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Supplementary Information
This supplement contains additional text related to proofs and commentary on aspects
touched upon in the main article.

1 Derivation of Equations (6) and (7)

The Hill equation [1] was originally used to describe the sigmoid response found in the
binding of oxygen to hemoglobin. In the original publication by Hill, the equation was
empirically derived and a mechanistic explanation was not provided. It was only later
that a mechanistic model was proposed that attempted to justify the Hill equation. The
proposed mechanistic model is perhaps overly simplistic and even unrealistic, but it
provides a useful baseline when considering other models.

Consider an oligomer with n subunits and a binding site on each subunit for a ligand,
S. If we make the assumption that when the first ligand binds, the binding affinity
for the remaining n − 1 sites change such that all the remaining ligands also bind
simultaneously, then we can represent this situation as follows:

E + n S ⇀↽ ESn (1)

Assuming the rapid equilibrium assumption we can write:

Ka =
ESn

E · Sn

where Ka is the association constant for ligand binding. Using the conservation rela-
tion Et = E + ESn, the fractional saturation can be shown to be given by:

ES

Et

=
Sn

1/Ka + Sn
=

Sn

Kd + Sn
= Y (2)

This is the Hill equation (3) where Kd is the dissociation constant. Often the Hill
equation is represented in the literature as:

v =
Vm Sn

Kd + Sn
(3)

where Kd is the dissociation constant, n the Hill coefficient and Vm the maximal ve-
locity. Traditionally the Hill coefficient is represented using the symbol, h. The only
reason why n is used here is because it specifically refers to the number of binding
sites in the proposed model (1). In general, experimental determination of Hill co-
efficients often reveals fractional values indicating that the simple Hill model fails to
adequately explain cooperativity, although empirically the fit can be quite good. For
example, although hemoglobin has four binding sites, the measured Hill coefficient
is 2.7. Similarly for PFK where the number of binding sites for F6P is four, the Hill
coefficient is about 3.7. Most literature therefore refers to the Hill coefficient using the
symbol h indicating that this is the measured coefficient.

Sometimes the Hill equation is also expressed in terms of the half-maximal activity
constant, KH , that is the concentration of ligand that gives half maximal activity. To
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do this we set the left-hand side (3) to 0.5 and find the relationship between S and Kd,
such that:

S = n
√
Kd

n
√
Kd is the half-maximal activity value, or KH = n

√
Kd, that is Kn

H = Kd. We can
therefore write the Hill equation in a number of alternative but equivalent forms:

v =
Vm Sn

Kn
H + Sn

=
Vm

(
S

KH

)n
1 +

(
S

KH

)n ≡
V m Sn

Kd + Sn
(4)

The equation in terms of the half-maximal activity has advantages because half-maximal
activity can sometimes be measured directly from experiments, especially transcrip-
tion factors binding to operator sites on DNA.

If ligand binding acted in the way suggested in the derivation of the Hill equation,
n would represent the number of binding sites, an integer. However, fitting the Hill
equation to real data rarely gives integer estimates to n suggesting the model is not a
good representation of the real system. The utility of the Hill equation however lies in
its ability to describe sigmoid behavior for simple cooperative systems such as tran-
scription factor binding. As a result, it has been adopted by the modeling community.
However it is severely limited in some aspects. It is not possible to easily add regula-
tor terms to the equation (although this is often done in an ad hoc manner) or model
multi-reactant systems and more problematic is that it models an irreversible reaction.
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Figure 1: Plot showing the response of the rate set to the indicated values and KH = 1.

The limitations of the traditional Hill equation have been resolved by Hofmeyr and
Cornish-Bowden [2] who derived a new, more adaptable reversible Hill equation.

Elasticity of Hill Equation

The elasticity coefficient, εvS may be derived directly from the Hill equation (3). Differ-
entiating and scaling the Hill equation yields the following elasticity both in terms of
the dissociation constant, Kd and the half maximal activity constant, KH :
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εvS =
n Kd

Kd + Sn
=

n

1 +

(
S

KH

)n (5)

For comparison with the Kd for of the equation we note that:

εvS =
n

1 +

(
Sn

Kd

) =
n

1 +

(
S

KH

)n

The elasticity of a reaction obeying the Hill equation has a value equal to n at low
substrate concentrations (S � Kd). In contrast, irreversible Michaelian enzymes at
low substrate concentrations have an elasticity value of one. Therefore an enzyme
obeying the Hill equation shows a much higher elasticity to the substrate concentra-
tion compared to a Michaelian enzyme. Like a Michaelian enzyme, the value of the
elasticity falls off rapidly as the substrate concentration increases, reaching zero as the
enzyme becomes saturated. Figure 2 illustrates this response for n = 4 and Kd = 1.
An interesting feature in Figure 2 is the delayed fall in the elasticity at low substrate
concentrations. This is in contrast to a Michaelian response which falls immediately
from the initial point, S = 0. The characteristics of the curve at S = 0 can change quite
markedly in different models of cooperativity.
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Figure 2: Plot showing the response of the rate and elasticity for the Hill model, with
n = 4 and Kd = 1.

