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1 Single-cell measurements of Saccharomyces cerevisiae growth and
division

Single-cell haploid yeast data from 26 wild-type lineages (213 cells), 19 6×CLN3 lineages (99 cells) growing in glucose
and 21 wild-type lineages (157 cells) growing in glycerol/ethanol described in [1] were kindly provided by the authors
of that study. To track mass accumulation for each cell, the promoter of the constitutively expressed gene ACT1
was inserted upstream of the coding sequence of the red fluorescent protein, DsRed [1]. This construct was inserted
once into the genome at the TRP1 locus (in the case of wild-type cells) or twice at the URA3 locus (in the case
of 6×CLN3 cells). Endogenous ACT1 was not deleted in the strains used. When ACT1 was transcribed, both
endogenous ACT1 and DsRed protein were expressed. Total protein is continuously synthesized in budding yeast.
Due to the constitutive expression of ACT1 (and assuming good correlation between gene and protein expression),
total DsRed fluorescence in each cell was used as a proxy for total protein or mass. Images were taken of wild-type
and 6×CLN3 cells every 3 minutes while images of cells growing in glycerol/ethanol were taken every 6 minutes.
The background fluorescence value of 199.0 was subtracted from the total DsRed fluorescence values for each cell.
Background-subtracted total DsRed fluorescence for each cell was then normalized by the average (background-
subtracted) total DsRed fluorescence at budding in each microcolony. Each microcolony corresponds to one lineage
with the exception of one wild-type microcolony in glucose that mapped to two lineages. Normalized masses were
used in all subsequent analyses of cell size. Thirteen wild-type cells grown in glycerol/ethanol did not have recorded
masses but did have budding and division measurements. These cells were excluded from all analyses involving
size. We refer interested readers to that article and its accompanying supplement for relevant details about strain
construction and experimental protocols.

For our analysis on the effect of differences in size at budding on differences in S/G2/M duration and our Bayesian
regression analysis we used a subset of cells in each lineage to control for autocorrelation in cell-cycle progression
and to prevent double-counting of daughter cycles as mothers. For mother cells, we only retained mother data from
‘leaves’ of each lineage tree, and, if a mother underwent multiple prior cell cycles, we retained every other cycle,
starting with the ‘leaf’ cycle. For daughter cells, we retained all daughter cycles. This procedure resulted in our
subset of mother (wt, glucose N=78; 6×CLN3 N=35; wt, gly/eth N=58) and daughter (wt, glucose N=70; 6×CLN3
N=34; wt, gly/eth N=44) cells. Scatterplots of cell-cycle and growth characteristics for these cells are shown in
Figures 1, 2, 3, 4, 5, and 6.
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Figure 1: Scatterplots of observed cell-cycle durations and cell growth measurements in wild-type mothers (glucose).
Shown along the diagonal are marginal distributions of estimated mass accumulation rates (α), observed masses at
birth (M0) and budding (Mbud), and observed cell-cycle durations for G1 and S/G2/M. The cell-cycle durations are
on the natural logarithmic scale. In the lower diagonal are Spearman rank correlation coefficients and, in the upper
diagonal, appear scatterplots for each pairwise relationship. Linear least-squares fit lines (green), loess smoothed fit
lines (red solid), and loess variability bounds (red dashed) also appear in the upper diagonal plots.
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Figure 2: Scatterplots of observed cell-cycle durations and cell growth measurements in 6×CLN3 mothers. Layout
is as in Figure 1.
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Figure 3: Scatterplots of observed cell-cycle durations and cell growth measurements in wild-type mothers (glyc-
erol/ethanol). Layout is as in Figure 1.
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Figure 4: Scatterplots of observed cell-cycle durations and cell growth measurements in wild-type daughters (glucose).
Layout is as in Figure 1.
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Figure 5: Scatterplots of observed cell-cycle durations and cell growth measurements in 6×CLN3 daughters. Layout
is as in Figure 1.
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Figure 6: Scatterplots of observed cell-cycle durations and cell growth measurements in wild-type daughters (glyc-
erol/ethanol). Layout is as in Figure 1.

7



Wild-Type 6×CLN3 Wild-Type
Glucose Glucose Gly/Eth

Parameter Estimate (P-value) Estimate (P-value) Estimate (P-value)
µdiff −0.26 (1.03×10−6) −0.06 (0.366) 0.09 (0.068)

wMB,diff
−1.16 (2.19×10−8) −0.68 (0.047) −0.36 (0.061)

Table 1: Effect of daughter-mother differences in size at budding on differences in log S/G2/M duration. Shown are
parameter estimates with p-values assessing whether estimates were significantly different from 0 (in parentheses).
P-values less than 0.001 are shown in scientific notation.

2 Estimating cell sizes and cell-specific growth characteristics

To estimate a cell’s size at birth and budding as well as its growth rate, we first assumed exponential single-cell
growth kinetics.

