationale of our simulation experiment is to test BDTT 

on communities assembled under known processes. Here, we assembled species communities 

under environmental filtering, i.e. selection of species according to the match between their 

environmental preference (= trait values) and the fixed environmental conditions of communities. 

A given species will remain in the community if its trait values are close enough to the optimal 

trait values required for being part of this community. To do so, we take advantage of a recently 

published community assembly simulation platform named ‘VirtualCom’ implemented in R 
7
. 

VirtualCom is an individual-centred model that is initially designed to assemble communities 

based on a phylogeny and three sorts of filter: (i) environmental (the probability of an individual 

entering the community through the environmental filter is higher if its environmental preference 

is close to the community environmental value),  (ii) competitive (the probability of an individual 

entering the community through the competitive filter is higher if there is no competitor present 

in the community) and (iii) reproductive (the probability of an individual entering the community 

through the reproduction is higher if conspecifics are already present in the community). We 

modified VirtualCom to (i) incorporate our own simulated species traits (see above) and (ii) to 

account for a second environmental filter. To do the last modification, we assumed that the two 

traits are independent, and so that the effect of the combined environmental gradient on the 

probability of on individual to enter in a community was simply the product of the two 

independent environmental filters. To initialize model parameters, we tested a broad range of 

values and selected those that yielded stable communities over time (L. Gallien, personal 

communication). In our case, we fixed these parameters: 

- Niche breadth = 0.5 

- Strength of the environmnetal filetr (Benv 
7
) = 0.5 



- Strength of the reproduction filter (Babun 
7
) = 0.5 

- Strength of the competition filter (Bcomp 
7
) = 0, because the competition process is not 

needed to test BDTT. 

- Number of simulated years = 30  

- Carrying capacity = 300 

 

In each case, we simulated 25 environmental conditions for 25 communities, with these 

conditions being regularly spaced within a fixed environmental space (the range of the 

environmental space was set equal to the range of centred and reduced simulated trait values). 

We assembled communities with a combination of two traits: a classic BM and one of the four 

different EB model (so four different pairs of simulated traits).  

 

iv) BDTT – For each replicate, we carried out a BDTT analysis, producing profiles of 

beta-diversities along the phylogenetic time scale. We used the Sorensen metric to measure beta-

diversities at each time slice, and we correlated all these beta-diversity matrices to matrices of 

environmental distances using Mantel tests (as in the main text of the article, see Methods – β-

diversity Through Time and Phylogenetic clustering; Methods – Measuring correlation profiles 

with diet and host phylogeny)  

 

  



Supplementary Notes 

 

Supplementary Note 1. BDTT phylogenetically decomposes UniFrac 

Phylogenetic β-diversity metrics such as UniFrac 
8
 are more precise for describing 

community composition than taxonomic β-diversity metrics because they account for shared 

evolutionary history between lineages/OTUs to measure community dissimilarity. Here, we used 

the mammalian dataset that we analysed in this study to perform comparisons between UniFrac 

dissimilarities and integrated BDTT profiles (we call a ‘BDTT profile’ a vector of pairwise 

compositional dissimilarities between two communities computed along the bacterial 

phylogenetic tree (if the tree is time-calibrated, the dissimilarities are computed over all time 

slices). Both methods make use of the phylogenetic tree of all sequences across all communities, 

but BDTT uses taxonomic β-diversity metrics to compute multiple compositional dissimilarities 

that are time-dependent 
9
 (see Supplementary Fig. 2). For all pairs of communities, we recorded 

the profile of β-diversities along all phylogenetic slices defined along the tree, and computed the 

integral of this profile, representing the integrated BDTT profile over the tree (Supplementary 

Fig. 2b). We show that the integrated BDTT profile correlates highly and positively to UniFrac 

(with the root of the tree on Actinobacteria and using the rarefied dataset: Pearson’s r = 0.78, p-

value < 0.001; with the root on Firmicutes: Pearson’s r = 0.89, p-value < 0.001; see Results – 

Phylogenetic decomposition of community dissimilarities and Supplementary Fig. 2). We 

conclude that, as UniFrac, BDTT captures the phylogenetic component of the β -diversity 

between samples. However, BDTT possesses the advantage of providing a phylogenetic 

decomposition of this β-diversity metric that can be used to detect at which phylogenetic scales 

a given factor influence the most community compositions. Here, we applied BDTT to our 

mammalian gut microbiota dataset. However, we stress again that BDTT can be applied to any 

type of community, both at the microorganism and macroorganism scales. 

 

Supplementary Note 2. BDTT captures scale disparities on simulated data 

 We run BDTT on simulated datasets to evaluate its ability to disentangle the effect of 

different factors that shape community assembly at different phylogenetic scales (see Results – 

Phylogenetic decomposition of community dissimilarities and Supplementary Methods – 

Validation of BDTT on simulated data). Correlation profiles between community dissimilarities 



and environmental distances show that BDTT is able to capture the phylogenetic scales at which 

each trait creates the most disparities between species of the community, and so the scales at 

which species filters primarily occur when communities are assembled (Supplementary Fig. 3). 

We also show that this phylogenetic scale disparity depends on the model of trait evolution that 

was used: BDTT correlation profiles pic in deeper regions of the tree when the environmental 

gradient is defined by a trait that mostly evolved in deep regions of the phylogeny (see red 

profiles in Supplementary Fig. 3). In conclusion, our simulations show that BDTT is able to 

discriminate the effect of factors (here environmental gradients) on community dissimilarities 

along the phylogenetic scale, if these factors are actually related to traits that evolved at different 

phylogenetic time scales.  

