Supplemental information

Synthesis, characterization and monoamine transporter activity of the new psychoactive substance 3',4'-methylenedioxy-4-methylaminorex (MDMAR).

Gavin McLaughlin, Noreen Morris, Pierce V. Kavanagh, John D. Power, Brendan Twamley, John O'Brien, Brian Talbot, Geraldine Dowling, Olivia Mahony, Simon D. Brandt, Julian Patrick, Roland P. Archer, John S. Partilla, Michael H. Baumann.

Correspondence to: Gavin McLaughlin, Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland. Email: <u>gavinmclaughlin@research.ait.ie</u> or <u>gmclaug@tcd.ie</u>

Contents

- 1. LC-MS data for the synthesized *cis* and *trans* MDMAR isomers and vendor sample.
- 2. HR-MS data for the synthesized *cis* and *trans* MDMAR isomers and vendor sample.
- 3. GC-MS data for vendor sample.
- 4. NMR data for the synthesized *cis* and *trans* MDMAR isomers and vendor sample.
- 5. Structure of the cyanamide intermediate, NMR and HR-MS data.
- 6. X-ray data for the synthesized *cis* MDMAR isomer.

1. LC-MS data for the synthesized *cis* and *trans* MDMAR isomers and vendor sample.

2. HR-MS data for the synthesized *cis* and *trans* MDMAR isomers and vendor sample.

80 100 120 140 160 180 200 220 240 260 280 300 320 340

3. GC-MS data for vendor sample.

4. NMR data for the synthesized *cis* and *trans* MDMAR isomers and vendor sample.

¹H NMR (DMSO) δ 6.90 (doublet; *J* = 7.9 Hz; 1H; Ar-<u>H</u>6'), 6.72 (doublet; *J* = 7.9 Hz; 1H; Ar-<u>H</u>2'); 6.69 (doublet; *J* = 1.8 Hz; 1H; Ar-<u>H</u>5'), 5.91 (singlet; *J* = 7.5 Hz; 2H; C<u>H</u>₂); 5.43 (doublet; *J* = 8.5 Hz; 1H; H-5), 4.14 (double quartet; *J* = 8.5, 6.8 Hz; 1H; H-4), 0.60 (doublet; *J* = 6.8Hz; 3H; CH₃); ¹³C NMR (DMSO) δ 159.59 (C-2); 147.39 (Ar C3'); 146.69 (Ar C4'); 132.36 (Ar C1'); 119.48 (Ar C6'); 108.19 (Ar C5'); 106.64 (Ar C2'); 101.23 (CH₂); 82.52 (C-5); 63.00 (C-4); 18.90 (CH₃).

¹H NMR (DMSO) δ 6.88 (doublet; *J* = 1.9 Hz; 1H; Ar-<u>H</u>6'); 6.82 (doublet; *J* = 8.0Hz; 1H; Ar-<u>H</u>2'); 6.77 (doublet; J = 1.9 Hz; 1H; Ar-<u>H</u>5'); 5.93 (singlet; *J* = 7.5 Hz; 2H; C<u>H</u>₂); 4.75 (doublet; *J* = 6.5 Hz; 1H; H-5); 4.16 (double quartet; *J* = 6.5, 6.4 Hz; 1H; H-4); 1.12 (doublet; *J* = 6.4 Hz; 3H; C<u>H</u>₃); ¹³C NMR (DMSO) δ 159.59 (C-2); 147.39 (Ar C3'); 146.69 (Ar C4'); 132.37 (Ar C1'); 119.47 (Ar C6'); 108.19 (Ar C5'); 106.64 (Ar C2'); 101.23 (CH₂); 82.52 (C-5); 62.99 (C-4); 18.90 (CH₃).

¹H NMR (DMSO) δ 6.90 (doublet; *J* = 8.0 Hz; 1H; Ar-<u>H</u>6'), 6.74 (doublet; *J* = 8.0 Hz; 1H; Ar-<u>H</u>2'); 6.70 (doublet; *J* = 1.8 Hz; 1H; Ar-<u>H</u>5'), 5.91 (singlet; *J* = 7.5 Hz; 2H; C<u>H</u>₂); 5.42 (doublet; *J* = 8.8 Hz; 1H; H-5), 4.14 (double quartet; *J* = 8.8, 6.6 Hz; 1H; H-4), 0.60 (doublet; *J* = 6.6Hz; 3H; CH₃); ¹³C NMR (DMSO) δ 159.59 (C-2); 147.39 (Ar C3'); 146.69 (Ar C4'); 132.37 (Ar C1'); 119.47 (Ar C6'); 108.19 (Ar C2'); 101.23 (CH₂); 82.52 (C-5); 63.00 (C-4); 18.90 (CH₃).

