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A1. Direct and Indirect causal e↵ects definition and estimation using regression

when the exposure is perfectly measured

We let Y
a

and M
a

denote respectively the values of the outcome and mediator that would have been
observed had the exposure A been set to level a. We let Y

am

denote the value of the outcome that would
have been observed had the exposure, A, and mediator, M , been set to levels a and m, respectively.

The average natural direct e↵ect is then defined by NDE
a,a

⇤(a⇤) = E[Y
aMa⇤ � Y

a

⇤
Ma⇤ ]. The average

natural indirect e↵ect can be defined as NIE
a,a

⇤(a) = E[Y
aMa � Y

aMa⇤ ], which compares the e↵ect
of the mediator at levels M

a

and M
a

⇤ on the outcome when exposure A is set to a. Natural direct
and indirect e↵ects within strata of C = c are then defined by: CDE

a,a

⇤|c(m) = E[Y
am

� Y
a

⇤
m

|c],
NDE

a,a

⇤|c(a
⇤) = E[Y

aMa⇤ � Y
a

⇤
Ma⇤ |c] and NIE

a,a

⇤|c(a) = E[Y
aMa � Y

aMa⇤ |c] respectively.

As discussed in the paper, identification assumptions (i)-(iv) will su�ce to identify these direct and
indirect e↵ects. If we let X ? Y |Z denote that X is independent of Y conditional on Z then these
four identification assumptions can be expressed formally in terms of counterfactual independence as
(i) Y

am

? A|C, (ii) Y
am

? M |{A,C}, (iii) M
a

? A|C, and (iv) Y
am

? M
a

⇤ |C. Assumptions (i) and (ii)
su�ce to identify controlled direct e↵ects; assumptions (i)-(iv) su�ce to identify natural direct and in-
direct e↵ects (Pearl, 2001; VanderWeele and Vansteelandt, 2009). The intuitive interpretation of these
assuptions as described in the text follows from the theory of causal diagrams (Pearl, 2001). Alterna-
tive identification assumptions have also been proposed (Imai 2010a; Hafeman and VanderWeele, 2011).
However, it has been shown that the intuitive graphical interpretation of these alternative assumptions
are in fact equivalent (Shpitser and VanderWeele, 2011). Technical examples can be constructed where
one set of identifiation assumptions holds and another does not, but on a causal diagram corresponding
to a set of non-parametric structural equations, whenever one set of the assumptions among those in
VanderWeele and Vansteelandt (2009), Imai (2010a), and Hafeman and VanderWeele (2011) holds, the
others will also.

Suppose that both the mediator and the outcome are continuous and that the following models fit the
observed data:

M
i

= �0 + �1Ai

+ �
0
2Ci

+ ✏2i (1)

Y
i

= ✓0 + ✓1Ai

+ ✓2Mi

+ ✓3Ai

⇤M
i

+ ✓
0
4Ci

+ ✏1i (2)

Y
i

= ✓†0 + ✓†1Ai

+ ✓†4
0
C
i

+ ✏1i (3)

If the covariates C satisfied the no-unmeasured confounding assumptions (i)-(iv) above, then the aver-
age controlled direct e↵ect and the average natural direct and indirect e↵ects were derived by Vander-
Weele and Vansteelandt (2009).

In particular, if the regression models (1) and (2) are correctly specified and assumptions of no un-
measured confounding of exposure-outcome relationship (i) and no unmeasured confounding of the
mediator-outcome relationship (ii) hold, then we could compute the controlled direct e↵ect as follows:

CDE = E[Y
am

� Y
a

⇤
m

|C = c]
= ✓1(a� a⇤) + ✓3m(a� a⇤).
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If the regression models (1) and (2) are correctly specified and assumptions (i) and (ii) together with
two additional assumptions of (iii) no unmeasured confounding of the exposure-mediator relationship
and (iv) that there is no mediator-outcome confounder that is a↵ected by the exposure hold, then we
could compute the natural direct e↵ects by:

NDE = E[Y
aMa⇤ � Y

a

⇤
Ma⇤ |C = c]

= (✓1 + ✓3�0 + ✓3�1a
⇤ + ✓3�

0
2c)(a� a⇤).

Moreover under the same assumptions we can compute the natural indirect e↵ects by:

NIE = E[Y
aMa � Y

a

⇤
Ma⇤ |C = c]

= (✓2�1 + ✓3�1a)(a� a⇤).

Standard errors for these estimators can ben obtained either via bootstrap procedure or by the delta
method (VanderWeele and Vansteelandt, 2009).

In the absence of exposure-mediator interaction (✓3 = 0) the causal e↵ects estimators are given by

NDE = ✓1(a� a⇤)
NIE = ✓2�1(a� a⇤).

Finally, note that by the property of e↵ect decomposition

NIE = TE �NDE = (✓†1 � ✓1)(a� a⇤).

A2. Description of measurement error mechanism

The misclassification mechanism can be expressed in additive form. Let A denote the true binary
exposure indicating whether the mother is consistently smoking during pregnancy (A = 1) and let A⇤

denote the misclassified exposure, then we can write

A⇤ = A+ U

when the latent variable is binary the measurement error, U , is not normally distributed and can take
values (�1, 0, 1) under certain probabilities and restrictions. Moreover, in the case of misclassification
of a binary variable, Cov(U,A) 6= 0 and Cov(U,A⇤) 6= 0, that is the error must be correlated with both
the true and the observed level of the exposure (Carroll et al. 2006).
The moments of the error can be completely characterized by the knowledge of the prevalence of the
true exposure, the sensitivity and specificity parameters.