 

Supplementary Note 3. Robustness of the signal of bacterial time scale disparity between 

the effects of host phylogeny and host diet on microbiome composition 

Here, we detail the results obtained in multiple control conditions concerning the 

robustness of the time scale disparity signal illustrated in Figure 1 of the main text, showing that 

host phylogeny and diet shape the composition of mammalian gut microbiota at different 

bacterial phylogenetic scales. 

 

Workflow diagram and control experimental conditions 

The main text and Figure 1 present results obtained by using rough time calibrations to 

slice the phylogenetic community tree and to continuously cluster sequences from the leaves to 

the root of the tree (see Figure 1, Results – Phylogenetic decomposition of community 

dissimilarities and Supplementary Fig. 2). We also used branch lengths expressed in 

substitution/site as a proxy of time in the BDTT approach, to continuously slice the phylogenetic 

tree and cluster sequences into OTUs, allowing us again to compute β-diversities and to measure 

correlations with host phylogenetic and dietary distances. Furthermore, we controlled for the 

influence of the unequal sampling size across samples by performing rarefaction of the OTU 

tables. We also run BDTT with an alternative rooting of the phylogenetic tree, or by restricting 

the analysis to Firmicutes or Bacteroidetes sequences only. All the aforementioned control 

experiments were run with two different ways of measuring the correlation between diet/host 



phylogeny distance matrices (see Methods) and either un-weighted (Sørensen) or weighted 

(Bray-Curtis) compositional dissimilarity matrices. 

 

 

Impact of rooting, rarefaction & restricting the analysis to Firmicutes and Bacteroidetes 

To produce the results presented in Fig. 1A, we used all 16S sequences, the bacterial 

phylogenetic tree was rooted on Actinobacteria, branch lengths were expressed in “time” units to 

continuously produce OTU tables along the tree, and, finally, we used non-rarefied OTU tables to 

compute the β-diversities at each time slice. This particular set of experimental conditions is 

representative of our general experimental procedure: as explained below, all other combinations 

of these experimental conditions produced similar results.  

Control experiments suggest that the BDTT analysis uncovers a genuine signal of scale 

disparity and is not affected by systematic biases. Supplementary Figure 4 shows that our 

findings are robust to various control conditions. Host phylogeny systematically correlates the 

most with community compositional dissimilarities at recent time scales of bacterial evolution, 

contrarily to diet, which correlates the most at more ancient time scales. Importantly, we show 

that using evolutionary distance rather than absolute time as a criterion to continuously slice the 

tree to cluster sequences into OTUs does not change the original conclusions. As expected, 

rarefying the data matrices results in noisier correlation profiles with host phylogeny and diet, 

although the scale disparity signal remains very strong. Finally, our results show that both 

Firmicutes and Bacteroidetes, the two main phyla present in mammalian gut microbiota, 

segregate across hosts in the same way with respect to host phylogeny and diet. 

 

Impact of lowly supported branches in the bacterial phylogenetic tree  

We make use of the phylogenetic relationships between 16S sequences to create OTUs, 

using either evolutionary time or evolutionary distance as a criterion to delineate monophyletic 

groups of sequences (see Supplementary Fig. 2). We evaluated the impact of uncertainties in 

topology reconstruction on the clustering of OTUs and, so, on the correlation measured at each 

cut-off used to define slices. In the phylogenetic community tree, we collapsed nodes having a 

low support (SH-like support below 0.8). We re-defined slices along this new tree and re-run 

BDTT to measure correlations with host phylogeny and host diet distances. We did not observe 



an impact of uncertainties in tree topology on our main conclusions about time scale disparity 

between host phylogeny and host diet (Supplementary Fig. 4). 

 

Correlation profiles expected under a null model controlling for the effect of the tree 

structure 

Our progressive clustering along the phylogenetic community tree continuously 

agglomerate sequences and creates larger and larger OTUs that are more and more widely 

distributed across samples. Consequently, correlations between community dissimilarities and 

host phylogeny and diet distances could be influenced by the spurious effect of the hierarchical 

nature of the phylogenetic tree 
10

, e.g. making easier to detect significant correlations at large 

phylogenetic scales. To ensure that our BDTT profiles and associated host phylogeny/diet 

correlation profiles are not the result of the hierarchical dependency between leaves and internal 

branches of the tree, we compared the observed signal with appropriate null expectations. More 

specifically, we shuffled the names of the leaves of the bacterial community phylogenetic tree 

and re-run the BDTT analysis. This null model breaks down the observed phylogenetic 

relationship between sequences/OTUs, but keeps constant the hierarchical structure of the tree. It 

also conserves the elements of the OTU table deduced from the repartition of unique sequences 

(tips of the tree) across hosts, so that the correlations between compositional dissimilarities and 

host phylogeny or diet at the youngest time slice remain identical to the observed ones. However, 

we observed that under this null model, correlations drop immediately when considering older 

time scales (Supplementary Fig. 5). We conclude that the observed correlation profiles capture a 

biological signal and are not the result of an artefact due to the hierarchical structure of the 

bacterial tree.  