5. Structure of the cyanamide intermediate, NMR and HR-MS data.

The cyanamide intermediate was formed following the literature-based methods for the synthesis of trans-DMAR.

¹H NMR (DMSO) δ 6.90 (doublet; *J* = 2.0 Hz; 1H; Ar-H), 6.81 (doublet; *J* = 8.0 Hz; 1H; Ar-H), 6.68 (double doublet; *J* = 8.0, 2.0 Hz; 1H; Ar-H), 5.97 (doublet, *J* = 2.0 Hz; 2H; CH₂), 4.11 (doublet; *J* = 7.2 Hz; 1H; C<u>H</u>(OH)), 3.32 (Pentet; *J* = 6.0 Hz; 1H; C<u>H</u>(CH₃)); 1.14 (doublet; *J* = 6.0 Hz; 3H; CH₃); ¹³C NMR (DMSO) δ 162.08 (Ar-C); 147.40 (Ar-C); 146.61

(Ar-C); 135.98 (Ar-C); 119.62 (CN); 108.00 (Ar-C); 106.55 (Ar-C); 100.90 (CH₂); 63.27 (<u>C</u>H(OH)); 56.82 (CH(CH₃)); 19.91 (CH₃)

HR-MS data for cyanamide intermediate

6. X-Ray data for the synthesized *cis* MDMAR isomer (TCD53b).

Figure depicting molecular structure of *cis* MDMAR. Displacement ellipsoids shown at 50%.

Figure showing packing diagram of *cis* MDMAR viewed down the b axis. Strong hydrogen bonding indicated by dashed lines. Hydrogen atoms omitted for clarity.

Table 2. Crystal data and structure refinement for 1	CCD53b.		
Identification code	tcd53b		
Empirical formula	C11 H12 N2 O3		
Formula weight	220.23		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Triclinic		
Space group	P 1		
Unit cell dimensions	a = 6.1800(2) Å	α= 80.360(2)°.	
	b = 6.4291(3) Å	β= 78.857(2)°.	
	c = 14.0726(6) Å	$\gamma = 72.431(2)^{\circ}$.	
Volume	519.43(4) Å ³		
Ζ	2		
Density (calculated)	1.408 Mg/m ³		
Absorption coefficient	0.868 mm ⁻¹		
F(000)	232		
Crystal size	$0.350 \ x \ 0.160 \ x \ 0.020 \ mm^3$		
Theta range for data collection	3.223 to 69.908°.		
Index ranges	-7≤h≤7, -7≤k≤7, -16≤l≤17		
Reflections collected	7712		
Independent reflections	1932 [R(int) = 0.0363]		
Completeness to theta = 67.679°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7532 and 0.6506		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	1932 / 0 / 154		
Goodness-of-fit on F ²	1.058		
Final R indices [I>2sigma(I)]	R1 = 0.0369, wR2 = 0.0960		
R indices (all data)	R1 = 0.0415, wR2 = 0.1001		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.247 and -0.187 e.Å ⁻³		

	Х	у	Z	U(eq)
C(1)	3177(2)	8484(2)	36(1)	26(1)
O(2)	1680(2)	7102(2)	172(1)	30(1)
C(3)	2181(2)	5666(2)	996(1)	22(1)
C(4)	1181(2)	4045(2)	1435(1)	24(1)
C(5)	1964(2)	2854(2)	2293(1)	23(1)
C(6)	3682(2)	3286(2)	2671(1)	21(1)
C(7)	4688(2)	4946(2)	2203(1)	24(1)
C(8)	3887(2)	6102(2)	1370(1)	24(1)
O(9)	4557(2)	7816(2)	798(1)	37(1)
C(10)	4434(2)	1937(2)	3596(1)	23(1)
O(11)	5219(2)	3261(2)	4128(1)	26(1)
C(12)	7247(2)	1977(2)	4407(1)	22(1)
N(13)	8159(2)	2931(2)	4947(1)	28(1)
N(14)	8065(2)	75(2)	4118(1)	25(1)
C(15)	6490(2)	-192(2)	3512(1)	24(1)
C(16)	7713(2)	-609(2)	2489(1)	26(1)