Mt = M0e
αt (1)

The masses Mt are the normalized counts of total red fluorescence (background-subtracted) in the cell at time t
in the time-lapse movie. Paired with a cell’s vector of masses is the cell’s ‘time vector’, t̃i,j . t̃i,j is the vector of
time points (in minutes) at which the mass observations were taken (e.g., {0,3,6,. . . }). With a cell’s mass and time
vectors, we fit the following linear model to estimate mass accumulation rates and birth masses:

log(Mi,j,k) = log(M0,i,j) + αi,j · ti,j,k + ϵ (2)

We assume ϵ is a normally distributed error term with zero mean and unit variance. ϵ is also assumed identically
and independently distributed with respect to time. Mi,j,k and ti,j,k are the kth elements of cell j ’s mass and time

vectors, respectively. log(M0,i,j) or M̂0,i,j is the intercept of this linear model and αi,j is the slope. The fitted mass
at budding (M̂B,i,j) was also estimated by the following:

M̂B,i,j = M̂0,i,j + α̂i,j · ti,j,B (3)

where ti,j,B is the time of budding for cell j. Estimates of M̂0,i,j , M̂B,i,j, and α̂i,j were retained for subsequent analysis
of the connections between growth and division (with the ‘hat’ symbol dropped in figures of the main manuscript).

3 Effect of mother-daughter differences in cell size on differences in log
S/G2/M progression

We tested the hypothesis that mother-daughter differences in log S/G2/M duration were associated with differences
in cell size. We first paired all mothers with their first daughters for the three datasets (wild-type in glucose: 44
pairs; 6×CLN3: 16 pairs; wild-type in glycerol/ethanol: 26 pairs). We then computed the differences in daughter and
mother masses at budding (M̂B,diff) and S/G2/M durations. Finally, we fit a linear regression of daughter-mother
difference in log S/G2/M duration (Sdiff) on differences in mass at budding.

Sdiff = µdiff + wMB,diff
M̂B,diff + ϵ (4)

In two of the three experimental settings (wild-type in glucose: p-value=2.19× 10−8; 6×CLN3: p-value=0.047),
the difference between daughter and mother mass at budding was a significant predictor of differences in S/G2/M
duration (Table 1). In wild-type in glycerol/ethanol, the difference between daughter and mother mass at budding
was a suggestive but not significant predictor (p-value=0.061). Estimates for the coefficient of mass at budding
were also consistent with what one might expect from G1 size dependence: a daughter cell larger at budding than
its mother tends to have a comparatively shorter S/G2/M duration (Table 1). Interestingly, the estimate for µdiff

was significantly different from 0 for wild-type cells in glucose, suggesting that daughter-mother S/G2/M differences
could not be explained solely by size differences in this condition. Conversely, differences in 6×CLN3 and wild-type
(in glycerol/ethanol) S/G2/M duration were largely explained by differences in size as the corresponding estimate for
µdiff did not differ significantly from 0 (Table 1). In contrast to our results for mother-daughter S/G2/M differences
(part B of section II), we find that S/G2/M duration for wild-type daughters in glucose is shorter compared with
mother durations (µdiff estimate in Table 1). This result is likely due to the fact that we are conditioning on the
strongly predictive size differences which are correlated with the baseline differences in S/G2/M duration. In our
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first analysis of S/G2/M differences in part B of section II, we were only considering S/G2/M without accounting
for effects of differences in size. These findings not only suggest that S/G2/M duration can vary between mother
and daughter cells but that daughters tend to spend more time in the budded state than mothers, and differences in
mass at budding help explain this difference in S/G2/M duration.

4 Assessing effect of cell growth characteristics on cell division

We used a Bayesian model averaging approach (Bayesian adaptive sampling [11]; R package BAS) to evaluate possible
models of dependence between growth and division. We considered 7 different explanatory variables, and the set of
all possible subsets of these explanatory variables comprises 27 = 128 possible models. We assume that each model
is equally plausible a priori. With this assumption and the relatively small number of possible models, posterior
probabilities of each model can be computed straightforwardly and exactly. To induce shrinkage of regression
coefficients towards 0, we place a hyper-g prior on the shrinkage parameter g with the corresponding a parameter
set to 3 [12].

The full regression model is as follows:

Si,j = µS + wSPaSi,Pa(j) + wαα̂i,j + wM0M̂0,i,j + wMBM̂B,i,j

+ wαPa α̂i,Pa(j) + wM0,PaM̂0,i,Pa(j) + wMB,PaM̂B,i,Pa(j) + ϵi,j .
(5)

µS is an intercept term and Si,j is the observed S/G2/M duration for a cell in its current cycle. Si,Pa(j) is the
S/G2/M duration either of a cell in its previous cycle (for mothers) or of its mother’s cycle (for daughters). The
other explanatory variables of the linear model (α̂i,j , α̂i,Pa(j), M̂0,i,j , M̂0,i,Pa(j), M̂B,i,j , and M̂B,i,Pa(j)) are the
aforementioned growth characteristics of cells. With the Bayesian adaptive sampling framework, we computed
marginal posterior probabilities of each model for both mother cells (Figure 5 of main text) and daughter cells
(Figure 6 of main text). Results of this analysis are described in Section II Part D of the main text.