 

No influence of the intra host-species variability in microbiome compositions on our 

conclusions drawn from inter host-species analyses 

Several studies have shown that the variability in microbiome compositions within a 

mammalian host species is on average lower than the amount of compositional differences 

between individuals belonging to different host species 
11-15

. However, the choice of the 

representative individuals for each host species that we have selected may be biased towards 

outliers by chance, which could bias all of our results. We controlled for the impact of intra-host 



species variability in microbiome compositions on our conclusions as follows. The original 

dataset by Muegge et al. 
16

 includes a couple of individuals for 7 hosts (baboon, big horn, human, 

chimp, hyrax, lion and okapi). We have substituted these 7 individuals with their conspecific and 

we have re-processed the data with the exact same procedure. We computed the BDTT profiles 

characterizing the correlation between the new microbiome compositional dissimilarities and host 

phylogenetic or dietary distances (which remain unchanged). Interestingly, the new individuals 

for hyrax, baboon and big horn were not sampled in the same zoo as the original individuals that 

we selected. Supplementary Fig. 6 shows that our initial conclusions regarding how host 

phylogeny and diet shape microbiome compositions over evolutionary time hold true with this 

different host sampling, further confirming that intra-host compositional variability does not blur 

signals of inter-host compositional differences. 

 

The difference in granularity between the host phylogenetic and dietary distance matrices 

does not explain the scale disparity between the effects of the two factors  

Compared to the matrix of host phylogenetic distances, the matrix of host dietary 

distances is much more coarse-grained (see Methods – Host phylogeny and dietary data). For this 

reason, one might expect that this difference in granularity impact the shape of the correlation 

profiles and create a spurious signal of scale disparity with correlations between microbiome 

composition and host phylogeny being higher in recent regions of the bacterial tree and 

correlations with host diet being higher with more ancient bacterial groups. If this is true, using 

coarse-grained host phylogenetic distance matrices should displace the area where the correlation 

with host phylogeny is maximum towards more ancient regions of the bacterial tree, just as we 

observe for diet. We have controlled for this as follows. We re-ran BDTT using coarse-grained 

distance matrices for host phylogeny. We used a set of host phylogenetic distance thresholds to 

define several host phylogenetic distances matrices, with all pairwise distances below these 

thresholds set to null distances. Supplementary Fig. 7 shows that the correlation with host 

phylogeny globally decreases when using less and less informative predictors. However, even 

with coarse-grained host phylogenetic distance matrices, the correlation with host phylogeny is 

always localized at recent time scales on the bacterial phylogeny, separated from the highest 

correlations with host diet along the phylogeny of bacteria. This control experiment further 

confirms that host phylogeny and diet impact gut microbiome compositions at different bacterial 



phylogenetic scales, and that these effects can be partitioned with our BDTT approach, which is 

illustrated in Figure 1A. 

 

The contribution of diet on microbiome compositions is partially decoupled from the host 

phylogenetic history 

 We asked whether simulated traits evolving along the host phylogeny in the same way as 

diet does would produce BDTT correlation profiles that are similar to the correlation profile 

obtained when correlating observed diets with gut microbiome compositions. This control 

experiment will give us a sense of how likely we are to selectively detect correlations at 

particular timescales as a result of a particular tempo of trait evolution that records the 

phylogenetic history of hosts (although diet and host phylogeny are poorly correlated at the scale 

of our 33 mammals (Mantel test, R
2
 = 0.01, p-value = 0.09), diet is locally correlated with host 

phylogeny). If we detect a peak in correlation between these simulated traits and microbiomes at 

a timescale similar to the one detected with observed diets, it would be evidence that the 

correlations with diet would only represent an artefact of the phylogenetic inertia that diet carries 

and not a ‘true’ effect of diet itself.  

We simulated phylogenetically-conserved traits that evolved along the mammalian 

phylogeny at the same rate as diet does. We have estimated the transition rates between dietary 

states (herbivory, carnivory and omnivory) with the ARD (All Rates Different) markovian model 

(implemented in the ape R package) along the phylogeny of 1,534 mammals that we have used 

elsewhere in the paper (note that the ARD model was selected because it is the model that best 

fits the data among all models that we have tested). We used the ML estimates of these transition 

rates to simulate traits along our phylogeny of 33 mammals, so that each trait is forced to evolve 

at the same rate as diet does along the host phylogeny. We ran 100 simulations. We used these 

simulated traits to build distance matrices that have the same coarse granularity as the dietary 

distance matrix computed from the observed diet. We used these dietary distance matrices to run 

BDTT, and we compared the simulated correlation profiles with the correlation profile obtained 

when using observed diets (note that, for the sake of fair comparisons, correlations with observed 

diets were computed with the same trait categories (herbivory, carnivory and omnivory), and not 

the nine categories (see  Supplementary Table 1) used in Fig. 1A and Supplementary Fig. 4). 

Supplementary Fig. 8 shows that the simulated traits poorly predict the compositional 



dissimilarities of our mammalian gut microbiomes. More importantly, we do not observe any 

increase in explanatory power when computing correlations at ancient time scales, ruling out the 

possibility that the peak of correlation with observed diet at ancient time scales is simply an echo 

of phylogenetic history written in diet (or only driven by the coarse granularity of the dietary 

distance matrix). It further supports the claim that there is an effect of diet that is independent 

from the host phylogeny (see Results – Phylogeny and diet shape microbiomes at different 

scales). 

 

Supplementary Note 4. The distribution of individual bacterial lineages confirms the scale 

disparity between the effects of host phylogeny and diet. 

