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Supplementary Note 1 Community dynamics, feasibility, and stability

We consider an ecological community composed of S populations, whose dynamics is described

by the following equations:
dni
dt

= ni

(
ri +

S∑
j=1

Aijnj

)
, (1)

where ni is the population abundance of species i and ri is its intrinsic growth rate, and Aij is the

effect of a unit change in species j’s density on species i’s per capita growth rate. For notational

convenience, we collect the coefficients Aij into the interaction matrix A, and ni and ri into the

vectors n and r, respectively.

In principle, the interaction matrix A may depend on n. We discuss this more general case

in section Supplementary Note 13. In the following, we consider the simpler case of A being

independent of n; then, equation (1) is a general system of Lotka–Volterra population equations.

A vector n∗ is a fixed point (equilibrium) if

0 = n∗i

(
ri +

S∑
j=1

Aijn
∗
j

)
(i = 1, 2, . . . , S) . (2)

A fixed point is feasible if n∗i > 0 for all i. A feasible fixed point (if it exists) is then a solution to

the equation

ri = −
S∑
j=1

Aijn
∗
j , (3)
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and therefore, assumingA is invertible,

n∗i = −
S∑
j=1

(A−1)ijrj . (4)

A fixed point n∗i is locally stable if the system returns to it following any sufficiently small pertur-

bation of the population abundances. Introducing ni = n∗i + δni in equation 1 and assuming that

δni is small, we obtain, by expanding around δni = 0,

dδni
dt

=
S∑
j=1

Mijδnj , (5)

where Mij is the (i, j)th entry of the Jacobian evaluated at the fixed point (also called the commu-

nity matrix), which, in the case of equation 1, reduces to

Mij = n∗iAij = −

(
S∑
k=1

(A−1)ikrk

)
Aij . (6)

Substituting into equation 5, we get

dδni
dt

= −
S∑
j=1

(
S∑
k=1

(A−1)ikrk

)
Aijδnj . (7)

There are two possible scenarios for the dynamics of equation 5. If all eigenvalues of M have

negative real parts, then the perturbation δn decays exponentially to zero and n∗i is locally stable. If

at least one eigenvalue ofM has a positive real part, then there exists an infinitesimal perturbation

such that the system does not return to equilibrium. If we order the eigenvalues λi ofM according

to their real parts, i.e., <(λ1) > <(λ2) > · · · > <(λS), then stability depends exclusively on

<(λ1): if it is negative, n∗i is dynamically locally stable; otherwise, it is unstable [1].

A fixed point is globally stable if it is the final outcome of the dynamics from any initial

condition involving strictly positive population abundances.
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Supplementary Note 2 Disentangling stability and feasibility

As we can see from equations 4 and 7, both feasibility and stability depend on both r andA and, at

least in principle, a fixed point can be stable or unstable, independently of the fact that it is feasible

or not.

We want to study the proportion of conditions (i.e., the number of combinations of the growth

rates r out of all possible combinations) leading to coexistence, i.e., leading to stable and feasible

equilibria. Therefore in principle we should, for a fixed matrix A, look for growth rates r that

satisfy both stability and feasibility. In probabilistic terms, we want to measure the likelihood that

a random combination of the intrinsic growth rates corresponds to a stable and feasible solution.

In the case of equation 1, it is possible to disentangle feasibility and stability by applying

a mild condition on the interaction matrix A. To this end, we introduce some terminology [2,

section 2.1.2]:

• Stability. A real matrixB is stable if all its eigenvalues have negative real parts.

• D-stability. A real matrix B is D-stable if DB is stable for any diagonal matrix D with

strictly positive diagonal entries.

• Diagonal stability. A real matrix B is diagonally stable if there exists a positive diagonal

matrixD such thatDB +BT D is stable (whereBT is the transpose ofB).

We also consider

• Negative definiteness (in a generalized sense). A real matrix B is negative definite if
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∑
ij xiBijxj < 0 for any non-zero vector x [3].

These properties are closely related to each other [2, 4]:

Negative definiteness =⇒ Diagonal stability =⇒ D-stability =⇒ Stability (8)

• Negative definiteness =⇒ Diagonal stability. A matrixB is negative definite if and only

if all the eigenvalues of B + BT are negative [3]. If this condition hold, then the positive

diagonal matrix satisfying the definition of diagonal stability is simply the identity matrix.

• Diagonal stability =⇒ D-stability. See the book by Kaszkurewicz & Bhaya for the

proof [2, lemma 2.1.4].