Let p⇤ = P (A⇤ = 1), p = P (A = 1), q⇤ = 1� p⇤, q = 1� p. Moreover define the reclassification prob-
abilities ⌘ = P (A = 1|A⇤ = 0) and ⌫ = P (A = 0|A⇤ = 1). Then the moments of the misclassification
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error are given by (Aigner, 1973)

E(U) = ⌫p⇤ � ⌘q⇤, V ar(U) = ⌫p⇤ + ⌘q⇤ � (⌫p⇤ � ⌘q⇤)2, and Cov(A⇤, U) = (⌫ + ⌘)p⇤q⇤.

Note that reclassification probabilities can be re-expressed in terms of misclassification probabilities.
Define the misclassification probabilities as �0 = P (A⇤ = 1|A = 0) and �1 = P (A⇤ = 0|A = 1). Then,

⌫ = P (A = 0|A⇤ = 1) = �0
q

p⇤

⌘ = P (A = 1|A⇤ = 0) = �1
p

q⇤

Note that misclassification probabilities can be expressed in terms of sensitivity (SN = P (A⇤ = 1|A =
1)) and specificity (SP = P (A⇤ = 0|A = 0)). In particular,

�0 = 1� SP

�1 = 1� SN

Finally, note that the prevalence of the observed exposure can be expressed in terms of misclassification
probabilities and true prevalence of the exposure.

p⇤ = (1� �1)p+ �0q

These facts will be used throughout.
To study the impact of exposure misclassification in the assessment of mediation in the context of
epigenetic studies we first assume the absence of unmeasured confounding. We further assume that
the outcome Y and the mediator M as well as the additional covariates C are correctly measured.
We assume that the error is non di↵erential (i.e. Cov(U, Y ) = 0 and Cov(U,M) = Cov(U, C ) = 0).
Moreover, in the context of mediation analysis mediator M and C, which can be either continuous or
categorical variables, can be correlated with the misclassified exposure.
We additionally make the following relaxable assumptions.

• If mother declares to be a smoker during pregnancy, assume that the reporting is correct (PPV =
1, ⌫ = 0, U = 0 ).

• If mother declares to be a non-smoker during pregnancy, assume that the reporting might be
incorrect (U = (�1, 0, 1)).

• If the mother is a non-smoker during pregnancy, assume she will declare that she is a non-smoker
(SP=1).

• No smoking-methylation interaction.

• No measurement error on the confounders.

Given these assumptions the moments of the misclassification error are given by:

E(U) = �⌘q⇤, V ar(U) = ⌘q⇤ � (1 + ⌘q⇤), and Cov(A⇤, U) = ⌘p⇤q⇤.



5

A3. Description of Numerical Study

We conducted a simulation study to assess the finite-sample performance of the näıve mediation anal-
yses and the SIMEX correction approach compared to the true model with correctly measured expo-
sure. In particular, we investigated the relative bias, variance, and Type I error rates of the test for
H0 : NIE = 0 and the bias in the estimates of NDE, NIE and TE. We considered two scenarios (I)
exposure potentially misclassified due to mis-reporting; (II) exposure potentially misclassified when a
cotinine is used to classify exposure status. The scenarios mimic the recent study of the e↵ect of ma-
ternal smoking exposure on birth weight, potentially mediated by methylation of CpG sites by Küpers
et al. (2015).
Scenario I: A total of n = 500 observations are generated for each simulation. The continuous mediator
(DNA-methylation) M

i

for i = 1, ..., n is generated from the true model given in equation (1). The con-
tinuous outcome (birth weight) Y

i

for i = 1, ..., n is generated from the true model given in equation (2).
We generate three confounders, namely maternal age at conception (C1 ⇠ N(30, 3), maternal weight
at conception (C2 ⇠ N(24, 3.5) and a binary indicator for whether mother ended the studies before
college (C3 ⇠ Be(0.7)). The binary exposure A

i

, smoking status during pregnancy follows a Bernoulli
distribution conditionally on the confounders (A Be(p

a

), p
a

= exp(�2� 0.3C1 + 0.5C2 + 0.45C3)/(1 +
exp(�2� 0.3C1 + 0.5C2 + 0.45C3). The misclassified exposure A⇤ is generated assuming SP = 1 (i.e.
if the smoking exposure is absent the mother will correctly report the smoking status) and SN in the
range (0.6, 1). For the simulations of bias, we assume a normally distributed mediator and outcome and
set the mediator regression parameters to �0 = 0.65, �1 = �0.15, �

0
2 = (�0.01, 0.01, 0.01),�2

M

= 0.1, and
the outcome regression parameters to ✓0 = 3685,✓1 = �150, ✓2 = 300, ✓

0
4 = (�10,�200, 10), �2

Y

= 300
we run 5, 000 simulations for each setting. For the bias simulations we consider two settings under the
null hypothesis of no indirect e↵ect and under the alternative hypothesis. In both settings methylation
is a strong biomarker for the exposure �1 6= 0). Therefore, under the null hypothesis of no indirect e↵ect
H0 : NIE = 0 is equivalent to ✓2 = 0. For simulations of Type I error rates, we consider two cases.
In the first case the indirect e↵ect is null because of no e↵ect of methylation on birth weight (✓2 = 0)
and no e↵ect of smoking status on methylation (�1 = 0). In the second case we allow for smoking to
a↵ect methylation (✓2 = 0, �1 6= 0) and therefore methylation is a biomarker for the exposure. We
consider 10,000 simulations for each setting to obtain an accurate estimate of the rate of false positives.
Scenario II: A continuous variable, cotinine at gestational week 18, is generated following results from
recent studies (Joubert et al., 2014; Kvalvik et al., 2012). From smoking status generated under sce-
nario I, cotinine level for non-smokers follows a normal distribution conditionally on the confounders
(A

nonsmoker

⇠ N(µ
nonsmoker

, 2.5), µ
nonsmoker

= 2.5 � 0.1C1 + 0.5C2 + 0.21C3). Cotinine distribu-
tion for smokers is generated from a negative skewed normal distribution (A

smoker

⇠ N(µ
smoker

, 200),
µ
smoker

= (500� 0.1C1 + 0.5C2 + 0.21C3), sk = 0.65). The smoking exposure status A⇤ is obtained by
dichotomizing the cotinine measure at the cut-o↵ of 30 nmol/l and 60 nmol/l (Kvalvik et al., 2012).
We generate a normally distributed mediator and outcome and set the mediator regression parameters
as described in the previous scenario.