We used PERMANOVA to correlate the presence/absence pattern of all bacterial lineages 

in the phylogenetic tree of all 16S sequences (i.e. all monophyletic clades defined by all internal 

nodes) to host phylogenetic and dietary distances. We show that the individual lineage-level 

signal as captured by PERMANOVA tests recapitulates the aggregate signal measured at the 

community scale with Mantel or GDM tests (compare pie-charts of Figure 1C in the main text 

with correlation profiles of Fig. 1A). Notably, we recover the fact that host phylogeny and host 

diet drive the composition of gut microbiota at disparate phylogenetic scale of bacterial 

evolution. 

 

Supplementary Note 5. Host phylogeny and diet mostly influence the distribution of non-

overlapping bacterial lineages 

Bacterial lineages correlating with host phylogeny and diet lowly overlap  

We used a second approach to measure to what extent host phylogeny and diet affect the 

distribution of overlapping bacterial lineages across hosts. The difference of phylogenetic scale at 

which host phylogeny and diet shape the composition of gut microbiota may emerge from two 

different patterns: as diet discriminates at high phylogenetic scales, recent bacterial lineages 

correlated to host phylogeny may or may not be be nested in the more ancient diet-related 

bacterial lineages. In the latter case, the bacterial lineages targeted by host phylogeny and diet are 

non-overlapping. Supplementary Fig. 9a illustrates the two possible scenarios. To distinguish 

between these two hypotheses, we proceeded as follows: at the slice Smax where diet correlates the 

most with compositional dissimilarities, we detected the individual lineages correlated to diet 



according to PERMANOVA tests (after controlling for multiple comparisons using FDR), and 

then removed these diet-related ancient lineages from the tree. Then, we re-ran the BDTT 

analysis and measured correlations with host phylogeny. We found that removing these ancient 

lineages erased the signal of correlation between community compositional dissimilarities and 

diet at all phylogenetic scales (Supplementary Fig. 9b), demonstrating that lineage-level and 

community-level (BDTT) analyses show congruent results. Interestingly, we found that removing 

these ancient lineages did not erase the signal of correlation between gut microbiota composition 

and host phylogeny (Supplementary Fig. 9b). This suggests that most of the host phylogeny-

related bacterial lineages are non-overlapping with (and not nested within) the host diet-related 

bacterial lineages. Nevertheless, we observe that the correlation signal with host phylogeny is 

slightly weaker. We tested whether this slight difference was significant in comparison with a 

null expectation. With the original phylogenetic tree, a number K of lineages are nested within 

the ancient lineages that correlate with diet at the slice Smax. The null model randomly selects and 

discards K OTUs from the OTU table at each phylogenetic slice, and then the correlation with 

host phylogeny is measured. 100 iterations are performed at each slice, providing a null 

distribution of R
2
 values. We observe that the decrease in correlation with host phylogeny is 

slightly higher than randomly expected under a null model. This result indicates that, while most 

of the clades correlating with host phylogeny and host diet are non-overlapping, there is a 

significant portion of derived lineages correlating with host phylogeny at recent scales that are 

nested within more ancient clades correlating to host diet. We estimate that, on average, 8% of 

lineages related to host phylogeny per slice are nested in higher clades correlated to diet.  

 

The covariance between host phylogenetic and dietary distances poorly explains 

community dissimilarities 

The intersection variance informs if the covariance between the two predictors (host 

phylogeny and diet) explains community composition. We observe that at recent time scales, 

there is a weak intersection correlation (between 0.03 and 0.04), which then progressively drops 

when larger OTUs are progressively defined at higher phylogenetic scales (Supplementary Fig. 

9c). It suggests that the effects of host phylogeny and diet on gut microbiota are largely 

decoupled, and confirms that these two factors mostly define non-overlapping niches (see 



‘Bacterial lineages correlating with host phylogeny and diet lowly overlap’ in Supplementary 

Note 5).  

 

 

Supplementary Note 6. BDTT reveals functional differentiations in bacterial lineages 

The OMI analysis allows us to jointly represent hosts separated by diet distances and their 

bacterial lineages that correlate to host diet on the same ordination space. This technique 

computes the niche breadth of each lineage with respect to the environmental gradient, here 

represented by host diet. We observed that bacterial lineages exhibit niche breadth that 

encompass carnivorous or herbivorous mammals only, highlighting their functional specificities 

with respect to each diet category (Figure 2A). Focusing on the phylogenetic relationships of 

each of these lineages with respect to their most-closely related lineages, we observed clear 

patterns of functional differentiations between the types of guts that can be colonized, in 

reference to host diet. Some bacterial lineages exhibit a niche breadth encompassing carnivorous 

hosts only, such as particular lineages belonging to Lactobacillus or Coriobacterineae, while 

others have niches restricted to herbivorous guts, such as specific Verrucomicrobiaceae or 

Bacteroidales lineages. However we did not observe ‘omnivore-specific’ bacterial lineages (see 

Results – Omnivores do not harbour omnivore-specific bacteria). In Fig. 2A, one bacterial 

lineage, an Enterobacteriaceae, is present in a central position, close to omnivores (violet square). 

However, this lineage has a large niche breadth and is not omnivorous-specific. While it is 

observed in several omnivores, it is also observed in carnivores, such as lions and polar bears and 

in an herbivore, such as giraffes. Taken together, these results suggest that herbivorous and 

carnivorous guts contain specialist diet-related bacterial lineages, contrary to omnivores that filter 

bacterial lineages from these more circumscribed herbivorous and carnivorous collections. 