Equation (2) represents the fractional saturation for the Hill model. If we subtract both
sides of this equation from one, we get:

1− Y = 1− Sn

Kd + Sn

1− Y =
Kd

Kd + Sn

1

1− Y
=

Kd + Sn

Kd
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Figure 3: Simple Four Step Unbranched Pathway.

Multiplying both sides by the elasticity expression leads to the cancelation of the term,
(Kd + Sn)/Kd. Therefore the elasticity1 is related to the Hill coefficient by the simple
relation:

εvS
1

1− Y
= n

This means that at low saturation levels, the elasticity coefficient approximately equals
the Hill coefficient. Another way of expressing this relation:

εvS = n(1− Y ) (6)

The elasticity is proportional to the degree to which the enzyme is not saturated. If a
cooperative enzyme is at half-saturation then εvS = 1

2
n

2 Proof for Ratio of Coefficients

Consider a unbranched pathway of four product inhibited reactions shown in Fig-
ure 3. The connectivity theorem [3] allows us to write the following connectivity rela-
tionships centered around each metabolite, x1, x2 and x3:

CJ
1

CJ
2

= −ε21
ε11
,

CJ
2

CJ
3

= −ε32
ε22
,

CJ
3

CJ
4

= −ε43
ε33

where CJ
i is the flux control coefficient of the ith reaction step and εij the elasticity coef-

ficient of the reaction rate at reaction i with respect to metabolite j. The first expression
can be rewritten as:

CJ
1

CJ
2

= − 1

ε21/ε
1
1

That is:

CJ
1 : CJ

2 = 1 : −ε11
ε21

(7)

Likewise the second and third connectivity expressions can be written as:

CJ
2 : CJ

3 = 1 : −ε22
ε32

CJ
3 : CJ

4 = 1 : −ε33
ε43

(8)

We can combine equations (7), and (8) to yield:

CJ
1 : CJ

2 : CJ
3 : CJ

4 = 1 : −ε11
ε21

: −ε11
ε21

(
−ε22
ε32

)
: −ε11

ε21

(
−ε22
ε32

)(
−ε33
ε43

)
(9)

1The same result may also be obtained by expanding the slope of the Hill plot, n = dlog(Y/(1 −
Y ))/dlogS and extracting the elasticity.
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The proof generalizes to any length unbranched pathway such that the nth term,
where n > 1, corresponding to CJ

n will equal:

n−1∏
i=1

(
− εii
εi+1
i

)
The first term at n = 1 is set equal to one.

3 Proof for Equations (18) and Table (2)

Equation (18) and those in Table 2 gives the control equations for an unbranched path-
way of four species with a negative feedback loop from the last metabolite, X3 to the
first step. The equations in the main text are shown here for convenience:

D = ε11ε
2
2ε

4
3 − ε11ε

2
2ε

3
3 − ε11ε

3
2ε

4
3 + ε21ε

3
2ε

4
3 − ε21ε

3
2 εfd (10)

where εfd is the feedback elasticity and the four control coefficients shown in Table 1.

Control Coefficient Numerator

Cx3
e1

ε21ε
3
2

Cx3
e4

ε11ε
2
2 − ε11ε

3
2 + ε21ε

3
2

CJ
e1

ε21ε
3
2ε

4
3

CJ
e4

−ε11ε22ε33 − ε21ε
3
2εfd

Table 1: Control Coefficients and Corresponding Numerators of Control Equations.
The feedback elasticity is highlighted in underline/red, εfd

There are different ways to derive the control coefficient equations. Here we use the
method proposed by Fell and Sauro [4]. The method works well for small pathways
with limited structure but can become cumbersome for larger and more complex path-
ways because of the requirement to supply additional theorems. For larger systems
symbolic computational methods are recommended [5].