A4. Bias of the linear regressions for birthweight in the presence of misclassified

exposure

Suppose that A is subject to non-di↵erential misclassification and measured as A⇤ and that we fit the
observed continuous outcome regression model where A is replaced by A⇤. We study the asymptotic
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limit of the naive estimators of the exposure, mediator and the exposure-mediator interaction coe�-
cients and we denote them by ✓⇤1, ✓

⇤
2 and ✓⇤3 respectively.

Let (✓̂⇤1, ✓̂
⇤
2, ✓̂

⇤
3) be the naive maximum likelihood estimators of the outcome regressors if A is replaced

by A⇤. Let (✓1, ✓2, ✓3) be the true parameters of the regressors. Let U denote the misclassification error
taking values (�1, 0, 1) and MU = M ⇥U ; let X = (A,M,AM,C) and X⇤ = (A⇤,M,A⇤M,C) denote
the matrix of the true and observed centered covariates respectively. Let �⇤ = E[X⇤0X⇤] denote the
variance-covariance matrix of the observed centered covariates and �y

i,j

denote an element of the inverse
of the variance-covariance matrix.
For a continuous outcome modeled using the linear regression the asymptotic limit of the outcome
regression parameters in the presence of exposure-mediator interaction is given by,

✓⇤1 = ✓1 � ✓1(�
y

A

⇤
,A

⇤Cov(A⇤, U) + �y
A

⇤
,A

⇤
M

Cov(A⇤M,U)) +

� ✓3(�
y

A

⇤
,A

⇤E(A⇤MU) + �y
A

⇤
,M

E(M,MU) + �y
A

⇤
,A

⇤
M

E(A⇤M,MU) + �yA⇤,C
0
E(CMU))

✓⇤2 = ✓2 � ✓1(�
y

A

⇤
,M

Cov(A⇤, U) + �y
M,A

⇤
M

Cov(A⇤M,U)) +

� ✓3(�
y

M,A

⇤E(A⇤MU) + �y
M,M

E(M,MU) + �y
M,A

⇤
M

E(A⇤M,MU) + �yM,C

0
E(CMU))

✓⇤3 = ✓3 � ✓1(�
y

A

⇤
,A

⇤
M

Cov(A⇤, U) + �y
A

⇤
M,A

⇤
M

Cov(A⇤M,U)) +

� ✓3(�
y

A

⇤
M,A

⇤E(A⇤MU) + �y
A

⇤
M,M

E(M,MU) + �y
A

⇤
M,A

⇤
M

E(A⇤M,MU) + �yA⇤M,C

0
E(CMU))

Note that the asymptotic limits of the naive outcome regression parameters estimators are complex
functions of the true outcome regression parameters, the covariance between the observed covariates
and the misclassification error, and the correlation between the covariates. In the presence of exposure-
mediator interaction, it is not clear the direction that the asymptotic bias of the naive outcome regres-
sion parameters could take.

In the absence of exposure-mediator interaction and for centered covariates the asymptotic limit of the
regression parameters is given by

plim✓⇤1 = ✓1 � ✓1�
y

A

⇤
,A

⇤Cov(A⇤, U) = ✓1 � ✓1�
y

A

⇤
,A

⇤(⌫ + ⌘)p⇤q⇤

plim✓⇤2 = ✓2 � ✓1�
y

A

⇤
,M

Cov(A⇤, U) = ✓2 � ✓1�
y

A

⇤
,M

(⌫ + ⌘)p⇤q⇤.

Proof

Let ✓̂
⇤
be the vector of MLE estimators of the parameters from the outcome regression. Rewrite the

outcome regression (2.2) in terms of M⇤ exploiting the assumption of additive measurement error

Y = ✓0 + ✓1(a
⇤ � u) + ✓2m+ ✓3(a

⇤ � u)m+ ✓
0
4c+ ✏

= ✓0 + ✓1a
⇤ + ✓2m+ ✓3a

⇤m+ ✓
0
4c+ ✏� ✓1u� ✓3⇠

= ✓0 + ✓1a
⇤ + ✓2m+ ✓3a

⇤m+ ✓
0
4c+ ✏� ✓1u� ✓3⇠

= ✓⇤0 + ✓⇤1a
⇤ + ✓⇤2m+ ✓⇤3a

⇤m+ ✓⇤4
0
c+ ✏⇤
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with ⇠ = m⇥ u.
Let X⇤ = (A⇤,M,A⇤M,C)T . Assume covariates are centered. Then the vector of MLE estimators of
the outcome linear regression parameters is given by,

✓̂⇤ = (X⇤0X⇤)�1X
0⇤Y

= (X⇤0X⇤)�1X⇤0(X⇤✓⇤ + ✏⇤)

= (X⇤TX⇤)�1X⇤T (X⇤✓⇤ + ✏� ✓1u� ✓3⇠)

By rearranging the equation and taking the limit we obtain obtain a formula for the asymptotic bias
of the outcome regression parameters estimators when M is replaced by M⇤

ABIAS(✓̂
⇤
) = �⌃�1

x

⇤
x

⇤{✓1⌃x

⇤
u

+ ✓3⌃
x

⇤
⇠

}

where,

⌃�1
x

⇤
x

⇤ = plim(
(X⇤TX⇤)�1

n�1
)