5 Modeling budding yeast cell division at the single-cell level

We use a hierarchical framework to model budding and division durations and the correlations between them. In
taking a Bayesian approach to parameter inference, we appeal to Bayes’ theorem:

Pr(Θpop, γ̃, β̃, τ
2 | B̃rel, C̃rel) ∝

L
∏

i=1

Pr(B̃rel
i , C̃rel

i | γ̃i, β̃i, τ
2,Θpop)Pr(γ̃i | Θpop)Pr(β̃i)Pr(Θpop, τ

2). (6)

That is, the posterior distribution of model parameters is proportional to the product of the likelihood of the budding
and division durations and the prior distribution on model parameters. The parameters of the hierarchical model
are: γ̃i, the vector of cell-specific branch lengths that give the expected values of observed budding and division
durations; Θpop, the subset of population-level parameters {Λ,∆,σ2

λ,σ
2
δ ,ψ, ρ,φ}; β̃i, the proportions of cells’ λs

during which the cell is unbudded; and τ2, the variance of measurement error in budding and division durations.
L is the number of lineage trees in a particular experimental setting, and lineages are assumed independent of one
another. Development of the model begins with specification of a likelihood and error model for the budding and
division durations of a particular lineage:

Pr(B̃rel
i , C̃rel

i | γ̃i, β̃i, τ
2,Θpop). (7)

We then specify a branching process—and corresponding probability distribution—describing the dependence struc-
ture in cell-specific branch lengths that give the expected values of the observed durations:

Pr(γ̃i | Θpop). (8)

We specify an independent prior distribution on proportions of baseline expected cell-cycle duration (a cell’s λ)
during which the cell is unbudded:

Pr(β̃i). (9)

Finally, we specify the prior for population-level parameters (and measurement error) in the model hierarchy:

Pr(Θpop)Pr(τ
2). (10)
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5.1 Error model for budding and division times and durations

For each cell j in lineage i, we observe the elapsed time from the start of the time-lapse experiment to when the cell
buds (Bi,j) or divides (Ci,j). For the marginal distributions of these budding and division times, we assume:

Bi,j ∼ Norm(µBi,j , τ
2) (11)

and
Ci,j ∼ Norm(µCi,j , τ

2). (12)

Stacking these times into a vector:
(

B̃i

C̃i

)

∼ MVNorm(µ̃i, τ
2) (13)

where B̃i and C̃i are vectors of budding and division times for lineage i and µ̃i is a vector of corresponding means
µBi,j and µCi,j .

We transform times into durations Brel
i,j and Crel

i,j by subtracting the total time spent to reach the division that
produced cell j. More formally:

Brel
i,j = Bi,j − Ci,Pa(j) (14)

Crel
i,j = Ci,j − Ci,Pa(j) (15)

where Ci,Pa(j) is the division time of the cell in lineage i that is cell j’s direct antecedent or parent (e.g. Pa(110) = 11).
After this linear transformation, the likelihood for budding and division durations for lineage i is:

(

B̃rel
i

C̃rel
i

)

| γ̃i,Θpop, β̃i, τ
2 ∼ MVNorm(Aµ̃i, τ

2AA′).

A is the linear transformation matrix (a sparse matrix whose only non-zero values are ones and negative ones) and
µ̃i is the vector of the mean budding and division times. As previously mentioned, it is assumed that the budding
and division observations are independent of one another across lineages (hence the product in eq. 6).

The cell-specific branch lengths (γ̃i = Aµ̃i) are used to specify the expected value of budding and division
durations. The manner in which the cell-specific branch lengths correlate with one another is given by an asymmetric
branching process following a multivariate probability distribution. Given the cell-specific branch lengths that arise
from the branching process, cell-specific unbudded proportions (β̃i), the population parameters Θpop, and the cell
type of each cell j, the expected value of the budding and division durations are specified as:

E[Brel
i,j | γ̃i,Θpop, β̃i] =

{

βi,jλi,j if j ∈ Mi

δi,j + βi,jλi,j if j ∈ Di

(16)

E[Crel
i,j | γ̃i,Θpop, β̃i] =

{

λi,j if j ∈ Mi

δi,j + λi,j if j ∈ Di

. (17)

Here, Mi and Di are the sets of indices in lineage i of mother and daughter cells, respectively.

5.2 Formal description of the asymmetric autoregressive branching process

As the budding and division durations are positively valued, we assume that the branch lengths γ̃i follow a log-normal
distribution:

γ̃i = eγ̃
∗

i

where
γ̃∗i |Θ

∗
pop ∼ MVNorm(µ∗

γ̃i
,Σ∗

γ̃i
).

