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Supplementary Figure 1: The experimental setup. The shaded dimers represent the

equilibrium configurations while the dark dimers represent a dynamical configuration.

The blue oblique lines represent the springs. The figure highlights the degrees of freedom

of each dimer. The parameters in the actual experiment are as follows: M = 0.039 kg,

d = 0.0278 m and D = 0.0484 m. The constants of the springs were K1 = 200 N/m and

K2 ≈ 400 N/m. With these values, theory agrees reasonably well with the experiment, but

not perfectly.
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Supplementary Note 1: Analysis of Small Oscillations. In the following lines, we

derive the dynamical matrix for the model described in Fig. 1 of the main document. This

model is a theoretical representation of the mechanical system realized in laboratory and

described in Fig. 2 of the main document. The purpose of the calculation is to demonstrate

explicitly that, indeed, the phonon spectrum has the particle-hole symmetry. We will refer

to the Supplementary Figure 1. Recall that, at equilibrium, all the springs are relaxed and

the dimers assume a vertical position. The lengths of the two springs are denoted by `1,2.

When the springs are relaxed, they have the same length `0 =
√

D2 + 4d2. The dimers

have only two degrees of freedom, the displacement x1 of the center of mass along the

axis of the chain and the rotation of dimer, encoded in the degree of freedom x2 = dφ,

where φ is the angle between dimer’s axis and the vertical axis, and d is half the distance

between the centers of the two masses of a dimer. Since the moment of inertia of a dimer

is I = 2md2, d equals the radius of gyration d =
√

I/M, M = 2m being the total mass of a

dimer.

Since we have only nearest-neighbors interactions, q = 1 and the potential appearing

Eq. 1 of the main document is:

V1(x, x′) = 1
2K1(`1 − `0)2 + 1

2K2(`2 − `0)2 . (1)

Simple geometrical considerations give:

`2
1 =

(
D − x1 − d sin x2

d + x′1 − d sin
x′2
d

)2
+

(
d cos x2

d + d cos
x′2
d

)2
, (2)

`2
2 =

(
D − x1 + d sin x2

d + x′1 + d sin
x′2
d

)2
+

(
d cos x2

d + d cos
x′2
d

)2
. (3)

To compute the Q̂ matrices, we need the second order derivatives of the potential, evalu-

ated at the equilibrium configuration. Let ξ and ξ′ be any of x1, x2, x′1 or x′2. We have:

∂V1

∂ξ
= K1

1
2`1

∂`2
1

∂ξ
(`1 − `0) + K2

1
2`2

∂`2
2

∂ξ
(`2 − `0) . (4)

Since the springs are uncompressed at the equilibrium, the second derivative must act on

`1,2 − `0, hence at equilibrium:

∂2V1

∂ξ∂ξ′
=

K1

4`2
0

∂`2
1

∂ξ

∂`2
1

∂ξ′
+

K2

4`2
0

∂`2
2

∂ξ

∂`2
2

∂ξ′
. (5)
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The input for this equation is given below:

∂`2
1

∂x1
= −2D,

∂`2
1

∂x2
= −2D,

∂`2
1

∂x′1
= +2D,

∂`2
1

∂x′2
= −2D, (6)

∂`2
2

∂x1
= −2D,

∂`2
2

∂x2
= +2D,

∂`2
2

∂x′1
= +2D,

∂`2
2

∂x′2
= +2D. (7)

We can now assemble the Q̂ matrices [η = (K1 − K2)/(K1 + K2)]:

Q̂0 = (K1 + K2)
2D2

`2
0

1 0

0 1

 , Q̂±1 = (K1 + K2)
2D2

`2
0

−1 ±η

∓η 1

 . (8)

Furthermore, the kinetic energy of one dimer has translational and rotational components

and takes the form:

T = mẋ2
1 +mẋ2

2 . (9)

Lastly, the dispersion equation takes the form:

(ω2
− ω2

0)A = ω2
0

 − cos k iη sin k

−iη sin k cos k

 A , ω0 =
D
`0

√
K1 + K2

m
. (10)

We now can see explicitly that k→ −k under the conjugation of the righthand side by σ̂3,

which is the manifestation of the inversion symmetry discussed in the main document.

Furthermore, ω2
− ω2

0 → −(ω2
− ω2

0) under the conjugation by σ̂1, that is, the particle-

hole symmetry relative to ω2
0 is indeed present as predicted by the general theory. The

phonon spectra reported in Fig. 1 of the main document were generated with Supple-

mentary Eq. (10). The data in panel (b) was generated with the experimental values of

the parameters and is in good agreement with the experimental measurements reported

in Fig. 2.
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