⌃
x

⇤
u

= plim(
X⇤Tu

n
) = (E(A⇤u), 0, E(A⇤Mu), 0, ..., 0)T

⌃
x

⇤
⇠

= plim(
X⇤T ⇠

n
) = (E(A⇤⇠), E(M⇠), E(A⇤M⇠), E(C1⇠), ..., E(C

K

⇠))T

The elements of the vectors ⌃
x

⇤
u

and ⌃
x

⇤
⇠

depend upon the specification of sensitivity and specificity
parameters, the marginal probability of the latent mediator and the joint probability of the mediator
and the exposure.
We can rewrite the asymptotic bias as

ABIAS(✓̂
⇤
) = �✓1 ⇥

0

BBB@

�y
A

⇤
,A

⇤E(A⇤U) + �y
A

⇤
,A

⇤
M

E(A⇤MU)

�y
A

⇤
,M

E(A⇤U) + �y
M,A

⇤
M

E(A⇤MU)

�y
A

⇤
,A

⇤
M

E(A⇤U) + �y
A

⇤
M,A

⇤
M

E(A⇤MU)

�yA⇤,CE(A⇤U) + �yC,A⇤ME(A⇤MU)

1

CCCA
+

�✓3 ⇥

0

BBB@

�y
A

⇤
,A

⇤E(A⇤MU) + �y
A

⇤
,M

E(M,MU) + �y
A

⇤
,A

⇤
M

E(A⇤M,MU) + �yA⇤,C
0
E(CMU)

�y
M,A

⇤E(A⇤MU) + �y
M,M

E(M,MU) + �y
M,A

⇤
M

E(A⇤M,MU) + �yM,C
0
E(CMU)

�y
A

⇤
M,A

⇤E(A⇤MU) + �y
A

⇤
M,M

E(M,MU) + �y
A

⇤
M,A

⇤
M

E(A⇤M,MU) + �yA⇤M,C
0
E(CMU)

�yC,A⇤E(A⇤MU) + �yC,ME(M,MU) + �yC,A⇤ME(A⇤M,MU) + �yC,C
0
E(CMU)

1

CCCA

where �y·A⇤ , �
y

·M , �y·A⇤
M

and �y·C are columns of ⌃�1
x

⇤
1,x

⇤
1
.

From the asymptotic bias formulae given above the probability limit of ✓̂⇤1, ✓̂
⇤
2, and ✓̂⇤3 can be easily

derived as

plim✓⇤1 = ✓1 � ✓1(�
y

A

⇤
,A

⇤E(A⇤U) + �y
A

⇤
,A

⇤
M

E(A⇤MU)) +



8

� ✓3(�
y

A

⇤
,A

⇤E(A⇤MU) + �y
A

⇤
,M

E(M,MU) + �y
A

⇤
,A

⇤
M

E(A⇤M,MU) + �yA⇤,C
0
E(CMU))

plim✓⇤2 = ✓2 � ✓1(�
y

A

⇤
,M

E(A⇤U) + �y
M,A

⇤
M

E(A⇤MU)) +

� ✓3(�
y

M,A

⇤E(A⇤MU) + �y
M,M

E(M,MU) + �y
M,A

⇤
M

E(A⇤M,MU) + �yM,C

0
E(CMU))

plim✓⇤3 = ✓3 � ✓1(�
y

A

⇤
,A

⇤
M

E(A⇤U) + �y
A

⇤
M,A

⇤
M

E(A⇤MU)) +

� ✓3(�
y

A

⇤
M,A

⇤E(A⇤MU) + �y
A

⇤
M,M

E(M,MU) + �y
A

⇤
M,A

⇤
M

E(A⇤M,MU) + �yA⇤M,C

0
E(CMU))

The probability limit for the outcome regression coe�cients in absence of exposure-mediator interaction
is easily obtained setting ✓3 = 0 and setting to zero all the covariance terms that involve the exposure-
mediator interaction.

A5. Bias of the linear regressions for methylation in the presence of misclassified

exposure

Suppose that A is subject to non-di↵erential misclassification and measured as A⇤ and that we fit the
observed continuous mediator regression model where A is replaced by A⇤. We study the asymptotic
limit of the naive estimators of the exposure, mediator and the exposure-mediator interaction coe�cients
and we denote them by �⇤

0 , �
⇤
1 and �⇤

2 respectively.
Let (�̂⇤

0 , �̂
⇤
1 , �̂

⇤
2) be the naive maximum likelihood estimators of the outcome regressors if A is replaced

by A⇤. Let (�⇤
0 , �

⇤
1 , �

⇤
2) be the true parameters of the regressors. Let U denote the misclassification

error taking values (�1, 0, 1); let X = (1, A,C) and X⇤ = (1, A⇤,C) denote the matrix of the true and
observed centered covariates respectively. Let �⇤ = E[X⇤0X⇤] denote the variance-covariance matrix
of the observed centered covariates and �m

i,j

denote an element of the inverse of the variance-covariance
matrix.
For a continuous mediator modeled using the linear regression the asymptotic limit of the mediator
regression parameters is given by,

plim�⇤
0 = �0 � �1�

m

1,A⇤Cov(A⇤, U)

plim�⇤
1 = �1 � �1�

m

A

⇤
,A

⇤Cov(A⇤, U)

plim�⇤
2 = �2 � �1�

m

C ,A

⇤Cov(A⇤, U).

Proof

The proof follows from the previous section.

A6. Asymptotic bias of direct and indirect e↵ects naive estimators in the absence

of exposure-mediator interaction

The asymptotic bias of naive direct and indirect e↵ect estimators in the presence of misclassified
exposure can be easily derived as:

ABIAS(\NDE
⇤
) = ✓⇤1 � ✓1 = �✓1�

y

A

⇤
,A

⇤Cov(A⇤, U)
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Result 1: By the properties of variance-covariance matrices �y
A

⇤
,A

⇤ > 0 and by the assumptions
Cov(A⇤, U) = ⌘p⇤q⇤ > 0. Therefore, the natural direct e↵ect is under-estimated.