We modeled the cell-specific branch lengths as log-normally distributed instead of the observed budding and
division durations for two reasons: 1) we don’t expect observation errors to increase with duration and 2) we wanted
to decompose sources of variation in budding and division durations into cell-to-cell variability and measurement
error. Here, γ̃∗i and Θ∗

pop consist of parameters analogous to those in γ̃i and Θpop except that they are on the natural
logarithmic scale.
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The multivariate normal specification just above indicates that, for a given experimental setting, these branch
lengths (λ∗i,js and δ

∗
i,js) are marginally drawn from normal distributions:

λ∗i,j ∼ Norm(Λ∗,σ2∗
λ ) (18)

and
δ∗i,j ∼ Norm(∆∗,σ2∗

δ ). (19)

On the original scale, σ2
λ and σ2

δ represent variation in the λi,js and δi,js, respectively, denoting cell-to-cell variability
in cell-cycle progression. Λ is the average population-level base cell-cycle duration: the population expected cell-cycle
duration for a mother cell. The population expected cell-cycle duration of a daughter cell can be longer. ∆ represents
the population mean daughter-specific cell-cycle extension that explains this difference.

In describing the dependence between branch lengths, we assume that the branch lengths of each new cell j are
conditionally independent of the branch lengths of any previous cell in the lineage given the cell-cycle progression
of the new cell’s parent cell, Pa(j) (a first-order autoregressive or AR(1) assumption). We also further assume that
the branch lengths of cell j take a conditional normal distribution given the λ∗ of the cell’s mother (or λ∗i,Pa(j)). In
particular:

δ∗i,j | λ
∗
i,Pa(j),Θ

∗
pop ∼ Norm

(

∆∗ + φ∗
(σ∗

δ

σ∗
λ

)

(λ∗i,Pa(j) − Λ∗), (1 − φ2∗)σ2∗
δ

)

for j ∈ Di (20)

λ∗i,j | λ
∗
i,Pa(j),Θ

∗
pop ∼ Norm

(

(1 − ρ∗)Λ∗ + ρ∗λ∗i,Pa(j), (1− ρ2∗)σ2∗
λ

)

for j ∈ Di (21)

λ∗i,j | λ
∗
i,Pa(j),Θ

∗
pop ∼ Norm

(

(1− ψ∗)Λ∗ + ψ∗λ∗i,Pa(j), (1− ψ2∗)σ2∗
λ

)

for j ∈ Mi. (22)

The above conditional normal assumptions lead to the joint multivariate normal specification given above for the
branch lengths of lineage i conditional on the population parameters, Θ∗

pop:

γ̃∗i | Θ∗
pop ∼ MVNorm(µ∗

γ̃i
,Σ∗

γ̃i
) (23)

where, due to the AR(1) assumption,

Σ∗,−1
γ̃i,j,k

= 0 if j ̸= k, j ̸= Pa(k) and k ̸= Pa(j). (24)

In other words, branch lengths of cells that are not part of the same ‘triad’ (a given mother cycle, the subsequent
mother cycle, and daughter cycle) are independent of one another given all other branch lengths in the lineage tree.
It is also important to note that the daughter and second mother cycles within a triad are conditionally independent
of one another given the first mother cycle.

To get parameter inferences on the original scale, we use the following conversions from multivariate log-normal
theory [13]:

Λ∗ = 2log(Λ)− (1/2)log(σ2
λ + Λ2)

σ2∗
λ = log(

σ2
λ + Λ2

Λ2
)

∆∗ = 2log(∆)− (1/2)log(σ2
δ +∆2)

σ2∗
δ = log(

σ2
δ +∆2

∆2
)

ψ∗ =
log(ψ σ

2
λ

Λ2 + 1)

log(
σ2
λ+Λ2

Λ2 )

ρ∗ =
log(ρσ

2
λ

Λ2 + 1)

log(
σ2
λ+Λ2

Λ2 )

φ∗ =
log(φσδσλ

∆Λ + 1)
√

log(
σ2
δ+∆2

∆2 )
√

log(
σ2
λ+Λ2

Λ2 )
.
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6 Correlation between origin cell branches

Our assumption of a first-order autoregressive dependence structure coupled with the fact that the founder cell’s full
cell-cycle duration is unobserved induces correlation between the branch lengths of the mother and daughter origin
cells of each sub-lineage (main manuscript, Figure 7). Thus, we model the λ∗s and δ∗s of the origin cells of each
sub-lineage with a full joint distribution (Pr(λ∗i,MO ,λ

∗
i,DO, δ

∗
i,DO)) as follows:

λ∗i,j ∼ Norm(Λ∗,σ2∗
λ ) for j ∈ MOi (25)

δ∗i,k | λ∗i,j ∼ Norm
(

∆+ (ψ∗φ∗
σ∗
δ

σ∗
λ

(λ∗i,j − Λ∗),σ2∗
δ (1− (ψ∗φ∗)2)

)

for k ∈ DOi and j ∈ MOi (26)

λ∗i,k | δ∗i,k,λ
∗
i,j ∼ Norm

(

Λ∗ +
ρ∗φ∗(1 − ψ2∗)