Table 3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for TCD53b. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(9)	1.4287(16)	H(1A)-C(1)-H(1B)	108.4
C(1)-O(2)	1.4329(17)	C(3)-O(2)-C(1)	105.64(10)
C(1)-H(1A)	0.9900	C(4)-C(3)-O(2)	127.95(12)
C(1)-H(1B)	0.9900	C(4)-C(3)-C(8)	122.06(13)
O(2)-C(3)	1.3794(16)	O(2)-C(3)-C(8)	109.97(12)
C(3)-C(4)	1.369(2)	C(3)-C(4)-C(5)	116.51(12)
C(3)-C(8)	1.3809(19)	C(3)-C(4)-H(4)	121.7
C(4)-C(5)	1.4048(19)	C(5)-C(4)-H(4)	121.7
C(4)-H(4)	0.9500	C(6)-C(5)-C(4)	121.63(13)
C(5)-C(6)	1.3908(18)	C(6)-C(5)-H(5)	119.2
C(5)-H(5)	0.9500	C(4)-C(5)-H(5)	119.2
C(6)-C(7)	1.4021(19)	C(5)-C(6)-C(7)	120.62(12)
C(6)-C(10)	1.5077(18)	C(5)-C(6)-C(10)	118.60(12)
C(7)-C(8)	1.3725(19)	C(7)-C(6)-C(10)	120.77(12)
C(7)-H(7)	0.9500	C(8)-C(7)-C(6)	116.83(12)
C(8)-O(9)	1.3723(17)	C(8)-C(7)-H(7)	121.6
C(10)-O(11)	1.4564(16)	C(6)-C(7)-H(7)	121.6
C(10)-C(15)	1.5645(18)	O(9)-C(8)-C(7)	127.72(12)
C(10)-H(10)	1.0000	O(9)-C(8)-C(3)	109.93(12)
O(11)-C(12)	1.3653(15)	C(7)-C(8)-C(3)	122.34(13)
C(12)-N(14)	1.2765(18)	C(8)-O(9)-C(1)	106.12(10)
C(12)-N(13)	1.3422(18)	O(11)-C(10)-C(6)	109.11(11)
N(13)-H(13A)	0.91(2)	O(11)-C(10)-C(15)	103.36(10)
N(13)-H(13B)	0.89(2)	C(6)-C(10)-C(15)	118.54(11)
N(14)-C(15)	1.4746(16)	O(11)-C(10)-H(10)	108.5
C(15)-C(16)	1.5179(19)	C(6)-C(10)-H(10)	108.5
С(15)-Н(15)	1.0000	C(15)-C(10)-H(10)	108.5
C(16)-H(16A)	0.9800	C(12)-O(11)-C(10)	106.69(10)
C(16)-H(16B)	0.9800	N(14)-C(12)-N(13)	128.01(12)
C(16)-H(16C)	0.9800	N(14)-C(12)-O(11)	117.72(12)
		N(13)-C(12)-O(11)	114.25(12)
O(9)-C(1)-O(2)	108.33(10)	C(12)-N(13)-H(13A)	117.1(11)
O(9)-C(1)-H(1A)	110.0	C(12)-N(13)-H(13B)	118.1(12)
O(2)-C(1)-H(1A)	110.0	H(13A)-N(13)-H(13B)	117.8(16)
O(9)-C(1)-H(1B)	110.0	C(12)-N(14)-C(15)	107.83(11)
O(2)-C(1)-H(1B)	110.0	N(14)-C(15)-C(16)	111.09(11)

Table 4. Bond lengths [Å] and angles [°] for TCD53b.

N(14)-C(15)-C(10)	103.87(10)	C(15)-C(16)-H(16B)	109.5
C(16)-C(15)-C(10)	116.15(11)	H(16A)-C(16)-H(16B)	109.5
N(14)-C(15)-H(15)	108.5	C(15)-C(16)-H(16C)	109.5
C(16)-C(15)-H(15)	108.5	H(16A)-C(16)-H(16C)	109.5
C(10)-C(15)-H(15)	108.5	H(16B)-C(16)-H(16C)	109.5
C(15)-C(16)-H(16A)	109.5		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	26(1)	26(1)	27(1)	2(1)	-9(1)	-8(1)
O(2)	35(1)	33(1)	28(1)	7(1)	-16(1)	-16(1)
C(3)	20(1)	24(1)	21(1)	-3(1)	-6(1)	-3(1)
C(4)	18(1)	29(1)	26(1)	-4(1)	-6(1)	-7(1)
C(5)	20(1)	27(1)	25(1)	-1(1)	-4(1)	-8(1)
C(6)	16(1)	24(1)	21(1)	-4(1)	-3(1)	-3(1)
C(7)	19(1)	30(1)	25(1)	-4(1)	-6(1)	-8(1)
C(8)	23(1)	25(1)	24(1)	-2(1)	-5(1)	-9(1)
O(9)	48(1)	42(1)	34(1)	14(1)	-22(1)	-30(1)
C(10)	19(1)	29(1)	23(1)	-3(1)	-5(1)	-7(1)
O(11)	21(1)	29(1)	26(1)	-8(1)	-11(1)	3(1)
C(12)	18(1)	28(1)	19(1)	-1(1)	-6(1)	-2(1)
N(13)	24(1)	30(1)	30(1)	-10(1)	-12(1)	3(1)
N(14)	23(1)	27(1)	25(1)	-6(1)	-10(1)	0(1)
C(15)	22(1)	26(1)	24(1)	0(1)	-9(1)	-6(1)
C(16)	24(1)	28(1)	26(1)	-6(1)	-7(1)	-4(1)