ABIAS([NIE
⇤
) = ✓⇤2�

⇤
1 � ✓2�1 = (✓2 � ✓1�

y

A

⇤
,M

Cov(A⇤, U))(�1 � �1�
m

A

⇤
,A

⇤Cov(A⇤, U))� ✓2�1

= �✓2�1�
m

A

⇤
,A

⇤Cov(A⇤, U)� ✓1�1�
y

A

⇤
,M

Cov(A⇤, U) + ✓1�1�
y

A

⇤
,M

Cov(A⇤, U)�m
A

⇤
,A

⇤Cov(A⇤, U)

= �✓2�1�
m

A

⇤
,A

⇤Cov(A⇤, U) + ✓1�1�
y

A

⇤
,M

Cov(A⇤, U)(�m
A

⇤
,A

⇤Cov(A⇤, U)� 1)

= Cov(A⇤, U)�1{�✓2�
m

A

⇤
,A

⇤ + ✓1�
y

A

⇤
,M

(�m
A

⇤
,A

⇤Cov(A⇤, U)� 1)}

The indirect e↵ect could be biased in either directions.
The asymptotic bias could also be derived using the property of e↵ect decomposition.

ABIAS([NIE
⇤
) = (✓†⇤1 � ✓⇤1)� (✓†1 � ✓1) = [(✓†1 � ✓†1�

y

†
A

⇤
,A

Cov(A⇤, U))� (✓1 � ✓1�
y

A

⇤
,A

Cov(A⇤, U))]� (✓†1 � ✓1)

= �Cov(A⇤, U)(TE ⇥ �y†
A

⇤
,A

⇤ �NDE ⇥ �y
A

⇤
,A

⇤)

Result 2: if ✓2�
m

A

⇤
,A

⇤ < ✓1�
y

A

⇤
,M

(�m
A

⇤
,A

⇤Cov(A⇤, U)� 1) then the indirect e↵ect is over-estimated.

Result 3: if TE ⇥ �y†
A

⇤
,A

⇤ < NDE ⇥ �y
A

⇤
,A

⇤ then the indirect e↵ect is over-estimated.

Result 4: Under the null hypothesis of no direct e↵ect in the presence of exposure misclassification the
direct e↵ect is unbiased.

Result 5: Under the null hypothesis of no e↵ect of the exposure on the mediator in the presence of
exposure misclassification the indirect e↵ect is unbiased.

Result 6: Under the null hypothesis of no e↵ect of the mediator on the outcome in the presence of
exposure misclassification the indirect e↵ect is biased.

A7. Type I error rate in the absence of exposure-mediator interaction

In the absence of exposure-mediator interaction, for the size of the naive test for indirect e↵ect to be
correct we required that

1. [NIE
⇤
= 0

2. the naive variance, V ar([NIE
⇤
) = �̂2

1 �̂
2
✓2
+ ✓̂22�̂

2
�1

is equal to the true variability of the naive MLE

estimator given the data measured with error, V ar([NIE
⇤
|X⇤).
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Based on our investigation of the bias in the previous section we know that condition (i) will be violated
unless �1 = 0. Moreover, under exposure misclassification the type I error of the test for ✓2 is not in
general preserved.
Note, however that the of the test for �1 and ✓1 is preserved, therefore a test of no direct e↵ect is in
general preserved in the absence of exposure-mediator interaction.

Result 7: In general in the absence of exposure-mediator interaction and in the presence of exposure
misclassification, the naive variance estimator of the indirect e↵ect will not respect the true variability
of the naive MLE’s. The Type I error of the naive test will be inflated, leading to an increased rate of
spurious results.

Proof

Given V ar(�̂1
⇤
) = �⇤

�1
X⇤TX⇤ the type one error is preserved if

V ar( b�1
⇤
|X⇤) = �⇤

�1
X⇤TX⇤

where X⇤ = (A⇤, C). By the property of iterated expectations:

V ar(b�⇤|X⇤) = E[V ar(M
i

|X,X⇤)|X⇤] + V ar[E(M
i

|X,X⇤)|X⇤]
= E[�|X⇤] + V ar[�X|X⇤]
= � + V ar(�0 + �1A+ �2C|(A⇤, C))
= � + V ar(�1A|(A⇤, C)) = � + �2

1V ar(A|(A⇤, C)) = �⇤
�1
X⇤TX⇤

The type one error for �1 is preserved under the null hypothesis of �1 = 0.

Given V ar(✓̂2
⇤
) = �⇤

✓2
X⇤TX⇤ the type one error is preserved if

V ar( b✓2
⇤
|X⇤) = �⇤

✓2
X⇤TX⇤

where X⇤ = (A⇤,M,C). By the property of iterated expectations:

V ar(b✓⇤|X⇤) = E[V ar(Y
i

|X,X⇤)|X⇤] + V ar[E(Y
i

|X,X⇤)|X⇤]
= E[�|X⇤] + V ar[✓X|X⇤]
= � + V ar(✓0 + ✓1A+ ✓2M + ✓4C|(A⇤,M,C))
= � + V ar(✓1A|(A⇤,M,C)) = � + ✓21V ar(A|(A⇤,M,C))

In general, this variance will not be constant for all i = 1, .., n because the conditional variance could
depend on M

i

and C
i

. When the variance is not constant, this equation will not simplify and will not
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be equal to �⇤
✓2
X⇤TX⇤. Thus, in general the Type I error rates will not be preserved. Note, however,

that the type one error for ✓2 is preserved under the null hypothesis of no direct e↵ect (i.e. H0 : ✓1 = 0).
Moreover, the size of a test for direct e↵ect is preserved under the null of no direct e↵ect.