1− (ψ∗φ∗)2
σλ
σδ

(δ∗i,k −∆∗) +
ψ∗ρ∗ 1−φ2∗

1−(ψ∗φ∗)2
(λ∗i,j − Λ∗),

[

σ2∗
λ

1− (ψ∗φ∗)2 − ρ2∗(φ2∗ − 2(φ∗ψ∗)2 + ψ2∗)

1− (ψ∗φ∗)2

]

)

for k ∈ DOi and j ∈ MOi. (27)

7 Cell-specific unbudded periods

Besides cell-to-cell variation in branch lengths (λi,js and δi,js), variation in the proportion of λ cells spend in the
unbudded state might also be expected. To address this possibility, we assign a parameter βi,j to each cell. βi,j takes
a value between 0 and 1 and is the proportion of λi,j during which cell j from lineage i is unbudded. We again use
a hierarchical prior specification to tie these parameters across cells in a lineage. As the βi,js might differ between
mother and daughter cells, we use different hierarchical priors depending on the cell’s type. So:

βi,j ∼ Beta(µmηm, (1− µm)ηm) for j ∈ Mi (28)

and
βi,j ∼ Beta(µdηd, (1− µd)ηd) for j ∈ Di. (29)

Here, µm and µd represent the expected proportions of λ spent in the unbudded state and ηm and ηd are the prior
degrees of freedom for mothers and daughters, respectively. We discuss the prior distributions on the hyperparameters
(µm, µd, ηm, and ηd) in the next section.

8 Prior distributions on model parameters

In adopting a fully Bayesian approach to parameter inference, we incorporated empirical knowledge of budding yeast
cell division in prior distributions on different model parameters. Specifically:

µm, µd ∼ Beta(2.4, 17.6) (30)

ηm, ηd ∼ Gamma(27.1, 1.4) (31)

Λ ∼ Norm(78.2, 18.22) (32)

∆ ∼ Norm(55.0, 22.52) (33)

ψ, ρ,φ ∼ Unif(−1.0, 1.0) (34)

σ−2
δ ,σ−2

λ ∼ Gamma(0.95, 4.48) (35)

τ−2 ∼ Gamma(4.08, 10.18). (36)
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Many of these priors were biologically motivated and made sufficiently weak so as to allow the data to overwhelm
them. Priors on Λ and ∆ were based on observations of these estimated quantities in previous work with cell
populations [3, 4]. The priors are diffuse in that we allow for Λ to take values between 41.8 and 114.6 minutes and
for ∆ to take values between 10 and 100 minutes with ∼95% probability. The Beta(2.4, 17.6) priors on µm and µd

indicate an a priori expectation that cells spend 12% of their λ branch durations in the unbudded state. Priors on
the hyperparameters ηm and ηd reflect a belief that prior degrees of freedom are less than 30 with high probability
(∼0.99) The Unif(−1.0, 1.0) priors on the correlation parameters reflect the lack of strong a priori information with
mean prior correlations of 0. The Gamma(0.95, 4.48) priors on the precision rather than the variance in G1 phase
delays (σ2

δ ) and cell-cycle durations (σ2
λ) reflect prior beliefs that the standard deviations of the cell-specific branch

lengths are less than 15 and greater than 1 with high probability (∼0.965). The Gamma(4.08, 10.18) prior on precision
in measurements of budding and division ( 1

τ2 ) is based on the belief that measurements are approximately within 6
minutes of their true values.

9 Posterior computation and sampling by Markov Chain Monte Carlo

We fit the model to the single-cell data using JAGS or Just Another Gibbs Sampler ([5]; mcmc-jags.sourceforge.net).
The program builds a Markov chain Monte Carlo (MCMC) sampler based on the dependencies between and distri-
butional assumptions on variables in a graphical model. The first 10,000 iterations were counted as burn-in to allow
the sampler to find modes of high posterior probability. The subsequent 250,000 iterations were retained for each
parameter. The MCMC chain was initialized for each dataset with sample-based estimates of each parameter. As
we did not directly observe Λ or ∆, we used sample estimates of the budded and unbudded durations of each cell’s
cell cycle, respectively. Likewise, we initialized σ2

λ and σ2
δ with the sample variances of the budded and unbudded

cell-cycle durations. The initial points of the correlation parameter chains were the sample correlations between suc-
cessive mother budded durations (ψ), mother and daughter budded durations (ρ), and mother budded and daughter
unbudded durations (φ). For τ2, we used the prior mean as the MCMC starting point.

To incorporate the cell-specific beta parameters, we needed to extend JAGS with a custom helper function called
diag that took a vector of parameters as argument and returned a matrix with the vector argument as its diagonal.
We used the excellent tutorial on JAGS extensions by Wabersich [6] to implement this helper function. Our modified
version of JAGS is available upon request.

The number of samples for each parameter was sufficient to estimate the 2.5th quantile of each parameter’s
marginal posterior distribution to within a 0.01 margin error with 90% probability by the Raftery-Lewis convergence
diagnostic ([7]; cran.r-project.org/package=coda).

