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Supplementary Note 1. SIMULATION OF ELECTRIC FIELD DISTRIBUTION

To confirm that the metal pad configuration described in the Methods section of the main

text provides a uniform and controllable electric field distribution we performed a 2D electrostatic

simulation of the dielectric environment in COMSOL. We modelled the AlAs/GaAs/InGaAs en-

vironment as a single dielectric with ε = 12.9. The gates are modelled as 200 nm thick metals

with a 30 µm gap, and the electric potential is constant and fixed on their boundary. The electric

potential, and the electric field distribution when one of the gates is applied 1 V and the other is

kept at 0 V is illustrated in Supplementary Figure 1.
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Supplementary Figure 1: Simulation of the electric field profile. a. Calculated electric potential for

1 V applied to the left gate while the right gate is kept at 0 V. White solid lines show the boundaries

of different regions containing different materials that are modelled (labelled on figure). Dashed grey line

indicates the position of the electric field line cuts. b. The line cut in a showing the electric field components

at z = −2.7 µm which corresponds to the position of the quantum well. E0 = 1/30 V µm−1. Vertical grey

dashed lines indicate the position of the edges of the gates.

In the simulations we find that the electric field within a few microns from the centre of the gap

of the gates at a depth that corresponds to the quantum well (QW) position should be relatively

uniform and along the x direction. In this uniform region the electric field is 0.69 VG/(30 µm)

where VG is the applied voltage between the gates.

Supplementary Note 2. EXPERIMENTAL DETAILS

We find that in measurements where an electric field is applied, the results are affected by the

duration, intensity, and energy of excitation lasers. We believe these changes are due to excess

charge carriers that are optically created that screen the externally applied electric field. In order to

avoid such effects, in experiments where an applied electric field is needed, we perform experiments

with a weak laser (New Focus TLB-6716, < 100 pW for reflection experiments and ≤ 40 nW for
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interference experiments) and, to reduce light exposure further, we apply a sequence of low duty

cycle laser pulses. These laser pulses are timed with a voltage pulse sequence that alternates the

sign of the applied voltage between the gates to ensure that the average electric field applied to

the sample remains 0.

For reflection and interference experiments we use the pulse sequence illustrated in Supplemen-

tary Figure 2. To acquire reflection or interference data corresponding to a target voltage Vtarget

we ensure that the counter or the camera (PointGray Grasshopper 3 41C6NIR) is gated so that

data from the time interval when the applied voltage is Vtarget is recorded. Voltage pulse lengths

are chosen to be 22.4 µs. To limit the exposure time of the laser on the sample, the excitation

laser is modulated using an acousto-optic modulator (AOM, double pass, extinction ≥ 50 dB).

The excitation laser is switched on by the AOM only around the time interval where Vtarget is

applied. Following these voltage pulses we apply 20 pairs of the high voltage pulse ±Vhigh = ±10

V to remove the remaining charge carriers created during the measurement so that these excessive

charge carriers do not affect the following measurement. Our data is not sensitive to the exact

values used in the sequence, for example voltage value used for Vhigh pulses, the number of pairs

of Vhigh pulses used, voltage pulse lengths, and laser illumination duration. Hence these values can

be varied without affecting the results, but some form of this pulse sequence is necessary to obtain

consistent electric field-dependent data. For all the electric field-dependent data reported in this

paper, we use the sequence described in this paragraph.

Each data point measured presented in the main text is an average of data recorded in multiple

runs of the pulse sequence. For example the reflection data shown in Figure 1 (main text) consists

of 4,500 repetitions of the pulse sequence for each target voltage value, whereas the interference

image shown in Figure 3 (main text) is formed by acquiring and summing 107,000 frames from the

camera; each frame corresponds to a repetition of the pulse sequence. Data acquisition from the

camera is carried out in blocks of 1,000 frames where pixel values from all 1,000 frames are added

to form a single image. Following a block of data acquisition we do an equal acquisition with 1,000

frames with the illumination laser turned off and record the difference between the two images to

remove any noise due to a persistent background in the images.