A8. Commented Code of Mediation Analysis in MoBa Cohort 
################################################################	
###	Mediation	Analysis	#########################################	
################################################################	
#observed	exposure:		
Astar	<-	phenotypes$mosmkyn	#	self-reported	smoking	
#	Astar	<-	phenotypes$smkcot	#	cotinine-based	smoking	
#	Astar	<-	phenotypes$smk2cot	#	combined	smoking	
	
#mediator	
tdat	<-	t(betas(mldat_gfi1))	#	methylation	beta	values	
#outcome	
Y	<-	phenotypes$vekt	#	birth	weight	
#confounders	
C1	<-	phenotypes$kjonn	#	child's	sex	
C2	<-	phenotypes$MORS_ALDER	#	maternal	age	
C3	<-	phenotypes$meducation	#	maternal	education	
C4	<-	phenotypes$gestAge	#	gestational	age	
C5	<-	phenotypes$parity	#	parity	
C6	<-	phenotypes$case	#	selection	
C7	<-	phenotypes$bmi_pre	#	pre-pregnancy	bmi	

Naïve Code 
f.mediation.naive.parallel	<-		
				function(methcol,M,Astar,Y,C1,C2,C3,C4,C5,C6,C7,nboot=500){	
					
								Mi	<-	M[,methcol]	
					
								data	<-	as.data.frame(cbind(Astar,Mi,Y,	
												C1,C2,C3,C4,C5,C6,C7))	
	
								#objects	to	save	
								nde_naive	<-	rep(NA,nboot)	
								nie_naive_prod	<-	rep(NA,nboot)	
								pm_naive_prod	<-	rep(NA,nboot)	
									
								for	(i	in	1:nboot){	
	
												if(is.wholenumber(i/(nboot/10)))	{	#	print	progress	
																cat("nboot=",i,"	;	",sep="")	
																}	
												set.seed(1234+i)	
													
												databoot	<-	data[sample(nrow(data),replace=TRUE),]	
												databoot$Astar	<-	as.factor(databoot$Astar)	
													
												#linear	outcome	regression	
												regym	<-	glm(Y~Astar+Mi+C1+C2+C3+C4+C5+C6+C7,	



																data=databoot,x=TRUE,y=TRUE)	
													
												regy	<-	glm(Y~Astar+C1+C2+C3+C4+C5+C6+C7,	
																data=databoot,x=TRUE,y=TRUE)	
													
												#linear	mediator	regression	
												regm	<-	glm(Mi~Astar+C1+C2+C3+C4+C5+C6+C7,	
																data=databoot,x=TRUE,y=TRUE)	
													
												#naive	effects	
												nde_naive[i]	<-	regym$coeff[2]	
												nie_naive_prod[i]	<-	regym$coeff[3]*regm$coeff[2]	
												pm_naive_prod[i]	<-	nie_naive_prod[i]/	
																(nie_naive_prod[i]+nde_naive[i])	
								}	
								return(list(Naive=data.frame(nde_naive=nde_naive,	
												nie_naive_prod=nie_naive_prod,	
												pm_naive_prod=pm_naive_prod)))	
}	
	
B=500	#	number	of	bootstraps	
detectCores()	
system.time(	
				results	<-	mclapply(setNames(seq_len(ncol(tdat)),	dimnames(tdat)[[2
]]),		
								f.mediation.naive.parallel,M=tdat,Astar,Y,C1,C2,C3,C4,C5,C6,C7,	
								nboot=B,mc.cores=detectCores())	
)	
	
f.CI.quantile	<-	function(x,simex=FALSE...){	
				#	Naive	
				ci_naive	<-	t(apply(x$Naive,2,quantile,probs=c(0.5,0.025,0.975),...
))	
					
				#	Simex	
				if(simex=TRUE){	
								ci_simex	<-	t(apply(x$Simex,2,quantile,probs=c(0.5,0.025,0.975)
,...))	
								out	<-	list(Naive=ci_naive,Simex=ci_simex)	
				}	else	{	
								out	<-	list(Naive=ci_naive)	
				}	
				return(out)	
}	
	
conf_int	<-	lapply(results,f.CI.quantile,simex=FALSE,na.rm=T)	

 

 



SIMEX Code 
specificity	<-	1	
(sensitivity	<-	seq(0.6,0.9,0.1))	
B=500	#	number	of	bootstraps	
	
f.mediation.simex.parallel	<-		
				function(methcol,M,Astar,Y,C1,C2,C3,C4,C5,C6,C7,	
								sn=0.8,sp=1,nboot=500){	
					
								Mi	<-	M[,methcol]	
	
								data	<-	as.data.frame(cbind(Astar,Mi,Y,C1,C2,C3,C4,C5,C6,C7))	
					
								#objects	to	save	
								nde_naive	<-	rep(NA,nboot)	
								nie_naive_prod	<-	rep(NA,nboot)	
								pm_naive_prod	<-	rep(NA,nboot)	
									
								nde_simex	<-	matrix(nrow=nboot,ncol=length(sn))	
								nie_simex_prod	<-	matrix(nrow=nboot,ncol=length(sn))	
								pm_simex_prod	<-	matrix(nrow=nboot,ncol=length(sn))	
									
								for	(i	in	1:nboot){	
					
												if(is.wholenumber(i/(nboot/10)))	{	#	print	progress	
																cat("nboot=",i,"	;	",sep="")	
																}	
												set.seed(1234+i)	
													
												databoot	<-	data[sample(nrow(data),replace=TRUE),]	
												databoot$Astar	<-	as.factor(databoot$Astar)	
													
												#linear	outcome	regression	
												regym	<-	glm(Y~Astar+Mi+C1+C2+C3+C4+C5+C6+C7,	
																data=databoot,x=TRUE,y=TRUE)	
													
												regy	<-	glm(Y~Astar+C1+C2+C3+C4+C5+C6+C7,	
																data=databoot,x=TRUE,y=TRUE)	
													