The Fell and Sauro method relies on stacking the theorems into a matrix and inverting
the matrix. In this case we have four reaction steps, therefore there will be one sum-
mation theorem and three connectivity theorems. A Mathematica script was used to
do the matrix inversion and is shown below:

(* Define the elasticity matrix using the summation
and three connectivity theorems. fd is the negative
feedback elasticity. eij notation is used to represent
elasticities where i is the reaction and j the species. *)

eeMatrix = {{1, 1, 1, 1},
{e11, e21, 0, 0},
{0, e22, e32, 0},
{fd, 0, e33, e43}}

6



(* Invert the matrix and return the first column which
contains the flux control coefficients *)

firstColumn := Inverse[eeMatrix][[All, 1]]

(* Get the common denominator *}
den := Denominator[firstColumn[[1]]]

-e11 e22 e33 + e11 e22 e43 - e11 e32 e43 + e21 e32 e43 - e21 e32 fd

(* List the four numerators for the flux control coefficients *)
Numerator[firstColumn]

{ e21 e32 e43,
-e11 e32 e43,
e11 e22 e43,

-e11 e22 e33
-e21 e32 fd}

(* Get the concentration control coefficients for x3 in the 4th column.
Take the negative to account for the negative term on the right-side of
the concentration connectivity theorem. See Fell & Sauro for details *)

fourthColumn := -Inverse[ee4][[All, 4]]

(* list the for numerators for the
concentration (x4) control coefficients *)

{e21 e32,
-e11 e32,
e11 e22,

-e11 e22 + e11 e32 - e21 e32}

4 Evaluating Equations (11) in the Main Text

Equations (11) in the main text describes how the flux control in an unbranched pathways
depends on metabolite and equilibrium constants. These equations were derived using the
following Mathematica script that involves four reaction steps. Inspection of the resulting
equations were generalized to any sized unbranched pathway.

Solve[{C1/C2 - (1 - p1)/(p1 (1 - p2)) == 0 ,
C2/C3 - p1 (1 - p2)/(p1 p2 (1 - p3)) == 0,
C3/C4 - p1 p2 (1 - p3)/(p1 p2 p3 (1 - p4)) == 0,
C1 + C2 + C3 + C4 == 1}, {C1, C2, C3, C4}]

Output:

{{C1 -> -((1 - p1)/(-1 + p1 p2 p3 p4)),
C2 -> (p1 (-1 + p2))/(-1 + p1 p2 p3 p4),
C3 -> (p1 (-p2 + p2 p3))/(-1 + p1 p2 p3 p4),
C4 -> -((p1 p2 p3 - p1 p2 p3 p4)/(-1 + p1 p2 p3 p4))}}
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5 Simple Quantitative Analysis of Negative Feedback

Here we will consider some basic properties of negative feedback systems. Later chapters will
consider negative feedback in much more detail. The simplest way to think about feedback
quantitatively is by reference to Figure 4.

A

K

Input Output
Error

Figure 4: Generic structure of a negative feedback system.

We will assume some very simple rules that govern the flow of information in this feedback
system. For example, the output signal, yo, will be the value of A multiplied by the error, e.
The feedback signal will be assumed to be proportional to yo, that is Kyo. Finally, the error
signal, e will be given by the difference between the set point, yi and the feedback signal, Kyo
(Figure 5).

yi A

K

y  = Aeo

Kyo

e = y -Kyi o

Figure 5: Annotated negative feedback system.

Noting that e = yo/A and substituting this into e = −yi −Kyo and solving for yo we obtain:

yo =
Ayi

1 +AK
or more simply yo = Gyi (11)

where:
G =

A

1 +AK
(12)

G is called the gain of the feedback loop, often called the closed loop gain. Gain is a term that is
commonly used in control theory and refers to the scalar change between an input and output.
Thus a gain of 2 simply means that a given output will be twice the input.

The gain is a measure of the change that occurs between a signal output and its input. A gain
of two means that the output will change two times in magnitude compared to a change in the
input.

In addition to the close loop gain, engineers also define two other gain factors, the open loop
gain and the important loop gain. The open loop gain is simply the gain generated by the
process, A. It would be the gain between yo and yi if the feedback loop were absent. The loop
gain is the gain from the feedback and processA combined,AK. The loop gain is an important
quantity when discussing the stability and general performance of feedback circuits. Figure 5
illustrates the different types of gain in a feedback circuit, also summarized in Table 2.
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Gain Expression

Open Loop Gain A

Loop Gain AK

Closed Loop Gain
A

1 + AK

Table 2: Definition of Various Loop Gains

A

K

Closed Loop Gain

A

K

A

K

Open Loop Gain Loop Gain

Figure 6: The various loop gains in a negative feedback system.

