% Enter the response frequency data. % Column 1 is Sure Old and Column 20 is Sure New. % Row 1 is Low Frequency Words and Row 2 is High Frequency words. targf = [77 18 13 8 4 3 5 4 8 7 4 5 3 7 1 5 5 7 11 5; 57 25 13 9 9 3 7 8 13 11 8 11 5 2 4 3 5 6 0 1]; luref = [3 2 8 4 4 3 1 4 11 8 15 15 6 7 6 11 14 28 33 17; 5 9 6 8 4 5 7 4 11 12 20 13 10 7 8 5 15 17 28 6]; % Define the model to fit to the data model = 'dpsd'; % Fit the DPSD model to the data parNames = {'Ro' 'F'}; % Fit the Ro and F (d') parameters of the DPSD model. Rn and vF are set to 0 and 1, respectively. [nConds,nBins] = size(targf); % Get the number of conditions (rows) and rating bins (columns) % Get the starting values (x0) and lower/upper bounds (LB and UB) of the % define model [x0,LB,UB] = gen_pars(model,nBins,nConds,parNames); % Define options for the ROC_SOLVER function fitStat = '-LL'; % Fit the model using MLE (by minimizing the negative log-likelihood) subID = 'S1'; % Define the subject ID condLabels = {'low frequency' 'high frequency'}; % Define the condition labels for the rows in targf and luref modelID = 'dpsd'; % Specifies a name or label for the model outpath = pwd; % Specify the directory to write the summary figure to bootIter = 1000; % Specify the number of non-parameter bootstrap iterations to estimate SE of the parameter estimates % Use ROC_SOLVER to fit the model to the data rocData = roc_solver(targf,luref,model,fitStat,x0,LB,UB, ... 'subID',subID,'condLabels',condLabels,'modelID',modelID,'saveFig',outpath, ... 'bootIter',bootIter);