 

Supplementary Note 7. Reconstructing ancestral diets in mammals 

 Accuracy of our microbiome-based method of diet prediction 

 Our microbiome-based inference of diet uses a PCA to cluster hosts according to their 

microbiome compositional differences into a subspace defined by linearly uncorrelated variables 

called principal components, or axes. The variables are defined so that the first axis represents the 

highest possible variance in the data, and subsequent axes are defined as having the highest 



possible variance while being orthogonal to the preceding axis. We use these axes as explanatory 

variables in a multiple logistic regression model, which allows us to predict diet. In order to 

determine the appropriate number of PCA components (axes) to integrate in the logistic 

regression, and to avoid overfitting issues, we used the AIC criterion to penalize the optimized 

likelihood of the regression model. We show that using the first 3 axes represent the best situation 

between the goodness of fit and the complexity of the regression model (Supplementary Fig. 10a-

c). In all subsequent analyses, we used the 3 first axes of the PCA to optimize the multinomial 

logistic regression models.  

 We evaluated the predictive power (accuracy) of our microbiome-based method of diet 

inference. We performed cross-validation experiments to evaluate to what extent the method is 

able to accurately predict diets of extant mammals. We defined two types of datasets: the training 

dataset, which randomly contains 80% or 90% of the 33 mammalian microbiome, and the testing 

dataset, which contains the remaining 20% or 10% of microbiome, respectively. We performed 

100 random replications. The goal of this cross-validation experiment is to predict the diet of the 

testing dataset using our predictive model trained with the training dataset, providing a measure 

of the ability of the model to generalize to independent datasets. We used a probability cut-off of 

0.5 to assign a diet to a prediction. We show that on average, the model is able to accurately 

predict diet categories in 78% and 80% of cases with the 80% and 90% training datasets, 

respectively (Supplementary Fig. 10b-c). 

 

 Microbiome-based and trait-based inference of ancestral diets in mammals 

 Inferences of ancestral diets along the mammalian phylogeny are represented in 

Supplementary Fig. 10d-f. Three different reconstructions were performed: one with our 

microbiome-based method and two trait-based analyses with a model of trait evolution. The two 

trait-based reconstructions were performed either with a poor taxonomic sampling (the 33 

mammalian species for which we also have microbiome compositions) or with a rich taxonomic 

sampling (1,534 mammals 
17

) that is representative of the extant mammalian diversity. We used 

the trait reconstruction with a rich taxonomic sampling as our reference against which we 

measure the predictive power of the trait-based and microbiome-based reconstruction method on 

the poor taxonomic sampling. First, we measure the accuracy of both methods (i.e. the ability of 



the two methods to reconstruct diets similar to our reference). Second, we measure the precision 

of each reconstruction.  

 

In comparison with the best trait-based reconstruction performed with 1,534 mammals 
17

 

that we consider as a reference, both the microbiome-based method and the trait-based method 

using 33 mammals predict 70% of similar ancestral dietary categories. With the microbiome-

based approach, divergences appear for the most ancestral mammalian ancestors, for which 

paleontological evidence and previously published trait-based inferences using 1,534 mammals 

suggest carnivorous ancestors 
17,18

. The main reason why the microbiome-based method is not 

able to recover a signal for ancestral carnivory likely lies in the poor taxonomic sampling of 

carnivorous mammalian clades that branch deeply in the mammalian tree (carnivorous 

Chiroptera, Afrotheria, Xenarthra and Marsupialia) and the low bacterial richness of Carnivora 

gut microbiome. Indeed, as carnivorous mammals are restricted to the Carnivora clade and in the 

Armadillo branch in our 33 mammals dataset, and as carnivores contain very specific bacterial 

lineages in their gut that are not found in other non-carnivorous guts, the most likely 

reconstruction of ancestral microbiome involves gains of these carnivorous-specific lineages in 

the ancestor of Carnivora and in the Armadillo lineage (see Supplementary Fig. 10d-f), and not in 

most ancestral mammalian lineages.  

 

We then focused on the measurement of the precision of ancestral reconstructions. 

Interestingly, no ancestor is associated to a uniform, non-informative distribution of probabilities 

for each diet category (e.g. [0.33; 0.33; 0.33] for herbivory, omnivory and carnivory, 

respectively) when diets are reconstructed with the microbiome-based method. Probability 

distributions are often concentrated around a single diet category, highlighting the capacity of the 

microbiome-based method to provide precise inferences (see Results – Gut microbiomes can 

predict ancient mammalian diets).  

Here, the mean entropy for the trait-based reconstruction preformed with 1,534 mammals 

is 0.23, showing that predictions are precise. The mean entropy with 33 mammals and the 

microbiome-based reconstruction is 0.43. This higher entropy means that there is more 

uncertainty in the prediction of diets. However, the mean entropy with a similar taxonomic 

sampling (33 mammals) and the trait-based reconstruction is 0.56, significantly higher than the 



microbiome-based average entropy (p-value < 0.001). It shows that with a similar taxonomic 

sampling, the microbiome-based method is more precise. Note that this higher precision for the 

microbiome-based method is not associated with inaccurate predictions, when considering trait-

based reconstructions with the 1,534 mammals as reference. For the 30% of nodes at which the 

microbiome-based method predicts a different diet, the average entropy is 0.51, higher than when 

all nodes are considered (0.43), meaning that the coherent diet predictions tend to be associated 

with higher precisions than the more unlikely predictions.  