We can use equation (11) to discover some of the basic properties of a negative feedback circuit.
The first thing to note is that as the loop gain, AK, increases, the system behavior becomes
more dependent on the feedback loop and less dependent on the rest of the system:

when AK � 1 then G ' A

AK
=

1

K

This apparently innocent effect has significant repercussions on other aspects of the circuit. To
begin with, the system becomes less dependent on A. That is feedback makes the performance
of the system independent of any variation in A. Such variation might include noise, temper-
ature or variation as a result of the manufacturing process or in the case of biological systems,
genetic variation. To be more precise we can compute the sensitivity of the gainGwith respect
to variation in A.

∂G

∂A
=

∂

∂A

A

1 +AK
=

1

(1 +AK)2
.

If we consider the relative sensitivity we find:

∂G

∂A

A

G
=

1

1 +AK

From this we can see that as the loop gain increases the sensitivity decreases.

Functional Modules In addition to resistance to parameter variation, feedback also confers
resistance to disturbances in the output. Suppose that a nonzero disturbance d affects the
output. The system behavior is then described by

y = Ae− d e = yi −Ky.
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Eliminating e, we find

y =
Ayi − d
1 +AK

.

The sensitivity of the output to the disturbance is then

∂y

∂d
= − 1

1 +AK
.

The sensitivity decreases as the loop gain AK is increased. In practical terms, this means that
the imposition of a load on the output, for example a current drain in an electronic circuit,
protein sequestration on a signaling network or increased demand for an amino acid will have
less of an effect on the circuit as the feedback strength increases. In electronics this property
essentially separates the network into functional modules.

Fidelity For a servo mechanism such as an amplifier where the output tracks the input, feed-
back confers a critical benefit, that is improved fidelity of the response. This means for a given
change in the input, a system with feedback is more likely to faithfully reproduce the input at
the output than a circuit without feedback. An ability to faithfully reproduce signals is critical
in electronics communications and in fact it was this need that was one of the inspirations for
the development of negative feedback in the early electronics industry. The next section on
linearization will cover this in more detail.

Linearization Properties Related to the improvement in fidelity is linearization due to
feedback. Consider the case where the amplifier A is nonlinear. For example a protein cas-
cade pathway exhibiting a sigmoid response. Then the behavior of the system G (now also
nonlinear) is described by

G(yi) = yo = A(e) e = yi −Kyo = yi −KG(yi).

Differentiating we find

G′(yi) = A′(yi)
de

dyi

de

dyi
= 1−KG′(yi).

Eliminating de
dyi

, we find

G′(yi) =
A′(yi)

1 +A′(yi)K
.

We find then, that if A′(yi)K is large (A′(yi)K � 1), then

G′(yi) ≈
1

K
,

That is G(yi) = yi/K. This means that G is approximately linear (Recall that K is constant).2

In this case, the feedback compensates for the nonlinearities A(·) and the system response is
not distorted. Another feature of this analysis is that the slope of G(·) is less than that of A(·),
i.e. the response is “stretched out”. For instance, ifA(·) is saturated by inputs above and below
a certain “active range”, then G(·) will exhibit the same saturation, but with a broader active
range.

One objection to the implementation of feedback as described is that the system sensitivity is
not actually reduced, but rather is shifted so that the response is more sensitive to the feedback
K and less sensitive to the amplifier A. However, in each of the cases described above, we see
that it is the nature of the loop gain AK (and not just the feedback K) which determines the

2I’d like to thank Brian Ingalls for his contribution here.
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extent to which the feedback affects the nature of the system. This suggests an obvious strategy.
By designing a system which has a small “clean” feedback gain and a large “sloppy” amplifier,
one ensures that the loop gain is large and the behavior of the system is satisfactory. Engineers
employ precisely this strategy in the design of electrical feedback amplifiers, regularly making
use of amplifiers with gains several orders of magnitude larger than the feedback gain (and
the gain of the resulting system). Because the amplifierA need not be precise, it means that the
costs for manufacturing the amplifier can be greatly reduced. Instead the cost can be shifted
to the feedback which is generally a much simpler mechanism. This is clearly seen in the use
of op amps as amplifiers. The op amp is a complex circuit that exhibits a huge gain factor.
However op amps are very cheap because negative feedback can be used to reduce the effect
of manufacturing variation in the op amp. Instead, the cost is shifted to using high precision
but cheap resistors to implement the negative feedback circuit.

Useful Properties Resulting from Negative Feedback

1. Amplification of signal.

2. Robustness to internal component variation.

3. High fidelity of signal transfer.

4. Low output impedance so that the load does not affect the performance of the circuit.

Negative feedback can also yields additional benefits that include fast response times and a
better response to fast changing signals. A detailed analysis is beyond the scope of this article
but relies on the study of the system in the frequency domain [6, 7, 8, 9].

