

TF-YFP-Cub-Sho1p Pdr5p-RFP Colocalize

Colocalize-Zoom

Sho1-VC

VC-Sho1

Supplementary Table 1

Sho1 MYTH interactor	GO Cellular Function	Confirmed through BiFC	Confirmed through co-IP	Reference
Aim1	Other functions	-	not attempted	This study
Cad1	Nuclear functions	-	+	This study
Cdc19	Gluconeogenesis/glycolysis	+	poor expression	This study
Chs3	Cell wall organization	not attempted	not attempted	[1]
Cwp2	Cell wall organization	+	-	This study
Dan4	Cell wall organization	-	+	This study
Dcw1	Cell wall organization	+	not attempted	This study
Dia1	Other functions	+	+	This study
Ena1	Transport	-	poor expression	This study
Ena2	Transport	+	+	This study
Ena5	Transport	+	-	This study
Ent4	Endocytosis	+	+	This study
Fba1	Gluconeogenesis/glycolysis	+	poor expression	This study
Flo1	Cell wall organization	-	+	This study
Flo5	Cell wall organization	-	+	This study
Fps1	Transport	+	+	This study
Gex1	Transport	not attempted	not attempted	
Gln1	Amino acid biosvnthesis	+	-	This study
Glv1	Amino acid biosynthesis	+	+	This study
Gnd1	Other functions	+	+	This study
Hsp150	Cell wall organization	_	+	This study
Las17	Endocytosis	not attempted	not attempted	[2]
Lvs21	Amino acid biosynthesis	+	+	This study
Msb2	HOG pathway	not attempted	not attempted	[3]
Pbs2	HOG pathway	not attempted	not attempted	[4]
Pfk1	Gluconeogenesis/glycolysis	+	-	This study
Pak1	Gluconeogenesis/glycolysis	+	poor expression	This study
Pmp3	Transport	+	+	This study
Pro3	Amino acid biosynthesis	+	not attempted	This study
Puf2	Nuclear functions	+	+	This study
Rho1	Cell wall organization	not attempted	not attempted	
Sed1	Cell wall organization	+	+	This study
Siz1	Post-translational modifications	_	+	This study
Ste11	HOG pathway	not attempted	not attempted	[5]
Ste50	HOG pathway	not attempted	not attempted	[6]
Tdh3	Gluconeogenesis/glycolysis	+	+	This study
	Actin filament/cytoskeletal			
Tor2	organization	-	+	[7]
	Actin filament/cytoskeletal			
Tpm2	organization	+	-	This study
Ubi4	Post-translational modifications	not attempted	not attempted	[8]
Wsc2	Cell wall organization	+	-	[9]
Yck2	Endocytosis	+	-	This study
YDR008C	Unknown	-	poor expression	This study
YER134C	Other functions	+	+	This study
YER135C	Unknown	-	+	This study
YHL048C-A	Unknown	not attempted	not attempted	
YLR154C-G	Unknown	not attempted	not attempted	
YLR154W-B	Unknown	not attempted	not attempted	
YLR198C	Unknown	not attempted	not attempted	
Yta7	Nuclear functions	-	-	This study

SUPPLEMENTARY REFERENCES

[1] Labedzka K, Tian C, Nussbaumer U, Timmermann S, Walther P, Mueller J, Johnsson N. Sho1p connects the plasma membrane with proteins of the cytokinesis network via multiple isomeric interaction states. J. Cell. Sci. 2012; 125:4103-13.

[2] Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CW, Fields S, Boone C, Cesareni G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 2002; 295(5553);321-4

[3] Cullen PJ, Sabbagh W, Graham E, Irick MM, van Olden EK, Neal C, Delrow J, Bardwell L, Sprague GF. A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev. 2004; 18(14):1695-708.

[4] Posas F, Saito H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 1997; 276(5319):1702-5.

[5] Zarrinpar A, Bhattacharyya RP, Nittler MP, Lim WA. Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol. Cell 2004; 14(6):825-32.

[6] Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C. The genetic landscape of a cell. Science 2010; 327(5964):425-31.

[7] Aguilar PS, Froehlich F, Rehman M, Shales M, Ulitsky I, Olivera-Couto A, Braberg H, Shamir R, Walter P, Mann M, Ejsing CS, Krogan NJ, Walther TC. A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat. Struct. Mol. Biol. 2010; 17(7):901-8.

[8] Kolawa NJ, Sweredoski MJ, Graham RL, Oania R, Hess S, Deshaies RJ. Perturbations to the Ubiquitin Conjugate Proteome in Yeast {triangleup}ubx Mutants Identify Ubx2 as a Regulator of Membrane Lipid Composition. Mol. Cell Proteomics 2013; 12(10):2791-803.

[9] Birkaya B, Maddi A, Joshi J, Free SJ, Cullen PJ. Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth. Eukaryotic Cell 2009; 8(8):1118-33.