Polarization of the excitation beams is fixed to be linear (close to p-polarization) for all ex-

periments. In the reflection measurement we measure the reflected light intensity without any

additional polarization filtering. In polariton interference experiment the polarizer in front of the

camera transmits the light nearly orthogonally polarized to the incident beams to observe high

visibility interference images. This nearly orthogonal polarization configuration significantly at-
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Supplementary Figure 2: Pulse sequence. We acquire the data only when the target voltage Vtarget is

applied. This is ensured by timing the exposure of the camera, and gating the counter. Each voltage pulse

is 22.4 µs. The laser is incident on the sample only when VG is ±Vtarget or 0.

tenuates the intensity of the reflected excitation lasers, however it does not significantly attenuate

the elliptically polarized emission from the polariton transitions at high magnetic fields.

Supplementary Note 3. EXTRACTION OF POLARITON AND EXPERIMENTAL

PARAMETERS

Magnetic field dependent k resolved photoluminescence (PL) spectra measurements allow mea-

surement of many parameters that allow us to accurately model the polariton behaviour at high

magnetic fields [1].

Experimental results for the PL dispersion measurements at Bz = 0 T, 3 T, and 6 T are shown in

Supplementary Figure 3. For each ky value we fit two Lorentzian lineshapes to determine the lower

polariton (LP, lower energy eigenstate) and upper polariton (UP, higher energy eigenstate) energies.

We then fit the exciton-polariton energy dispersion with respect to the in-plane momentum ~ky

to:

εLP,UP (ky) =
1

2
[εcav (ky) + εexc (ky)]±

1

2

√
[εcav (ky)− εexc (ky)]

2 + Ω2, (1)

where Ω is the exciton cavity coupling strength that we refer to as Rabi energy, and we assume that

εexc (ky) ' εexc (0) and εcav (ky) ' εcav (0) + 1
2mcav

(~ky)2. Based on this relation, we can extract
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Supplementary Figure 3: ky resolved photoluminescence spectra of exciton-polaritons. a. Spectra

for Bz = 0 T. b. Spectra for Bz = 3 T. c. Spectra for Bz = 6 T. cps stands for counts per second. The

grey dashed lines are the bare cavity (curved) and exciton (flat) energy dispersion and the black dashed

lines correspond to the upper and lower polariton resonances. As Bz increases from 0 T to 6 T, the cavity

energy remains the same while the exciton energy increases due to the diamagnetic shift. Two peaks are

present for lower polariton energy dispersion at high magnetic fields (panel c) and large wavevectors, which

we attribute to the influence of Zeeman splitting of the exciton transitions.

εexc (0), εcav (0), and Ω from the experimental result at each magnetic field, these extracted values

are shown in Supplementary Figure 4. We will use these values in Supplementary Note 4 when

describing the detailed model we use to describe polariton behaviour.
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Supplementary Figure 4: Magnetic field dependence of exciton energy, cavity energy and Rabi

energy. a. The exciton energy εexc (black) increases with Bz while the cavity mode energy εcav (red) is

more or less constant regardless of Bz. b. Rabi energy Ω increases with Bz.
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ky distribution of detection and excitation beams

Due to the finite size of the beams used, a ky uncertainty, which we quantify below, is present for

both excitation and detection beams. With this uncertainty, we expect emission spectra measured

around a mean ky value to be asymmetric, and the linewidth of the spectra to depend on this mean

value. In particular our collection fibre acts as a filter and selects a distribution of ky values. We

model the field distribution as a probability density function given by fky(k
′
y) = 1√

2σ2
kπ
e
−

(k′y−ky)
2

2σk .

We assume a polariton resonance at εLP(k′y) leads to an emission intensity lineshape given by

A Γ/2
(ε−εLP(k′y))2+(Γ/2)2

where A is a constant characterizing intensity of polariton emission. The

measured spectrum is then modelled by

I(ε, ky) =

∫
dk′y|fky(k′y)|2

[
A

Γ/2

(ε− εLP(k′y))
2 + (Γ/2)2

]
(2)

With σk = 0.5 × 106 m−1, and the linewidth Γ = 120 µeV we obtain a reasonable agreement

between the model and the observed lineshapes. Supplementary Figure 5 illustrates the resulting

asymmetric lineshapes as well as the change in the expected linewidths with ky. Note that at high

ky values there is a high energy tail in the emission lineshapes that is not captured by this model.

This tail occurs at energies close to the bare exciton resonance.