6 Deriving Control Equations

X
v1 v2

Figure 7: Simplest pathway with negative feedback. Species X inhibits the reaction
rate v1

Deriving Equation (17) for Pathway in Figure 7

Equation (17) is reproduced below and describes how changes in E2 influence the steady state
concentration of X .

Cx
e2 = − 1

ε2x − ε1x
(13)

To derive the equation we start by perturbing E2 by an amount δe2. This results in changes
to X by an amount δx and changes to the reaction rates, v1 and v2 by amounts δv1 and δv2
respectively. These changes can be described using the relations:

δv2 ≈
∂v2
∂e2

δe2 +
∂v2
∂x

δx

δv1 ≈
∂v1
∂x

δx
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We allow the system to come to a new steady state so that the change in the two reaction rates
will be equal: δv1 = δv2. This allows us to set the two perturbation equations equal to each
other, that is:

∂v1
∂x

δx ≈ ∂v2
∂e2

δe2 +
∂v2
∂x

δx

Solving for the ratio δx/δe2 yields:

δx

δe2
≈ −

∂v2
∂e2

∂v2
∂x
− ∂v1
∂x

Taking the limit δe2 → 0, and scaling both sides by multiplying by e2 and dividing by x yields
the equation for the concentration control coefficient for E2:

Cx
e2 = − 1

ε2x − ε1x

Flux Control Equations

Given a perturbation in E1 of δe1, the change in the steady state flux, δJ at v2 through the
pathway can be written

δJ ≈ ∂v2
∂x

δx

Dividing both sides by δe1 gives us:

δJ

δe1
≈ ∂v2

∂x

δx

δe1

In the limit as δe1 → 0 and scaling both sides gives:

CJ
e1 = ε2xC

x
e1

However we know that Cx
e1 = 1/(ε2x − ε1x) so that:

CJ
e1 =

ε2x
ε2x − ε1x

The same approach can be used to derive the equation for CJ
e2 , but this time perturbing E2.

This leads to the following result:

CJ
e2 =

−ε1x
ε2x − ε1x

Note that the sum:

CJ
e1 + CJ

e2 =
ε2x

ε2x − ε1x
+
−ε1x

ε2x − ε1x
= 1

7 General Expression for a Unbranched Pathway

Given an unbranched pathway of n steps, the flux control coefficient for the ith step is given
by the expression [10]:

CJ
i =

(−1)i+1
k=i−1∏

1

εkk

n∏
k=i+1

εkk−1

D
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where D is given by:

D =
n∑

i=1

(
(−1)i+1

k=i−1∏
1

εkk

n∏
k=i+1

εkk−1

)
There are various ways to derive this expression. Probably the easiest is by deriving the ex-
pressions for two, three and four steps and using these results to generalize to n steps. The
Mathematica script below will derive the flux control expressions for two, three and four step
pathways.

ee2={{1,1},{e11,e21}}
fluxControl:=Inverse[ee2][[All,1]]
concentrationControl1:=-Inverse[ee2][[All,2]]

ee3={{1,1,1},{e11,e21,0},{0,e22,e32}}
fluxControl:=Inverse[ee3][[All,1]]
concentrationControl1:=-Inverse[ee3][[All,2]]
concentrationControl2:=-Inverse[ee3][[All,3]]

ee4={{1,1,1,1},{e11,e21,0,0},{0,e22,e32,0},{0,0,e33,e43}}
fluxControl:=Inverse[ee4][[All,1]]
concentrationControl1:=-Inverse[ee4][[All,2]]
concentrationControl2:=-Inverse[ee4][[All,3]]
concentrationControl3:=-Inverse[ee4][[All,4]]

The following equations are the four flux control coefficients to a four step unbranched path-
way:

CJ
1 = − ε21ε

3
2ε

4
3

ε21ε
3
2ε

4
3 − ε11ε32ε43 + ε11ε

2
2ε

4
3 − ε11ε22ε33

CJ
2 =

ε11ε
3
2ε

4
3

ε21ε
3
2ε

4
3 − ε11ε32ε43 + ε11ε

2
2ε

4
3 − ε11ε22ε33

CJ
3 = − ε11ε

2
2ε

4
3

ε21ε
3
2ε

4
3 − ε1ε32ε43 + ε11ε

2
2ε

4
3 − ε11ε22ε33

CJ
4 =

ε11ε
2
2ε

3
3

ε21ε
3
2ε

4
3 − ε11ε32ε43 + ε11ε

2
2ε

4
3 − ε11ε22ε33

An alternative way to derive the general equation is to use the summation and connectivity
theorems and solve for the flux control coefficients. This approach can be found in the book by
Heinrich and Schuster [11] on page 165.
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