Table 5. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for TCD53b. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	х	у	Z	U(eq)
H(1A)	4168	8348	-607	31
H(1B)	2263	10038	56	31
H(4)	19	3741	1171	28
H(5)	1302	1726	2624	28
H(7)	5868	5256	2451	29
H(10)	3080	1532	4010	28
H(13A)	7210(30)	4140(30)	5218(13)	36(5)
H(13B)	9300(30)	2080(30)	5262(14)	40(5)
H(15)	5917	-1484	3817	28
H(16A)	8200	684	2165	39
H(16B)	6666	-894	2117	39
H(16C)	9061	-1886	2523	39

Table 6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for TCD53b.

Table 7. Torsion angles [°] for TCD53b.

O(9)-C(1)-O(2)-C(3)	0.09(15)	
C(1)-O(2)-C(3)-C(4)	178.87(14)	
C(1)-O(2)-C(3)-C(8)	0.20(15)	
O(2)-C(3)-C(4)-C(5)	-177.88(13)	
C(8)-C(3)-C(4)-C(5)	0.7(2)	
C(3)-C(4)-C(5)-C(6)	-0.7(2)	
C(4)-C(5)-C(6)-C(7)	0.3(2)	
C(4)-C(5)-C(6)-C(10)	-179.93(12)	
C(5)-C(6)-C(7)-C(8)	0.3(2)	
C(10)-C(6)-C(7)-C(8)	-179.55(12)	
C(6)-C(7)-C(8)-O(9)	178.54(13)	
C(6)-C(7)-C(8)-C(3)	-0.3(2)	
C(4)-C(3)-C(8)-O(9)	-179.19(12)	
O(2)-C(3)-C(8)-O(9)	-0.42(16)	
C(4)-C(3)-C(8)-C(7)	-0.2(2)	
O(2)-C(3)-C(8)-C(7)	178.61(12)	
C(7)-C(8)-O(9)-C(1)	-178.51(14)	
C(3)-C(8)-O(9)-C(1)	0.46(16)	
O(2)-C(1)-O(9)-C(8)	-0.33(15)	
C(5)-C(6)-C(10)-O(11)	-150.27(12)	
C(7)-C(6)-C(10)-O(11)	29.54(16)	
C(5)-C(6)-C(10)-C(15)	91.90(15)	
C(7)-C(6)-C(10)-C(15)	-88.30(16)	
C(6)-C(10)-O(11)-C(12)	-133.65(11)	
C(15)-C(10)-O(11)-C(12)	-6.64(13)	
C(10)-O(11)-C(12)-N(14)	4.06(16)	
C(10)-O(11)-C(12)-N(13)	-177.29(11)	
N(13)-C(12)-N(14)-C(15)	-177.56(14)	
O(11)-C(12)-N(14)-C(15)	0.87(17)	
C(12)-N(14)-C(15)-C(16)	120.56(13)	
C(12)-N(14)-C(15)-C(10)	-5.01(14)	
O(11)-C(10)-C(15)-N(14)	7.01(13)	
C(6)-C(10)-C(15)-N(14)	127.83(12)	
O(11)-C(10)-C(15)-C(16)	-115.27(12)	
C(6)-C(10)-C(15)-C(16)	5.55(17)	

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(13)-H(13A)O(11)#1	0.91(2)	2.09(2)	2.9969(16)	173.9(16)
N(13)-H(13B)N(14)#2	0.89(2)	2.03(2)	2.9196(16)	174.1(17)

Table 8. Hydrogen bonds for TCD53b [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+2,-y,-z+1

End of supplementary data