• D-stability =⇒ Stability. This follows from the definition of D-stability when D is the

identity matrix.

In the case of equation 1, those conditions applied to the matrixA are related to the stability

of the system. One can use the definition of the community matrix (equation 6) to show that D-

stability ofA implies the local asymptotic stability of any feasible fixed point. This is because

the community matrix with entries Mij = n∗iAij can be written as N A, where N is the diagonal

matrix with Nii = n∗i . If the fixed point is feasible and A is D-stable, then local asymptotic

stability is guaranteed. Moreover it is possible to show [5, 6] that diagonal stability of A =⇒

global stability.

Thus, we have a condition onA that makes it possible to disentangle the problems of stability

and feasibility: A is negative definite =⇒ global stability of the feasible fixed point [7].

Therefore, if we assume A is negative definite, then feasibility of the equilibrium is sufficient
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to guarantee its global stability as well, i.e., feasibility guarantees globally stable coexistence.

Consistently with this, it is known that the largest eigenvalue of (A+AT )/2 is always larger than

or equal to the real part of A’s leading eigenvalue [8], i.e. negative definiteness implies stability.

While this was indeed observed before, it is important to underline that, in the case of ref. [8], this

property was considered on the community matrix M (which also depends on the fixed point’s

position in phase space) and not on the interaction matrixA.

Since we are interested in studying how interactions (i.e., the matrix A) determine coex-

istence, and which properties of the former determine the latter, we will restrict our analysis to

negative definite matrices A and focus only on the problem of feasibility. This condition has the

advantage of being analytically computable for large random matrices (see section Supplementary

Note 5.1).

Supplementary Note 3 Geometrical properties of the feasibility domain

In section Supplementary Note 2 we showed how to separate feasibility and stability, i.e., we have

a sufficient condition on the interaction matrix that guarantees (global) stability of the feasible

fixed point. The problem of determining the size of the coexistence domain is therefore reduced to

that of determining the size of the feasibility domain. The ecological interpretation of this volume

is the proportion of different conditions leading to feasible equilibria out of all possible conditions.

The larger this volume is, the higher the probability that the system is able to sustain biodiversity.

In terms of equation 1, we want to quantify the proportion of growth rate vectors r corresponding

to a feasible fixed point.

This geometrical approach was pioneered in [1] where the space of feasible solution was
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studied for dissipative systems, and the size of that domain was computed in the case S = 3 (see

section Supplementary Note 12).

At this point, it is important to observe that if a vector r corresponds to a feasible solution,

then cr, c being an arbitrary positive constant, also corresponds to a feasible solution. This is

because the equilibrium solution n∗i is given by equation 4, which is linear in ri. Therefore, the

equilibrium corresponding to cri is simply cn∗i , and since c is positive, cn∗i is also feasible.

This fact implies that, given a large number of growth rate vectors r, the expected proportion

of vectors corresponding to a feasible fixed point is independent of r’s norm. In other words, r is

feasible if and only if r/‖r‖ is feasible, where ‖r‖ =
√∑

i r
2
i is the Euclidean norm of r. The

proportion of feasible growth rates among all possible ones is therefore equal to the proportion of

feasible growth rates calculated using only growth rate vectors with ‖r‖ = 1; i.e., those lying on

the unit sphere.

Before proceeding with the mathematical definition of the size of the feasibility domain, we

discuss the geometrical interpretation of equation 4. From this equation, the feasibility condition

reads
S∑
j=1

(A−1)ijrj < 0 . (9)

This equation defines a convex polyhedral cone in the S-dimensional space of growth rates. A

convex polyhedral cone [9] is a subset of RS whose elements x can be written as positive linear

combinations of NG different S-dimensional vectors gk called the generators of the cone:

x =

NG∑
k=1

gkλk , (10)

where the λk are arbitrary positive constants. Due to this arbitrariness, if gk is a generator of a

given convex polyhedral cone, then also cgk (where we rescale just the kth generator with the

6



positive constant c, leaving the others unchanged) will be a generator of the same cone [1]. In the

case of equation 3, each and every growth rate vector belonging to the feasibility domain can be

written as

ri = −
S∑
k=1

Aikn
∗
k , (11)

where, by definition, n∗k is feasible and therefore a positive constant. One can easily see that this

equation corresponds to equation 10 where the number of generators NG is equal to S and the ith

component of the vector gk is proportional to −Aik. As the lengths of the generators can be set to

any positive value, we will normalize them to one, i.e.,

gki (A) =
−Aik√∑S
j=1(Ajk)

2

. (12)

The generators completely define the feasibility domain in the space of growth rates. A growth rate

vector corresponds to a feasible equilibrium if and only if it can be written as a linear combination

of the generators with positive coefficients. Biologically the generators correspond to the growth

rate vectors that bound the coexistence domain. They correspond to nonfeasible equilibria with

just one species with positive abundance (and all the others with zero abundance), such that there

exist arbitrarily small perturbations of the growth rate vector that make the equilibrium feasible.