Altogether, all our results suggest that gut microbiome compositions bring valuable 

phylogenetic information for ancestral diet reconstruction in addition to the single discretized diet 

character (H, O or C).   

 

Reconstruction of ancient diets from microbiomes defined at alternative bacterial 

phylogenetic scales 

We selected the 300 Ma time slice to phylogenetically cluster 16S sequences into OTUs 

and to determine microbiome compositions to infer ancestral diets for two reasons. First, this 

time slice is ancient enough to define some clusters of sequences that correlate with diet (at more 

recent time slices (shallow phylogenetic scales), no or very few OTUs correlate to diet (see Fig 

1A, 1D). However, the 300 Ma slice is recent enough to possess bacterial lineages (OTUs) that 

exhibit distributions across hosts that are restricted to either carnivorous or herbivorous mammals 

(at too high taxonomic levels, all bacterial lineages that correlate to diet are herbivorous-specific, 

see Fig. 1D). The 300 Ma slice defines OTUs that have on average ~94% of 16S DNA similarity. 

We tested whether the reconstruction of diets is impacted by the taxonomic resolution at which 

gut microbiome compositions are determined, using a more recent (with OTUs having ~97% of 

16S similarity) and more ancient time slice (with OTUs having ~91% of 16S similarity). 

We observed that ancestral diet reconstructions are less accurate when defining 

communities at these shallower or higher phylogenetic scales. With OTUs having ~97% 

similarity, the accuracy drops at 60% (vs. 70% with the 300 Ma time slice, z-score test, p-value = 

0.4). This decrease is expected since no OTU significantly correlates with diet after correcting for 

multiple tests (see Methods). Even though we performed this reconstruction with this recent time 

slice, it is theoretically not wise and accurate, because a lot of OTUs correlate with host 

phylogeny, making the reconstruction of ancient diets possibly biased by the confounding effect 



of host phylogeny. At the more ancient 600 Ma time slice (OTUs with ~91% similarity), the 

accuracy of diet reconstruction drops from 70% to 41% (z-score test, p-value = 0.02*). The 

reason lies in the absence of carnivorous-specific bacteria when microbiome compositions are 

determined at this higher phylogenetic time scale. Most of bacterial lineages that were present in 

carnivorous mammals at more recent phylogenetic scales are now also observed in omnivorous 

mammals. Consequently, the correlation between diet and extant microbiome compositions is 

weaker, making the recovery of the signal for ancient adaptations to carnivorous diets from 

reconstructed microbiome compositions impossible.  

 Together, these alternative reconstructions demonstrate that information on extant and 

past diets is limited in a confined range of bacterial taxonomic/phylogenetic scales. Thus, by 

progressively constructing communities at fine-grained resolutions all along the bacterial 

phylogenetic tree, our BDTT approach allowed us to detect and analyse these signals to reveal 

the complex patterns of host-microbiome evolution related to diet. 

 

Supplementary Note 8. Convergent acquisitions of bacterial lineages and adaptation to 

herbivory 

We observe that multiple convergent acquisitions of herbivorous-specific lineages (having 

an ecological niche that only encompasses herbivorous guts, see the OMI analysis in Fig. 2) are 

associated to dietary transitions towards herbivory, either from an omnivorous or carnivorous diet 

(see Supplementary Fig. 11). Most of the convergent acquisitions concern transitions towards 

herbivory, and partly explain why herbivores collectively have the richest gut bacterial 

communities 
11

. Using our probabilistic model of gain and loss of lineages (see section 1.7) to 

reconstruct ancestral communities, we observed that these herbivorous-specific bacterial lineages 

have a higher rate of horizontal acquisition than the rest of the lineages (p-value < 0.01), 

highlighting the ability of these bacterial lineages to colonize many different herbivorous hosts. 

Note that this signal could not have been recovered without our scale disparity analysis that we 

performed with BDTT, as these bacterial lineages segregate more randomly across hosts at 

shallower phylogenetic levels. Our results also show bacterial convergent adaptations in the 

ability to degrade herbivorous-derived compounds like complex polysaccharides across different 

bacterial phyla, such as Verrucomicrobia, Firmicutes, Bacteroidetes and Actnibacteria (see OMI 

in Fig. 2 and Supplementary Fig. 11). Finally, we observe that in several cases, we predict 



parallel transitions towards herbivory in sister mammalian lineages: African Elephant and Hyrax, 

Ring-Tailed Lemur and Black Lemur and Colobus and Baboon (Supplementary Fig. 10d-f). It 

suggest that each mammalian lineage in these pairs possess some specific bacterial lineages that 

are herbivorous-specific, and which are not present in the sister mammalian lineage. In two out of 

these three cases (african elephant and hyrax and colobus and baboon), the trait-based 

reconstruction with 1,534 mammals predicts the same convergent adaptations to herbivory. This 

reconstruction uses higher phylogenetic information since it uses additional lineages branching 

around these three couples of lineages. However, the trait-based reconstruction with 33 mammals 

fails at recovering these parallel adaptations for the african elephant and hyrax, and the colobus 

and Baboon.  

