
Supplementary Figure 1. Magnetisation configuration used for REXS simulations.

a, Periodic real-space lattice of the topological motif. The cropped image shows a hexag-

onally ordered array of N = 1 motifs, i.e., the skyrmion lattice as observed in Cu2OSeO3.

Note that, in principle, the motif ordering can take any symmetry, such as two-fold, three-

fold, or four-fold, which always give rise to the same polarisation-dependent REXS results.

Calculated magnetic diffraction patterns in reciprocal space for the real-space spin config-

uration shown in a, for b σ-polarised and c π-polarised incident x-rays, respectively. The

material parameters used in the calculation are those of Cu2OSeO3 and the photon energy

is 931.25 eV.
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Supplementary Figure 2. Comparison between different simulation methods. a-c,

Polarisation-azimuthal maps for the N = 1 motif and, d-f, for the N = 3 motif, calculated

using three different methods: a,d are obtained directly using analytical solutions, corre-

sponding to Method (I) (see text for details); b,e are calculated numerically using Method

(II); and c,f are rigorous numerical calculations using Method (III).
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Supplementary Figure 3. Robustness of the measurement principle for varying ra-

dial profile. a, Three different Θ(ρ) profiles that govern different radial spin distributions,

labelled as (i), (ii), and (iii), are used for the subsequent numerical calculations. Note that

profile (i) represents a linear relationship, which is equivalent to the one-dimensional helix

modulation case. b-d, Circular dichroism (CD) profiles, and, e-g, polarisation-azimuthal

maps (PAMs) calculated based on the three different radial functions. It can be seen that

both CD and PAM are independent of the radial profile, confirming the robustness of the

measurement principle.
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Supplementary Figure 4. Robustness of the measurement principle for varying χ

and λ. a, Real-space spin configuration with N = 3, however, having a different χ value

compared to the configuration shown in Fig. 2c in the main text. b, Calculated circular

dichroism (CD) profile, and c, polarisation-azimuthal map (PAM). d, Another N = 3 spin

configuration with opposite polarity λ compared to a. e, Calculated CD profile, and f, PAM

pattern. Note that the periodicities of the intensity modulation for both CD and PAM are

independent of χ and λ, again confirming the robustness of the measurement principle.
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Supplementary Figure 5. Simulation results for non-integer winding numbers. a,d,

Real-space spin configuration, and b,e, Circular dichroism, and, c,f, polarisation-azimuthal

maps for, a-c, N = 1.7 and, d-f, N = 3.3, respectively.
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Supplementary Figure 6. Determination of the winding number using LTEM and

REXS. a,b, Magnetisation configuration for a topologically trivial N = 0 vortex, and,

c, underlying one-dimensional helix. e, Simulated LTEM (Lorentz transmission electron

microscopy) image for both the N = 0 and N = 1 cases, in which essentially only the m1

and m2 components of the magnetisation distribution are mapped using the transport-of-

intensity equation method [1]. d, Circular dichroism (CD) plot showing a fully suppressed

signal for the N = 0 case. f,g, Magnetisation configuration for a (standard) N = 1 chiral

skyrmion, and, h, underlying one-dimensional helix. Whereas LTEM gives the same contrast

forN = 0 andN = 1, the CD plot in i shows the contrast consistent with anN = 1 skyrmion.
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Supplementary Note 1. ROBUSTNESS OF THE MEASUREMENT PRINCIPLE

Supplementary Figure 1a shows as an example of the cropped simulation object with

N = 1. The motifs are generated based on Eq. (2) (see main text), and assembled into

a hexagonally ordered two-dimensional periodic lattice. The symmetry of the lattice does

not change any results, as we only concentrate on one wavevector at different Ψ. In the

calculations we use a periodic motif lattice size of 300 × 300 nm2. The calculated diffraction

intensity, represented in reciprocal space using Eq. (7) (see main text), is plotted in Sup-

plementary Figure 1b and 1c, where the incoming light is at β = 0◦ and 90◦, respectively.

On the other hand, we use the one-dimensional helix approximation method to perform

the numerical calculations for the same object, in order to confirm the equivalence of both

methods.

In summary, three theoretical methods are used for calculating the CD and PAM as a

function of the topological winding number, in order to demonstrate the consistency of the

results:

(I) Analytical solution based on Eq. (3) for PAM and Eq. (4) for CD in the main text.

(II) Construction of the skyrmion configuration using the one-dimensional helix approxi-

mation model. For the azimuthal angle Ψ, the diffractive x-rays are sensitive to the

structure factor of the spin helix, obtained by rotating the helix NΨ from the base

position. The CD and PAM are subsequently calculated numerically.

(III) Generation of a two-dimensional skyrmion lattice using the rigorous solution given by

Eq. (2) in the main text. The CD and PAM are then numerically obtained using Eq.

(7) (see main text).

We first demonstrate the consistency between the three calculation methods, which fur-

ther confirms the validity of the analytical solution. Supplementary Figure 2 shows the

comparison for PAMs obtained using the different methods. The top and bottom rows cor-

respond to N = 1 and N = 3 systems, respectively. Plots in the left column arise directly
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from Eq. (4) (see main text) [method (I)]. The plots in the middle column are showing the

numerical calculation results obtained using method (II), while those in the right column are

the rigorous numerical results using method (III). As can be seen, the general multiple hump

features are consistent, which are directly linked to the winding number. The differences

in some fine details are due to the exact values of the parameters used in the numerical

calculations, such as MS, k, and α. Also, we found that the real-space boundaries, and the

simulation mesh structure can cause slight deviations compared with Eq. (4) (see main text),

which can thus be regarded as simulation artefacts. This consistency demonstrates that the

concept of the one-dimensional spin helix approximation indeed allows us to construct a

topological spin structure with winding number N , and that the analytical solution derived

this way is valid.