ε

Supplementary Figure 5: Changes in PL emission lineshape with ky value. Dots are horizontal line

cuts of the data shown in Supplementary Figure 3 at Bz = 0 T, solid lines are estimated lineshapes using

Supplementary Equation 2.
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To measure the ky distribution of the excitation beams used for the interference experiment

(main text Figure 3) we slightly modify the interference experiment performed. We detune the ex-

citation laser to the red of the polariton resonances so that the laser does not excite any polaritons,

and we change the polarizer angle in front of the camera such that two beams have equal detected

intensities. We also change the distance between the high NA lens and the sample so that the two

beams overlap at the sample surface. With the sample illuminated by the k−y beam and the k = 0

beam, an image of the light intensity at the surface shows an interference pattern illustrated in

Supplementary Figure 6. We emphasize again that, unlike the experiments in the main text, here

polaritons have not been excited, and the image purely shows the interference of two laser beams.

This interference pattern is due to the spatially varying phase between two beams, for simplicity

(considering only y direction) we model this interference as the interference of two beams that are

defined by their field distributions fk−y (k′y) and f0(k′y). To extract k−y and σ−k we take a 2D Fourier

Transform of the intensity image, and analyze the line cut at kx = 0. From the position of the

two Gaussian peaks we find k−y = −2.9 × 106 m−1. From their widths we find σ−k = 0.4 × 106

m−1. Acquiring and analyzing a dataset using k+
y excitation beam we find k+

y = 2.7 × 106 m−1

and σ+
k = 0.5× 106 m−1.

x (μm)

a. b.

y
 (
μ

m
)

50
00

10

10

5

μ

Supplementary Figure 6: Estimation of ky from interference images. a. Interference images between

the k = 0 beam and the k−y beam. b. Line cut of the 2D Fourier Transform of the image in a, showing the

positive ky values at kx = 0. Solid lines are obtained by fitting a sum of two Gaussian functions one centred

at ky = 0 the other centred at ky = k−y .

Extracting electric field dependent energy shift of polaritons

Due to the fibre coupling we employ, the excitation laser intensity exhibits significant changes

(up to 25 %) as its energy is tuned. Since the excitation intensity is less than 100 pW, we do not
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expect any changes in the polariton behaviour due to these intensity variations. To be able to fit,

and visualize the underlying changes in intensity due to the excitation of polariton resonances, we

calculate and plot the ratio of the recorded intensity to the average of the intensity of the data

obtained for the six highest voltage values applied for each laser energy. For example in Figure 1d

in the main text each horizontal line is obtained by dividing the reflected intensity for each voltage

by the average intensity of the reflection at 11.04, 11.52, 12, 12.48, 12.96 and 13.44 V.

This normalization procedure however affects the lineshape of the reflection data. The procedure

above (due to the Stark shift) effectively calculates the ratio by dividing the average of data points

of reflected intensity at high energy tails of the polariton resonance. If these points overlap with

the tail due to the asymmetric lineshape (observed in the PL spectra, Supplementary Figure 5)

that extends to high energies, or overlaps with the polariton resonance, the reflection ratio at low

energies can have values higher than 1. To account for this lineshape that is asymmetric in energy

relative to the polariton resonance, we include a smooth step function in our fits. The fitting

function we use at low magnetic field is given by :

Rlow(ε) = br + ar
(Γ/2)2

(ε− ε0)2 + (Γ/2)2 + astep tanh

(
ε− ε0
εstep

)
. (3)

We use for our fits εstep = 0.2 meV. At high magnetic fields the data exhibits two closely spaced

dips that we attribute to the interplay of the Zeeman splitting of the exciton transitions and the

TE-TM splitting of the photonic modes, and use:

Rhigh(ε) = br + ar,+
(Γ+/2)2

(ε− ε0 + ∆)2 + (Γ+/2)2 + ar,−
(Γ−/2)2

(ε− ε0 −∆)2 + (Γ−/2)2

+ astep tanh

(
ε− ε0
εstep

)
. (4)

We expect, due to the finite TE-TM splitting at the k±y values that we perform the measurements

that the transitions will be elliptically polarized and the two dips might be of different amplitude.

