Supplementary Figure 1: The experimental setup. The shaded dimers represent the
equilibrium configurations while the dark dimers represent a dynamical configuration.
The blue oblique lines represent the springs. The figure highlights the degrees of freedom
of each dimer. The parameters in the actual experiment are as follows: M = 0.039 kg,
d = 0.0278 m and D = 0.0484 m. The constants of the springs were K; = 200 N/m and
K; ~ 400 N/m. With these values, theory agrees reasonably well with the experiment, but
not perfectly.



Supplementary Note 1: Analysis of Small Oscillations. In the following lines, we
derive the dynamical matrix for the model described in Fig. 1 of the main document. This
model is a theoretical representation of the mechanical system realized in laboratory and
described in Fig. 2 of the main document. The purpose of the calculation is to demonstrate
explicitly that, indeed, the phonon spectrum has the particle-hole symmetry. We will refer
to the Supplementary Figure 1. Recall that, at equilibrium, all the springs are relaxed and
the dimers assume a vertical position. The lengths of the two springs are denoted by ¢; 5.
When the springs are relaxed, they have the same length £, = VD2 + 4d2. The dimers
have only two degrees of freedom, the displacement x; of the center of mass along the
axis of the chain and the rotation of dimer, encoded in the degree of freedom x, = d¢,
where ¢ is the angle between dimer’s axis and the vertical axis, and d is half the distance
between the centers of the two masses of a dimer. Since the moment of inertia of a dimer
is I = 2md?, d equals the radius of gyration d = VI/M, M = 2m being the total mass of a
dimer.

Since we have only nearest-neighbors interactions, 4 = 1 and the potential appearing

Eq. 1 of the main document is:
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Simple geometrical considerations give:

52—(D—x —dsinﬁ+x’—dsinﬁ)2+(dcosx—2+dcosx—£>2 (2)
1~ 1 d 1 d d d) 7/

52—(D—x +dsinﬁ+x’+dsinx—é)z+(dcos"—2+alcosx—é>2 (3)
2= 1 d 1 d d d) -

To compute the Q matrices, we need the second order derivatives of the potential, evalu-
ated at the equilibrium configuration. Let £ and &’ be any of x4, x,, x; or x;,. We have:
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Since the springs are uncompressed at the equilibrium, the second derivative must act on
t1, — €, hence at equilibrium:
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The input for this equation is given below:
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We can now assemble the é matrices [ = (K1 — K2)/(Kq + Ky)]:
= 2D*[1 0 = 2D% (-1 =
Qo = (Ki + Ko)—- ;o Qu = (K + Ky)—- . (8)
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Furthermore, the kinetic energy of one dimer has translational and rotational components
and takes the form:
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Lastly, the dispersion equation takes the form:
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We now can see explicitly that k — —k under the conjugation of the righthand side by a3,
which is the manifestation of the inversion symmetry discussed in the main document.
Furthermore, ® — w} — —(w? — @}) under the conjugation by o3, that is, the particle-
hole symmetry relative to wj is indeed present as predicted by the general theory. The
phonon spectra reported in Fig. 1 of the main document were generated with Supple-
mentary Eq. (10). The data in panel (b) was generated with the experimental values of
the parameters and is in good agreement with the experimental measurements reported

in Fig. 2.