10 Evidence for longer S/G2/M duration in daughters from hierarchical
model inferences

We find corroboration for our previous analysis of differences in S/G2/M duration between mother and daughter
cells: the estimates for µm and µd (expected unbudded proportions of mother and daughter λ’s; Table V in main
manuscript). We find that the expected mother budded period (1 − µm) is mildly (4% of total cell-cycle duration)
shorter than the daughter budded period in wild-type cells growing in glucose, with the posterior probability of
(1−µm) < (1−µd) being 0.981. In 6×CLN3 cells, this difference in budded duration increases with mothers showing
a nearly 8% shorter average budded duration and the posterior probability of (1 − µm) < (1 − µd) being 0.996. In
glycerol/ethanol, differences between mother and daughter budded durations are less pronounced. Although evidence
for daughters spending more time in the budded proportion of the cell cycle was still strong (posterior probability of
(1− µm) < (1 − µd) being 0.892), daughters only took ∼3% longer in their budded durations than their mothers.

11 Validation of different models of correlation with leave-one-out cross-
validation

Different values for the the correlation parameters we introduce (ρ, ψ, and φ) correspond to different types of
dependence structure among the cell-specific branch lengths of the branching process. To determine what model
of correlation was most likely a posteriori, we performed a leave-one-out cross-validation analysis, predicting the
observed division duration of each left-out cell. Leaving out random cells from each lineage wouldn’t reveal the
utility of the correlation parameters since some cells (e.g. origin cells) don’t depend on those parameters. So, we
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collected all ‘leaf’ cells or cells at the leaves of each lineage tree from each dataset. If origin cells were collected
(due to small lineage trees), these cells were removed from the leave-out set. This procedure produced 113 cells from
wild-type in glucose, 52 cells from 6×CLN3 cells in glucose, and 76 cells from wild-type in glycerol/ethanol.

For each left-out cell, we removed the observed budding and division durations from the data and fit models by
MCMC with the remaining data in which one or a combination of the correlation parameters were set to 0. We
also fit the full model in which all three correlation parameters were allowed to vary for a total of eight models
(up to three parameters to include ⇒ 23 = 8 total possible models). For each model fitting, we ran JAGS for 10k
burn-in iterations and 50k total iterations. We thinned the retained parameter chains, keeping every 10th iteration
for a final set of 4k samples. Among these parameter samples, we retained samples of the cell-specific branch length
of the left-out cell j’s mother (λ∗i,Pa(j)), of Λ

∗ and σ∗
λ (also of ∆∗ and σ∗

δ if the left-out cell was a daughter), of

any varying correlation parameters (samples set to 0 if correlation parameter was not allowed to vary) and of the
measurement error variance τ2. These samples were used to generate samples of the left-out cell’s branch length
λi,j . These samples were then used to compute posterior samples of the conditional mean and variance of the normal
distribution generating the left-out cell’s division duration. These samples are samples of the parameters of the
posterior predictive distribution for each left-out cell.

To evaluate the predictive accuracy of each model, we evaluated the density of the each left-out cell’s observed
division duration under the predictive normal distribution defined by each posterior sample of the left-out cell’s
conditional mean and variance. The rationale here is if the correlation parameters are helping explain variation in
cell-specific branch lengths, dropping those parameters will reduce accuracy in predicting a left-out cell’s division
duration, reflected in a lower density under the predictive distribution. We then took the mean of predictive densities
evaluated at each sample for each left-out cell to get a single value of the expected predictive density for a left-out
cell under each model. We then computed the natural logarithm of these expected densities for each left-out cell
and each model. This approach is similar in spirit to other Bayesian model selection methods based on the posterior
predictive density [14, 15].

As we had log expected predictive density values for each left-out cell on each of the eight tested models, we
performed a Wilcoxon paired rank sum test to evaluate whether the log density under one model was significantly
different than the log density under the null model (where all correlation parameters are set to 0.0). We also computed
95% confidence intervals for these model differences. Results appear in Table 2. As expected, no significant differences
in model log density (compared with a model with no correlation; ψ = 0, φ = 0, ρ = 0) were observed for wild-type
cells in glucose and 6×CLN3 cells. Conversely, and consistent with our previous analyses, we did observe significant
differences in model log density for wild-type cells grown in glycerol/ethanol. In general, models in which ψ (mother-
mother correlation) could vary showed significantly higher log density compared with the baseline zero-correlation
model while models where ψ was fixed to 0 generally led to lower relative log density.

12 Modeling effects of age and time spent in culture on cell-cycle pro-
gression

Replicative age (the number of divisions undergone by a cell) is one potential source of variation in cell-cycle progres-
sion unaccounted for in our hierarchical model. If population average cell-cycle progression did have some dependence
on replicative age, one might observe a correlation between mother and/or daughter cycles due solely to this drift.
However, studies suggest that mean cell-cycle duration is roughly constant for at least the first 10 cycles of a cell’s
life [9, 10]. Furthermore, the probability of finding a cell of replicative age 10 or more is vanishingly small since the
younger cells outnumber older ones in an exponentially growing population (see [10] and references therein). Thus,
for our analysis, we did not consider replicative age a likely source of variation in cell-cycle progression.