Supplementary Note 4. MODEL OF POLARITONS UNDER MAGNETIC AND

ELECTRIC FIELDS

We model the behaviour of polaritons in our system by numerically determining the eigenvalues

and the associated wavefunctions of a Schrödinger equation for the excitons in the system. We

compare the measured observables obtained in various experiments with the results of calculations

based on the numerical study both to extract parameters that describe the exciton system, as well

as to verify the physical origin of the change in the observables.
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The Hamiltonian for the 2D exciton relative motion wave function ψ (r) is given by [2, 3]

H = − ~2

2µ
∆r +

eBz
2η

L̂z +
P 2

2M
+

1

2µ

(
Bz
2

)2

r2 +
e

M
P× (Bz ẑ) · r + V (r) + e(Eextx̂) · r. (5)

where the Hamiltonian is described in SI unit and r = re − rh is the relative coordinate, R =

(mere +mhrh) / (me +mh) is the centre of mass (CM) coordinate, L̂z = i~ẑ × ∇r is the angular

momentum operator in the z (growth) direction, P is the exciton magnetic CM momentum, which

is an eigenvalue of the magnetic momentum operator P̂ = −i~∇R − eB × r/2. Note that P

is the conserved momentum of the exciton in a magnetic field and associated with translational

invariance in the plane of the quantum well and is identical to the CM momentum at B = 0 [2].

Hence the exciton excited by a photon has P = ~k, which is the same as the in-plane momentum

of the photon. Eextx̂ is the applied electric field, Bz the magnetic field in the growth direction,

µ−1 = m−1
e +m−1

h , η = m−1
e −m−1

h , and M = me +mh is the electron-hole pair total mass (total

exciton mass).

We ignore the eB
2η L̂z term in Supplementary Equation 5 since we are dealing with the ground

state of the 2D exciton wave function, which is spatially symmetric (1s state for Bz = 0). We also

ignore the centre of mass kinetic energy term (~k)2/(2M) since we fix the magnetic CM momentum

~k in the experiment. Thus, this term gives a constant energy shift.

The effective Coulomb potential for a QW with finite width d is [4–6]

V (r) = − e2

4πεε0

∫ d

0

∫ d

0
dzedzh

|Ue (ze)|2 |Uh (zh)|2√
r2 + (ze − zh)2

, (6)

where ε is the relative permittivity of the material, ε0 is the vacuum permittivity, and we assume

that the QW has infinite barriers. The wavefuntions of the electron and hole in the growth direction

is given by Ui (zi) =
√

2
d sin

(
zi
d π
)

where i is either e or h. If we introduce the variable u =

(ze − zh) /d and v = (ze + zh) /d, then Supplementary Equation 6 can be written as:

V (r) = − 1

πεε0d

∫ 1

0

∫ 2−u

u
dvdu

sin2
(
u+v

2 π
)

sin2
(
u−v

2 π
)√(

r
d

)2
+ u2

= − 1

4πεε0d

∫ 1

0
du

(1− u) [2 + cos (2πu)] + 3
2π sin (2πu)√(

r
d

)2
+ u2

≡ − 1

4πεε0
h (r) . (7)

We use Mathematica’s finite element method for numerically solving the Schrödinger equation

with the Hamiltonian given by Supplementary Equation 5 to obtain the energy and the wave

function of the lowest energy state. The computation region is limited to rmax = 10 a0 (0 ≤ |r| ≤
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rmax, and a0 = 4πεε0~2/µe2, 3D Bohr radius of the exciton), which is large enough that the lowest

eigenvalue of the equation does not change (up to six digits) as rmax increases.

The physical parameter values used in this calculation are summarized in Supplementary Table I.

m0 is the electron mass and we choose the remaining parameters such as ky, µ, and M , as we discuss

below, to best match with our experimental data.

Parameter Symbol Value

Relative permittivity (GaAs) ε 12.9

Quantum well width d 9.6 nm

In-plane wavevector k±y ±2.8× 106 m−1

Exciton effective (reduced) mass µ 0.04 m0

Total exciton mass M 0.07 m0

Cavity effective mass mcav 6× 10−5 m0

Supplementary Table I: Physical parameter values. m0 is the electron mass.

Diamagnetic shift of excitons

We calculate the energy of the lowest energy eigenstate of Supplementary Equation 5 with

Eext = 0 as a function of magnetic field, Bz, and compare the shift of energy of this state with the

shift of the extracted exciton transition energy obtained in Supplementary Note 3. To match with

the experimental results on the exciton energy change we vary the reduced mass of the exciton

µ. See Supplementary Figure 7 for the comparison between the theory with various µ and the

experimental results. Based on the results on Supplementary Figure 7, we choose µ ∼ 0.04 m0.