Next, we show that other parameters that describe a general N -skyrmion, i.e., the Θ(ρ)

function, λ, and χ, do not affect the validity of the measurement principle. First, we discuss

the dependence on Θ(ρ), which can be regarded as the radial profile of the out-of-plane

magnetisation component, m3, from the core to the boundary. For an axially symmetric

entity, Θ(ρ) usually satisfies the Euler equation [2]. However, for our purpose, changing this

profile does not affect the CD and PAM features at all, as long as the boundary condition

is met. We use the N = 1 skyrmion as an example. As shown in Supplementary Figure 3a,

ρ = 0 nm corresponds to the real-space skyrmion vortex core, while the maximum value of

ρ in the plot corresponds to the radius of a skyrmion disk in our calculations. Its value is

related to the helix pitch by (60 nm×2/
√

3)/2. Three different Θ(ρ) profiles, labelled as (i),

(ii), and (iii), are used in the simulation for the purpose of comparison. All of them have

the same homotopy. As shown in Supplementary Figures 3b-g for both CD and PAM, the

three different profiles do not induce any significant differences. They are nearly identical,

except for the slight difference in amplitude of the cross-section. This is to be expected as

the measurement principle specifies the measurement under diffraction conditions, therefore

the detailed modulation profile along the propagation direction is only reflected in the total

scattering amplitude, not in the polarisation dependence.

Second, we discuss the influence of χ and λ on the CD and PAM patterns. Supplemen-

tary Figure 4a shows another N = 3 topological object, which is essentially a continuous

transformation from the object shown in Fig. 2c (see main text). This homotopic trans-

formation can be achieved by adjusting χ. As shown in Supplementary Figures 4b and 4c,
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compared to Fig. 2g and 2k in the main text, the CD and PAM patterns have identical

periodicities, and the only difference is a linear phase shift. This is valid for all cases in our

numerical studies. Moreover, as shown in Supplementary Figure 4d-f, flipping the polarity

of the topological object does not alter the PAM, however, it imposes a phase shift on the

CD profile. Therefore, the use of the phase parameters Φ1 and Φ2 in Eqs. (3) and (4) (see

main text) can generalise the principle to all homotopies arising from variations in χ and λ.

To briefly summarise, our polarisation-dependent REXS method, represented by the cir-

cular dichroism plots and the polarisation-azimuthal maps, is only sensitive to the winding

number and has a one-to-one correspondence to this topological quantity. Any homotopy

change will not affect the outcome of the measurement. In other words, the method itself

can be seen as ‘topologically protected’.

Supplementary Note 2. NON-INTEGER WINDING NUMBERS

Here we discuss the case of non-integer winding numbers. Note that non-integer winding

numbers correspond to energetically unstable states, due to the appearance of the singu-

larities within their spin structures. As shown in Supplementary Figures 5a and 5d, the

abrupt change of the spins across the red lines will cost extremely high energy, leading to

the unstable states. However, we will calculate the corresponding CD and PAM in order

to demonstrate that our new technique is only sensitive to spin configurations with integer

topological winding numbers. Supplementary Figures 5a-c show the magnetisation distribu-

tion, CD and PAM for a N = 1.7 motif lattice. First, the CD shape is largely distorted from

a well-defined sinusoidal curve shape. Second, in PAM, the humps are no longer of equal

height due to the non-integer topology. These features can also be found for the N = 3.3

case, shown in Supplementary Figures 5d-f. The asymmetry is even more pronounced in

CD, in which the periodically modulated peaks do not have equal height. This is also clearly

shown in their PAM relationship.
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Supplementary Note 3. DETERMINATION OF THE TOPOLOGICAL WINDING

NUMBER USING LORENTZ TRANSMISSION ELECTRON MICROSCOPY

Finally, we show an example of an attempt to obtain the topological winding number

from Lorentz transmission electron microscopy (LTEM) images. Due to the measurement

principle of LTEM [1], the out-of-plane magnetisation component (m3) is not obtained.

Nevertheless, as described by Eq. (1) in the main text, the m3 component is a necessary

parameter that also governs the winding number. As a result, the LTEM image, as shown

in Supplementary Figure 6e, will appear identical for certain N = 0 vortices and N = 1

skyrmions. Consequently, LTEM can not be used for the unambiguous determination of the

winding number as many different spin configurations can essentially give the same LTEM

contrast.

On the other hand, as expressed by Eq. (7) (see main text), polarisation-dependent REXS

is sensitive to all three magnetisation components. As a consequence, the calculated CD

signal as shown in Supplementary Figure 6d will be suppressed for N = 0 type of vortices,

while PAM shows two humps. Combining the CD and PAM results, one can unambiguously

conclude that the motif is a N = 0 vortex. This is in stark contrast to the CD and PAM

results for an N = 1 skyrmion, as shown in Supplementary Figure 6i. Therefore, our method

is a direct experimental technique that can accurately measure N .
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