However, population average cell-cycle duration might still depend on experimental factors. For example, cell-
cycle progressionmight depend on the number of cycles a cell spends in culture or the amount of exposure to excitation
light during fluorescence microscopy. Thus, we extended our hierarchical model to include potential technical sources
of variation leading to drift in expected cell-cycle duration. Rather than assume a constant population average base
cell-cycle duration (Λ∗; on natural logarithmic scale), we allowed expected cell-cycle duration to vary with time spent
on the agar slab by both cohorts of cells (cohort time; Figure 7A) and individual cells (cell time; Figure 7B). We
assigned culture times under the two different cases to each cell cycle in each lineage of the glycerol/ethanol dataset.
In the case of cell time, a cell j’s expected duration on the logarithmic scale (Λ∗

ai,j
) was indexed by the number of

cycles spent by the cell on the slab since its birth (ai,j). Mother origin cycles—being one cycle removed from the
first cell on the slab—were assigned the value 2. All daughter and daughter origin cell cycles were assigned the value
1. This culture time was incremented for each successive cycle. For example, a daughter cell cycle would be assigned
the value 1, her subsequent cycle would be assigned the value 2, and so on. Likewise, the cycle following the mother
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Table 2: Wilcoxon rank sum test results and 95% confidence intervals for leave-one-out cross-validation analysis.
Dataset Model Median log-Ratio (95% CI) P-value

WT (Glucose) Full −1.023 (−3.564,4.550) 0.902
ψ = 0 0.627 (−1.838,7.009) 0.385
φ = 0 −0.647 (−2.893,1.914) 0.563
ρ = 0 −0.567 (−2.147,4.803) 0.624

ψ = 0,ρ = 0 0.468 (−1.297,5.377) 0.385
ψ = 0,φ = 0 1.537 (−0.954,4.379) 0.195
ρ = 0,φ = 0 −0.105 (−2.426,1.760) 0.830

ψ = 0,ρ = 0,φ = 0 0 (0,0) NA
6xCLN3 (Glucose) Full 0.024 (−5.383,3.521) 0.809

ψ = 0 0.722 (−2.768,4.960) 0.492
φ = 0 1.747 (−2.020,3.982) 0.341
ρ = 0 1.843 (−1.867,4.581) 0.314

ψ = 0,ρ = 0 0.830 (−1.964,3.501) 0.575
ψ = 0,φ = 0 0.558 (−1.698,3.727) 0.475
ρ = 0,φ = 0 1.304 (−1.563,4.999) 0.319

ψ = 0,ρ = 0,φ = 0 0 (0,0) NA
WT (Gly/Eth) Full 16.601 (1.614,35.656) 0.036

ψ = 0 −7.556 (−23.100,−5.209) 0.0001
φ = 0 25.065 (4.523,39.794) 0.016
ρ = 0 9.266 (−4.905,22.555) 0.139

ψ = 0,ρ = 0 −4.565 (−15.655,−1.399) 0.014
ψ = 0,φ = 0 −5.066 (−9.509,3.167) 0.233
ρ = 0,φ = 0 23.431 (7.930,34.727) 0.002

ψ = 0,ρ = 0,φ = 0 0 (0,0) NA
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Figure 7: Lineage trees with two different codings of elapsed time in culture. In (A), integer values are assigned to
cohorts of cells (cohort time) indicating the number of waves of division since the start of the time lapse experiment.
So, the first cell observed is assigned the value 1, cells in the subsequent wave of division are assigned the value 2,
etc. In (B), integer values are assigned to cycles of each cell, indicating the number of cycles that cell has spent in
the culture environment. Thus, the first cell observed on the plate is assigned the value 1. Likewise, newborn cells
receive the value 1. The second cycle of these cells is assigned the value 2, and so on.

origin’s first cell cycle would be assigned the value 3, the subsequent cycle would take the value 4, etc. In the case of
cohort time, we assigned indices (ai,j) not to individual cell cycles but rather to the cycles of all cells in a particular
wave of division. For instance, the cycle of the first cells in a lineage (either a mother origin or daughter origin’s
first cycle) would be assigned the value 1. At division, the mother or daughter origin cell would then produce a
mother and a daughter, each assigned the value 2. Those cells would then produce mother and daughter cells with
the value 3, and so on. We then augmented our cell division data with these elapsed time index assignments and fit
the extended model (described in detail below) to the glycerol/ethanol data to infer time-specific expected cell-cycle
durations (Λa; on the original scale).

Accounting for effects of culture times on population average cell-cycle duration involves some changes to the
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Figure 8: Shown are density estimates based on posterior samples of cell-time-specific Λas. The densities practically
overlap one another and show no ordering with respect to elapsed time.