Then, the binding energy of the exciton with no external magnetic and electric field is 7.94 meV.

Effect of the applied electric field on polaritons

An electric field alters the exciton energy thereby changing the polariton resonance energy. In

addition polarization of the exciton due to Eext reduces the electron hole overlap, leading to a

reduced Ω , which also changes the polariton resonance energy. To model the polariton behaviour

we use Supplementary Equation 1 where Ω and εexc depend on both Bz and Eext. Shifts in

εexc (Bz, Eext) are found by identifying the energy shifts of the lowest energy eigenstate of Supple-

mentary Equation (5). The cavity photon energy is given as εcav (ky) ' εcav (0) + ~2
2mcav

k2
y where
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Supplementary Figure 7: Exciton diamagnetic shift. As the magnetic field increases, the exciton energy

increases. Red data points are the experimental results and the red, green, and purple lines are obtained from

the numerical solution to Supplementary Equation 5 with µ = 0.038m0, 0.040m0, 0.042m0, respectively.
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Supplementary Figure 8: Energy shift with applied electric field. a. Exciton and b. Lower polariton

energy shows parabolic shifts against the applied electric field Eext. The maximum exciton energy is obtained

at Eext = Ẽext. The polarizability of the exciton, also, decreases as Bz increases. The energy of the exciton

changes more rapidly than the energy of the polariton. The red, green, and purple lines correspond to B =

0 T, 3 T, and 5 T, respectively. ky = 2.8× 106 m−1 and M = 0.07 m0.

we assume Eext or Bz does not change the cavity resonance and dispersion. Changes in Ω are cal-

culated as indicated in the previous section. Supplementary Figure 8b shows the lower polariton

energy shift with Eext at Bz = 0 T, 3 T, and 5 T.

We fit the polariton energy shift with Eext to a second order polynomial of Eext, i.e. εLP(Eext) '

εLP(0) − dEext − αE2
ext. The comparison between the theoretical result (both of the exciton and

polariton cases) and the experiment is shown in Supplementary Figure 10. Increase in εLP(0) with

Bz is less compared to the calculated increase for the exciton (Supplementary Figure 10a), as the
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Supplementary Figure 9: Change in Rabi energy with magnetic field. The Rabi energy Ω (Bz, Eext) is

proportional to the norm of the exciton wave function |ψ (r = 0)| [6], thus, to quantify the changes in Ω we

use Ω (Bz, Eext) = Ω (Bz = 0, Eext = 0) |ψ(r=0,Bz,Eext)|
|ψ(r=0,Bz=0,Eext=0)| . Here we plot the relative Rabi energy changes

with Bz. As the magnetic field increases, the Rabi energy increases. Red data points are the experimental

results and the red, green, and purple lines the numerical solution to Supplementary Equation 5 with

µ = 0.038m0, 0.040m0, 0.042m0, respectively.

increase in Ω leads to red-shift of the LP energy.

Dependence of the polarizability α on Bz is depicted in Supplementary Figure 10b. We compare

the theoretical result of α for polaritons with the experimental results by varying the reduction

factor γ of the applied electric field Eext = γ VG
30 µm where VG is the potential applied to the gate.

We find a good agreement with the experimental results when γ = 0.84. Note that the COMSOL

simulation gives γ ∼ 0.69 as discussed in Section I. As shown in Supplementary Figure 10b, both

polariton and exciton polarizabilities decrease with Bz but the polarizability of the polariton is

smaller than that of the exciton.

Here, as in the main text, we calculate the difference of the effective electric fields ∆Eeff between

the case of k±y = ±2.8×106 m−1, this is shown as Supplementary Figure 10c. Unlike Supplementary

Figures 10a and b, ∆Eeff for polariton and the exciton cases are very similar to each other and

the small discrepancy is due to the fact that the Rabi energy is reduced by Eext. The electric field

difference ∆Eeff shows linear dependence on Bz. Note that we find that the total exciton mass

M ∼ 0.07 m0 gives a good agreement between the theoretical and the experimental results. See

Supplementary Figure 11 for the simulation results with three different M values.