 

Supplementary Note 9. Variation of co-speciation rates across the bacterial phylogenetic 

tree and associations with IBD 

We have controlled whether the mammalian gut sequences used to test for patterns of co-

speciation in our study are also readily observed in environmental samples, using BLAST 

analyses. We obtained data from two previous studies in which the V2 16S region was also 

sequenced from soil and aquatic samples. The soil data encompasses both forest and grassland 

soils 
19

. The aquatic samples are from surface oceanic waters and were sampled over three years 

20
. We trimmed sequences that had low quality scores using Mothur 

21
, and only retained unique 

sequences. For the two environmental datasets, the average read length is similar to the length of 

our mammalian sequences (~250bp). We observed that the amount of mammalian unique 

sequences that are identical to these environmental sequences is very low: 0.1% (6 out of 44,444 

mammalian reads) for the aquatic samples, and 0.15% for the soil samples. We have also used a 

less conservative approach, allowing blast similarities to range between 99% and 100%, with a 

minimum alignment coverage of 90%. Only 0.3% of mammalian sequences have similarities 

with environmental sequences according to these criteria, and only 2% when compared to soil 

sequences.  

This control confirms that our large-scale signal of co-speciation, which implies multiple 

bacterial lineages, is not affected. It also confirms previous reports showing that mammals are 

hosts of very specific gut bacterial communities, which lowly overlap in composition with 

environmental communities 
22,23

. 



 

Interestingly, bacterial lineages harboring high co-speciation rates are distributed across 

all major bacterial phyla that are present in mammalian guts (Firmicutes, Bacteroidetes and 

Actinobacteria) (see Supplementary Fig. 13a). However, they are not randomly distributed within 

these phyla. Some taxonomic groups are enriched in OTUs that co-speciate more than they swap 

from host to host (Supplementary Fig. 13a). For example, at the rank of taxonomic orders, 

Selenomonadales and Cytophagales-like OTUs have an average co-speciation rate 0.81 and 0.76, 

respectively (Supplementary Fig. 13b). Note that Cytophagales were previously reported as a 

bacterial order being present in environmental samples 
24

. Here, all our 16S Cytophagales-like 

sequences have low RDP assignation probabilities to this rank (~ 0.2), meaning that they 

represent gut-adapted distantly related lineages to those previously characterized and that are 

present in 16S databases. We can safely exclude potential contaminations from the environment, 

since our Cytophagales-like OTUs are all present in multiple (≥ 4) hosts. Contrary to these orders 

that have high occurrence of co-speciating OTUs, others like Lactobacillales or 

Desulfurovibrionales have OTUs with low co-speciation rates (0.17 and 0.11 on average, 

respectively) (Supplementary Fig. 13b). These large heterogeneities of co-speciation rates across 

bacterial lineages were also observed at finer taxonomic resolutions: at the family 

(Supplementary Fig. 13c) and at the genus (Supplementary Fig. 13d) levels. However, note that 

using these taxonomic phylotypes might overshadow intra-specific heterogeneities of the amount 

of vertical inheritance, i.e. when a single bacterial lineage that is highly vertically inherited 

branches next to lineages that can more freely being transmitted from host to host or being 

acquired from the environment. These scenarios might represent potential adaptations making 

them more intimately associated with the host, and are better illustrated in Supplementary Fig. 

13a, where no a priori taxonomic clustering is performed. 

 

Overall, very little is known about the bacterial genera that have the highest average co-

speciation rates (Figure 4F and Supplementary Fig. 13d). Most of the 16S sequences belonging to 

these OTUs are assigned to taxonomic ranks with low confidence, according to the RDP 

classifier. It means that these bacterial lineages are mostly under-investigated, and have no close 

phylogenetic relationship with known sequences present in databases. Here, we propose to briefly 

present and discuss the current and limited knowledge on some of these genera. For instance, 



Rikenella-like organisms were observed in the gut of various organisms, from leech to human 
25

. 

However, very few strains were isolated in pure culture, limiting our knowledge on their 

characteristics and on the nature of their interactions with hosts. However, it was noted that some 

Rikenella-like lineages display tight historical associations with their leech hosts and that some 

degrees of topological congruence between Rikenella-like and host phylogenies were observed, 

suggestive of vertical inheritance 
25

. Some bacterial lineages belonging to the Sporobacter genus 

were observed in the intestinal tract of social termites 
26,27

, which were strongly suggested to 

vertically transmit their gut microbiome from one generation to another 
28-30

. Finally, some 

studies focused on the characterization of Mitsuokella, a bacterial genus belonging to 

Bacteroidetes. Mitsuokella are phytase-producing bacteria that were previously observed in the 

gut of several host species, from pigs, to cattle to humans 
31-34

. Overall, our results highlight the 

diversity of interesting bacterial lineages that remain to be characterized and studied to further 

understand the complex interactions between hosts and their gut microbiome. It opens up exciting 

new avenues of research, which may help to reveal the functions of these organisms and how, 

and to what extent, natural selection operates at the level of their interaction with hosts. 