												#linear	mediator	regression	
												regm	<-	glm(Mi~Astar+C1+C2+C3+C4+C5+C6+C7,	
																data=databoot,x=TRUE,y=TRUE)	
													
												#naive	effects	
												nde_naive[i]	<-	regym$coeff[2]	
												nie_naive_prod[i]	<-	regym$coeff[3]*regm$coeff[2]	
												pm_naive_prod[i]	<-	nie_naive_prod[i]/	
																(nie_naive_prod[i]+nde_naive[i])	



													
												for	(k	in	1:length(sn)){	
					
																###SIMEX	PROCEDURE###	
																Pi	<-	matrix(data	=	c(sp,	1-sp,	1-sn[k],	sn[k]),		
																				nrow	=	2,	byrow	=	FALSE)	
																dimnames(Pi)	<-	list(levels(databoot$Astar),		
																				levels(databoot$Astar))	
																regy_simex	<-	mcsimex(regy,mc.matrix=Pi,	
																				SIMEXvariable="Astar")	
																regym_simex	<-	mcsimex(regym,mc.matrix=Pi,	
																				SIMEXvariable="Astar")	
																regm_simex	<-	mcsimex(regm,mc.matrix=Pi,	
																				SIMEXvariable="Astar")	
																	
																#corrected	effects	
																nde_simex[i,k]	<-	regym_simex$coeff[2]	
																nie_simex_prod[i,k]	<-		
																				regym_simex$coeff[3]*regm_simex$coeff[2]	
																pm_simex_prod[i,k]	<-	nie_simex_prod[i,k]/	
																				(nie_simex_prod[i,k]+nde_simex[i,k])	
												}	
								}	
								colnames(nde_simex)	<-	paste("nde_simex_",sn,sep="")	
								colnames(nie_simex_prod)	<-	paste("nie_simex_prod_",sn,sep="")	
								colnames(pm_simex_prod)	<-	paste("pm_simex_prod_",sn,sep="")	
									
								return(list(Naive=data.frame(nde_naive=nde_naive,	
																nie_naive_prod=nie_naive_prod,pm_naive_prod=pm_naive_pr
od),	
												Simex=data.frame(nde_simex,nie_simex_prod,pm_simex_prod)))	
}	
	
detectCores()	
system.time(	
				results	<-	mclapply(setNames(seq_len(ncol(tdat)),	dimnames(tdat)[[2
]]),		
								f.mediation.simex.parallel,M=tdat,Astar,Y,C1,C2,C3,C4,C5,C6,C7,	
								sn=sensitivity,sp=specificity,nboot=B,mc.cores=detectCores())	
)	
	
f.descriptives<-function(x,...){	
				c(mean=mean(x,...),quantile(x,...))	
}	
	
f.CI.quantile	<-	function(x,simex=FALSE,...){	
				#	Naive	
				ci_naive	<-	t(apply(x$Naive,2,f.descriptives,...))	
					



				#	Simex	
				if(simex==TRUE){	
								ci_simex	<-	t(apply(x$Simex,2,f.descriptives,...))	
								out	<-	list(Naive=ci_naive,Simex=ci_simex)	
				}	else	{	
								out	<-	list(Naive=ci_naive)	
				}	
				return(out)	
}	
	
conf_int	<-	lapply(results,f.CI.quantile,simex=TRUE,	
				na.rm=T,probs=c(0.5,0.025,0.975))	
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A9. Supplementary Tables

Table S1: Bias and variance of SIMEX-corrected estimates of natural direct e↵ect
(NDE), natural indirect e↵ect (NIE), total e↵ect (TE), proportion mediated (PM). Mis-
classification setting assumes perfect specificity and SN = (0.90, 0.925, 0.95, 0.975).

SN = 0.70 SN = 0.80 SN = 0.90 SN = 0.95

H1 SIMEX Rel. Bias (var) Rel. Bias (var) Rel. Bias (var) Rel. Bias (var)

TE -0.20 (1746) -0.12 (1594) -0.03 (1420) -0.00 (1268)
NDE -0.30 (2164) -0.15 (2168) -0.05 (2076) -0.00 (1847)
NIE 0.03 (285) 0.03 (366) 0.03 (462) 0.00 (473)
PM 0.45 (0.03) 0.28 (0.02) 0.10 (0.01) 0.03 (0.01)

H0 SIMEX Rel. Bias (var) Rel. Bias (var) Rel. Bias (var) Rel. Bias (var)

TE -0.20 (1690) -0.12 (1569) -0.03 (1399) -0.00 (1252)
NDE -0.30(2164) -0.18 (2168) -0.05 (2076) -0.01 (1847)
NIE -12/0 (271) -8.8/0 (363) -3.2/0 (455) -1.2/0 (468)
PM 0.13/0 (0.09) 0.08/0 (0.04) 0.03/0 (0.02) 0.01 (0.02)
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Table S2. Linear regression of cotinine-augmented self-reported sustained maternal smoking 
during pregnancy (i.e. potentially re-classified based on additional cotinine information) in 
relation to infant birth weight before and after adjustment for effects of maternal smoking on 
methylation at three CpGs in the GFI1 gene *  

	
 Coefficienta SE P-value 
No mediator (CpG) adjustment -116.04 40.79 0.0045 
Adjusting for cg09935388 -90.04 44.37 0.0427 
Adjusting for cg12876356 -102.14 42.78 0.0171 
Adjusting for cg14179389 -108.87 43.17 0.0118 
	
a regression coefficient interpretable as difference in birthweight, in grams between offspring of 
smoking mothers relative to nonsmokers. 