The difference of the induced dipole moments ∆d between k±y withBz is shown in Supplementary

Figure 10d. d corresponds to the induced dipole moment of the exciton or polariton due to the

in-plane momentum and Bz. Supplementary Figure 10d shows that the dipole moment of the

polariton increases with Bz up to around 3 - 4 T and then decreases with Bz for higher magnetic
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fields. A remarkable feature is that the magnetic field at which the dipole moment reaches the

maximum value is different for the exciton and the polariton cases, in our sample, the polariton

has the maximum value around 3 - 4 T while the exciton has its maximum value around 4 - 5 T.

This is due to the fact that the exciton content of the lower polariton decreases with Bz.

Effective vector potential for polaritons

For polaritons at arbitrary detuning, it is not generally possible to write the lower (or upper)

polariton dispersion as a free particle with single effective mass. However for a small range of

0 2 4 6 8 10 12 14
0

2

4

6

8

10

Bz (T)

En
er

gy
C

ha
ng

e
(m

eV
)

0 2 4 6 8 10 12 14
0

0.5

1.0

1.5

α
(1

0-1
4

eV
V

-2
m

2 )

0 2 4 6 8 10 12 14
0

1

2

3

4

Δd
(1

0-1
0 eV

V
-1

m
)

0 2 4 6 8 10 12 14
0

5

10

15

ΔE
ef

f
(1

04
V

m
-1

)

Bz (T)

Bz (T) Bz (T)

a.

c. d.

b.
Exciton
Lower Polariton

Exciton
Lower Polariton

Exciton
Lower Polariton

Exciton
Lower Polariton

Supplementary Figure 10: Magnetic field dependence. For each figure, the black and red lines correspond

to the exciton and the polariton simulation results, respectively. The yellow and blue data points corresponds

to the experimental data for the polaritons excited with k+
y = 2.7 × 106 m−1 and k−y = −2.9 × 106 m−1,

respectively. a. Exciton and polariton energy at Eext = 0 increases with Bz. b. The polarizability α

decreases with Bz. c. Difference between the effective electric fields ∆Eeff for k+
y and k−y . d. Difference

between the induced dipole moments ∆d for k+
y and k−y . Solid lines are obtained from the numerical solution

to Supplementary Equation 5, with
∣∣k±y ∣∣ = 2.8×106 m−1 and M = 0.07 m0. m0 is the electron mass. Error

bars are the estimated standard deviations of the mean for three repetitions of the experiment. Some

errorbars are smaller than the marker.
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Supplementary Figure 11: Exciton total mass dependence. The orange, green and purple lines are

obtained from the numerical solution to Supplementary Equation 5 with the exciton mass M = 0.166 m0,

0.07 m0, and 0.05 m0, respectively. a. Difference between the effective electric fields ∆Eeff for k+
y and k−y .

b. Difference between the induced dipole moments ∆d for k+
y and k−y . As M increases, both of ∆Eeff and

∆d increases. M= 0.07 m0 fits well with our experimental data. Error bars are the estimated standard

deviations of the mean for three repetitions of the experiment

wavevector values (δky) around a particular wavevector k′y (ky = k′y + δk) we will show that it is

possible to describe polaritons as particles moving in a vector potential. Using the description in

the main text, the energy difference between the cavity mode and the exciton mode is:

∆(ky) = εcav(ky)− εexc(ky) = εcav(0)− ε′exc(0) +
1

2mcav
(~ky)2 − 1

2M ′
(~ky − qAeff)2 (8)

The energy eigenvalues in Supplementary Equation 1 can be re-written as:

εLP,UP(ky) =
1

2

(
∆(ky)±

√
∆2(ky) + Ω2

)
+ ε′exc(0) +

1

2M ′
(~ky − qAeff)2 (9)

Assuming k′y � δky we do a linear expansion in δky of εLP(ky) and find:

εLP(ky) ' ε(k′y) +
1

2m
(~ky − qA)2 (10)

where A = m
M 2αBzEx|Xk|2 and ε(k′y) = εexc(k

′
y) + 1

2

(
∆(k′y)−

√
∆2(k′y) + Ω2

)
− 1

2m

(
~k′y − qA

)2
,

m−1 = |Ck|2 1
mcav

+ |Xk|2 1
M ′ with |Ck|2 = 1

2

(
1− ∆(k′y)√

∆2(k′y)+Ω2

)
and |Xk|2 = 1

2

(
1 +

∆(k′y)√
∆2(k′y)+Ω2

)
the cavity and exciton Hopfield coefficients.
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