 

 In a recent study 
35

, the gyrB gene was amplified in three different families 

(Bacteroidaceae, Bifidobacteriaceae and Lachnospiraceae) and was used to search for patterns of 

co-speciation in four hominid hosts, humans, chimpanzees, bonobos and gorillas. These authors 

have shown that Bacteroidaceae and Bifidobacteriaceae possess some lineages that harbor 

patterns of co-speciation. However, these authors have also found that Lachnospiraceae lineages 

have lower co-speciation rates and have experienced several host-swaps along Hominid 

evolution. On average, our results show that both Bacteroidaceae and Lachnospiraceae OTUs 

have low co-speciating rates (Supplementary Fig. 13c; there was not enough sequenced 

Bifidobacteriaceae to investigate patterns of co-speciation/host-swap). It is difficult at this stage 

to make cross-study comparisons, as we do not know how the primers used to amplify the 16S 

gene compare to those used to amplify gyrB with respect to their ability to capture bacterial 

diversity. In addition, the host evolutionary time scales at which our investigations were carried 

out are vastly different. Future investigations are needed to further characterize the rates of co-

speciation across different bacterial taxa and across all mammalian hosts. 

 



 In total, 20 OTUs belonging to 10 different genera are observed to be highly co-speciating 

with hosts and, at the same time, being present in humans (Anaerotruncus, Subdoligranulum, 

Sporobacter, Oscillibacter, Butyricicoccus, Lachnospiracea incertae sedis, Blautia, Clostridium 

XlVa, Coprococcus, and Anaerofilum). Remarkably, we found that 13 out of these 20 OTUs 

belong to 5 bacterial genera that were previously shown 
36

 to strongly correlate with Crohn’s 

Disease (CD) and Ulcerative Colitis (UC), two pathologies termed inflammatory bowel diseases 

(IBD). IBD provokes inflammation in the gut through the ulceration of the intestinal mucosa, and 

is currently incurable. These genera are Anaerotruncus, Subdoligranulum, Sporobacter, 

Oscillibacter, and Butyricicoccus. In our previous study 
36

, we compared the gut microbiome of 

non-IBD vs. IBD patients and we showed that these five genera are largely depleted in patients 

affected both by CD and UC (Supplementary Fig. 14). We tested whether gut bacteria with high 

co-speciation rates are more frequently part of genera associated with IBD in comparison with 

lowly-co-speciating OTUs. We performed a permutation test, shuffling co-speciation rates across 

OTUs, and counting for each replicate the number of highly co-speciating OTUs (rate > 0.8) that 

falls within genera associated with IBD. We then compared the observed number of highly co-

speciating OTUs associated with IBD (13) to this random distribution. We observed that this 

enrichment is strongly significant (p-value = 0.00149). 

These correlations between co-speciation and gut-related pathologies are intriguing. We 

can speculate that bacterial lineages that are tightly associated with hosts to the point of being 

vertically inherited over millions of years of host evolution are functionally important for the host 

and may influence its health and physiology. Future studies are needed to turn these suggestive 

and exciting correlations to proper demonstration of causation.  

  



Supplementary Discussion 

 

Other datasets containing amplicons of 16S rDNA genes extracted from gut microbiome of 

specific mammalian clades are available in the literature and were not included in our study (see 

13,37
 for instance). However, several reasons prompted us not to include these data to the dataset 

of Muegge and colleagues 
16

. First, we wanted to avoid biases introduced with variation in DNA 

extraction protocols, choice of 16S primers and sequencing platform. More importantly, 16S 

reads in the Muegge dataset 
16

 are amplicons of the V2 region of the 16S rDNA gene. The other 

datasets that were published later targeted other 16S regions, especially the V4 region 
37

. As our 

approach relies on an alignment of 16S reads to construct the bacterial phylogenetic tree in order 

to cluster sequences into OTUs and to measure β-diversities, only homologous regions of the 

16S sequence could be considered. This excludes de facto the use of different 16S regions. 

Furthermore, the number of hosts in the dataset of Muegge et al. 
16

 (33 mammals) do not preclude 

us from obtaining strong statistical power: all our quantitative evaluations show that measured 

explained variances (R2) are high, and that statistical tests with respect to null models in Figure 

1, Figure 3 and Figure 4 are highly significant.  

 

Our phylogenetic analyses support co-speciation as playing a significant role in the 

diversification of mammalian gut symbionts relative to a null model of random associations. 

However, the extent to which these associations can be further investigated are limited by bounds 

imposed by both the 16S marker gene. Furthermore, other factors that are locally correlated with 

host phylogeny might contribute to generate some of the patterns of topological congruency 

between symbiont and host phylogenetic trees. For instance, fine-grained differences in diet that 

are not captured by our measurement of dietary distances could drive adaptations and functional 

differentiation of some of the bacterial lineages that we analysed, which could result in patterns 

of diversification mimicking host diversification. However, such cases would only appear if 

dietary distances match host phylogenetic distances. It has been shown that classic models of trait 

evolution (Brownian Motion or Ornstein–Uhlenbeck processes) cannot reproduce such patterns 

of intimate coevolution between host phylogeny and trait (e.g. diet) 
38,39

. Only very constrained 

models of trait evolution may generate phylogenetic and trait information that are congruent, e.g. 

when competitive interactions strongly occurs within communities of animal species 
39

. 

Alternatively, the iterative bacterial specialization on related host linages (or host-swap 



speciation) can yield concordant symbionts/host topologies even in the absence of co-speciation 

40
. Consequently, although our study provides compelling evidence that congruence with host 

topology is intriguingly correlated with evolutionarily and functional aspects of the gut 

microbiome, additional studies using other bacterial phylogenetic markers and larger taxonomic 

samplings of hosts will provide more details on the mechanistic origin and precise timing of this 

topological concordance.  
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