16



Table 3: Posterior inferences (modes and 95% highest posterior density intervals) for cell time-specific Λas
Parameter Inferences

Λ1 143.04 (119.14,151.05)
Λ2 147.66 (140.62,155.53)
Λ3 144.94 (135.93,152.63)
Λ4 142.14 (132.24,151.00)
Λ5 144.88 (133.87,156.53)

conditional and marginal specification for mother and daughter cell-specific λ∗i,j ’s.

δ∗i,j | λ
∗
i,Pa(j),Θ

∗
pop ∼ Norm(∆∗ + φ∗(

σ∗
δ

σ∗
λ

)(λ∗i,Pa(j) − Λ∗
ai,Pa(j)

), (1− φ2∗)σ2∗
δ ) for j ∈ Di (37)

λ∗i,j | λ
∗
i,Pa(j),Θ

∗
pop ∼ Norm(Λ∗

ai,j
+ ρ∗(λ∗i,Pa(j) − Λ∗

ai,Pa(j)
), (1− ρ2∗)σ2∗

λ ) for j ∈ Di (38)

λ∗i,j | λ
∗
i,Pa(j),Θ

∗
pop ∼ Norm(Λ∗

ai,j
+ ψ∗(λ∗i,Pa(j) − Λ∗

ai,Pa(j)
), (1− ψ2∗)σ2∗

λ ) for j ∈ Mi. (39)

Λ∗
ai,j

and Λ∗
ai,Pa(j)

are expected population baseline cell-cycle durations (on log scale) for cell j and its parent,

indexed by the respective culture times of those cells (ai,j and ai,Pa(j)). For example, if a mother cell j ’s cycle was
assigned culture time equal to 4, its previous (Pa(j)) cycle would have culture time equal to 3. Thus, the conditional
expectation for mother cell j ’s λ∗i,j parameter would be:

E[λ∗i,j |λ
∗
i,Pa(j)] = Λ∗

4 + ψ(λ∗i,Pa(j) − Λ∗
3). (40)

These model changes are also reflected in the distributions of λ∗i,j ’s for the mother and daughter origin cells:

λ∗i,j ∼ Norm(Λ∗
ai,j

,σ2∗
λ ) for j ∈ MOi, (41)

δ∗i,k|λ
∗
i,j ∼ Norm

(

∆+ (ψ∗φ∗
σ∗
δ

σ∗
λ

(λ∗i,j − Λ∗
ai,j

),σ2∗
δ (1 − (ψ∗φ∗)2)

)

for k ∈ DOi and j ∈ MOi, (42)

λ∗i,k|δ
∗
i,k,λ

∗
i,j ∼ Norm

(

Λ∗
ai,k

+
ρ∗φ∗(1− ψ2∗)

1− (ψ∗φ∗)2
σ∗
λ

σ∗
δ

(δ∗i,k −∆∗) +
ψ∗ρ∗(1 − φ2∗)

1− (ψ∗φ∗)2
(λ∗i,j − Λ∗

ai,j
),

[

σ2∗
λ

1− (ψ∗φ∗)2 − ρ2∗(φ2∗ − 2(φ∗ψ∗)2 + ψ2∗)

1− (ψ∗φ∗)2

])

for k ∈ DOi and j ∈ MOi. (43)

Marginally:
λ∗i,j ∼ Norm(Λ∗

ai,j
,σ2∗
λ ). (44)

To borrow strength for the estimates of these indexed parameters, we place a normal prior on the Λa’s:

Λa ∼ Norm(Λ,σ2
aλ
) (45)

with

Λ∗
a = 2log(Λa)−

log(σ2
λ + Λ2

a)

2
. (46)

We are effectively introducing a new layer in the model hierarchy between the asymmetric branching process param-
eters (γ̃i) and the population-level parameters. For the variance parameter σ2

aλ
, we expect a priori that variance in

the time-specific means is similar to cell-to-cell variation in cell-cycle durations. Thus, we use a Gamma(0.95, 4.48)
prior distribution.

Drift in mean base cell-cycle duration would be reflected in posterior inferences for the time-specific mean base
cell-cycle durations (Λa): posterior confidence intervals for the parameters would not overlap one another or would
be arranged in some order with respect to elapsed time. Our inferences under the two different elapsed time codings
did not reveal obvious differences between the time-specific mean base cell-cycle durations (Figures 8 and 9; Tables 3
and 4). As such, these experimental factors are unlikely to explain the correlation in cell-cycle progression we see
between successive mother cycles in glycerol/ethanol.
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Figure 9: Shown are density estimates based on posterior samples of cohort-time-specific Λas. As in Figure 8, there
is no obvious pattern in the Λa’s.

Table 4: Posterior inferences (modes and 95% highest posterior density intervals) for cohort time-specific Λas
Parameter Inferences

Λ1 141.41 (132.69,149.12)
Λ2 149.72 (142.26,157.13)
Λ3 145.07 (137.64,152.30)
Λ4 144.61 (134.10,153.79)
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