* Linear regression model includes the following covariates: gestational age, child gender, 
maternal age, maternal education, parity, selection group, and maternal pre-pregnancy BMI. The 
beta is in units of grams of birth weight.  
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Table S3 Estimates of natural direct (NDE) and natural indirect effects (NIE) of sustained 
maternal smoking, assessed by self-report augmented by cotinine, on birthweight and proportion 
mediated (PM) by three methylation cites (CpGs) in GFI1 in both naïve analyses and after 
SIMEX correction for measurement error. The SIMEX corrected values are presented for four 
different values for sensitivity (SN) of the self-reported maternal smoking exposure variable: 0.6, 
0.70,0.80,0.90 where specificity=1. Median and 95% percentile confidence intervals for the 
bootstrap estimates are in units of grams of birth weight 

CpG SN NDE (CI) NIE (CI) PM  
cg09935388 Naïve -89.4 (-179.5,2.6) -27.8 (-59.7,5.1) 0.24 

 0.6 -106.9 (-216.4,8.1) -18.7 (-60.4,21.7) 0.15 
 0.7 -102.1 (-205.9,16.2) -21.5 (-60.8,17.6) 0.17 
 0.8 -97.9 (-195.5,4.2) -23.9 (-59.6,11.9) 0.20 
 0.9 -92.2 (-184.0,-0.9) -25.7 (-59.1,8.3) 0.22 

cg12876356 Naïve -101.3 (-185,-15.3) -13.9 (-37.4,10.7) 0.12 
 0.6 -118.5 (-209.3,-14.3) -8.3 (-36.5,20.6) 0.06 
 0.7 -111.9 (-211.1,-9.8) -9.9 (-35.8,18.1) 0.08 
 0.8 -111.4 (-201.1,-14.8) -11.2 (-36.3,14.7) 0.09 
 0.9 -104.7 (-192.0,-14.2) -12.8 (-37.3,13.0) 0.11 

cg14179389 Naïve -108.3 (-191.7,-13.9) -8.3 (-36.4,17.5) 0.07 
 0.6 -125.8 (-223.6,-14.5) -0.7 (-34.0,31.3) 0.00 
 0.7 -119.8 (-213.7,-12.5) -2.6 (-34.9,26.9) 0.02 
 0.8 -115.0 (-212.1,-12.4) -4.9 (-36.5,23.4) 0.04 
 0.9 -112.2 (-200.6,-13.9) -6.7 (-36.2,20.0) 0.06 
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Table S4 Linear regression of self-report of any maternal smoking during pregnancy in relation to 
infant birth weight before and after adjustment for effects of maternal smoking on methylation at 
three CpGs in the GFI1 gene* 

 Coefficienta SE P-value 
No mediator (CpG) adjustment -39.55 30.94 0.2014 
Adjusting for cg09935388 -17.46 32.48 0.5910 
Adjusting for cg12876356 -26.63 31.94 0.4047 
Adjusting for cg14179389 -31.04 31.83 0.3298 
 
a regression coefficient interpretable as difference in birthweight, in grams between offspring of 
smoking mothers relative to nonsmokers. 

* Linear regression model includes the following covariates: gestational age, child gender, 
maternal age, maternal education, parity, selection group, and maternal pre-pregnancy BMI. The 
beta is in units of grams of birth weight.  
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Table S5: Estimates of  natural direct (NDE) and natural indirect effects (NIE) of any maternal 
smoking, assessed by self-report,  on birthweight and proportion mediated (PM) by three 
methylation cites (CpGs) in GFI1 in naïve analyses and after SIMEX correction for measurement 
error. The SIMEX corrected values are presented for four different values for sensitivity (SN) of 
the self-reported maternal smoking exposure variable: 0.6, 0.70,0.80,0.90 where specificity=1. 
Median and 95% percentile confidence intervals for the bootstrap estimates are in units of grams 
of birth weight.  

	
CpG SN NDE (CI) NIE (CI) PM  

cg09935388 Naïve -16.7 (-84.6,52.9) -23.3 (-41.4,-2.9) 0.58 
 0.6 -21.1 (-112.1,64.6) -26.8 (-51.6,-0.9) 0.55 
 0.7 -20.7 (-103.8,65.4) -25.8 (-48.0,-1.7) 0.55 
 0.8 -18.7 (-96.0,63.5) -25.0 (-46.1,-2.1) 0.57 
 0.9 -18.3 (-90.0,54.3) -24.1 (-43.4,-2.8) 0.57 

cg12876356 Naïve -25.9 (-91.3,42.8) -13.1 (-27.0,2.1) 0.33 
 0.6 -31.8 (-117.1,56.4) -14.4 (-32.1,5.9) 0.31 
 0.7 -31.6 (-113.5,56.6) -13.9 (-30.6,4.8) 0.31 
 0.8 -29.1 (-106.2,47.3) -13.5 (-28.6,3.7) 0.32 
 0.9 -27.5 (-99.9,47.4) -13.3 (-28.2,3.0) 0.32 

cg14179389 Naïve -30.9 (-99.3,39.9) -8.8 (-24.6,4.1) 0.22 
 0.6 -38.8 (-124.1,57.4) -9.0 (-29.8,8.5) 0.19 
 0.7 -37.9 (-118.6,49.3) -8.9 (-28.8,6.7) 0.19 
 0.8 -34.2 (-110.2,46.8) -9.0 (-27.2,5.7) 0.21 
 0.9 -33.1 (-103.2,45.4) -8.8 (-25.8,4.7) 0.21 
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A10. Supplementary Figures

Figure S1: Bias analysis for natural direct e↵ect (nde), natural indirect e↵ect (nie),
total e↵ect (te), proportion mediated (pm) under the alternative hypothesis (A: �1 6= 0,
✓2 6= 0) and under the null hypothesis (B: �1 6= 0, ✓2 = 0)
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Figure S2: Bias analysis for �1, ✓1, ✓2 under the alternative hypothesis (A: �1 6= 0,
✓2 6= 0) and under the null hypothesis (B: �1 6= 0, ✓2 = 0)
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