The set of all the growth rate vectors leading to a feasible equilibrium is therefore a convex

polyhedral cone, defined by

K(A) = {r ∈ RS|
S∑
j=1

(A−1)ijrj < 0} . (13)

Equivalently, it can be defined in terms of the generators:

K(A) = {r ∈ RS|∃λ1, λ2, . . . , λk > 0, r =
S∑
k=1

gk(A)λk} , (14)

where the generators gk(A) are defined in equation 12. In section Supplementary Note 12 we

show explicitly how these concepts pan out in the case of S = 3.
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This geometrical definition and characterization of the feasibility domain allows us to iden-

tify classes of matrices having the exact same feasibility domain: they are simply matrices having

the same set of generators. In particular, there are two basic transformations of the matrix A (and

their combinations) that leave the set of generators unchanged: permutations and positive rescal-

ing. A square matrix P is a permutation matrix if each row and column has one and only one

nonzero entry and the value of that entry is equal to one. A positive rescaling is performed by a

positive diagonal matrix D. The set of generators of A is the same as those of P A and DA.

This can be seen by observing that a permutation of the rows just changes the order of the gen-

erators but not the generators themselves. In the same way, a generator with the same direction

but different length generates the same cone, and so any positive constant that rescales a row of

the matrix leaves the feasibility domain unchanged. It is important to note however that these two

transformations do not leave the properties of the matrixA unchanged: both exchanging rows of a

matrix and rescaling rows by different constants will in general change the structure of the matrix.

Using this geometrical framework, one can easily identify the center of the feasibility domain

(also known as structural vector [6]). There are several possible ways to define the center of a

hypervolume and, without additional assumptions, all the definitions are different. One natural

choice is the barycenter (“center of mass”) of the domain of feasible intrinsic growth rates. Any

plane passing through the barycenter divides the volume into two subvolumes of equal size. The

barycenter is equivalent to the center of mass of the volume (in the case of constant density). Then,

the vector xb pointing from the origin to the barycenter is given by

xb =

∫
K(A)∩SS

dSy y , (15)

where ∩ is the intersection of two sets, and SS = {r ∈ RS|‖r‖ = 1} represents the surface

of the S-dimensional unit sphere. The variable y is therefore integrated over the feasibility do-
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main restricted to the unit sphere’s surface. All points in the feasibility domain are positive linear

combinations of the generators, i.e.,

y =
∑
k

λkgk , (16)

where the λk are positive constants. The fact that we consider only the points lying on the unit

sphere, i.e., ‖y‖ = 1, can be expressed as a constraint on λ (the vector of λs). Thus, we can write

equation 15 as

xb =

∫
dSλ q(λ)

∑
k

λkgk , (17)

where q is an appropriate distribution, introduced to take into account three different constraints:

all the components of λmust be positive; the vector
∑

k λ
kgk must lie on the unit sphere; and those

vectors must be sampled uniformly on the feasibility domain. One can show that the distribution

q(λ) has the following form

q(λ) ∝ exp

(
−
∑
i,j

λi(gi · gj)λj
)∏

k

Θ(λk) , (18)

where the proportionality constant is given by the normalization, the exponential term guarantees

that the vectors
∑

k λ
kgk are sampled uniformly on the sphere and the Heaviside function Θ(λk)

constrains all the coefficients λk to be positive. Therefore, by defining,∫
dSλ q(λ) λk =: 〈λk〉 , (19)

we obtain

xb =
∑
k

gk
∫

dSλ q(λ) λk =
∑
k

gk〈λk〉 . (20)

Supplementary Note 4 Definition and calculation of Ξ

As explained in section Supplementary Note 3, the proportion of feasible growth rates can be

calculated considering only growth rate vectors of length one, i.e., ‖r‖ = 1. This proportion
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can be interpreted as the volume of the intersection of a convex cone and the surface of a sphere.

Equivalently, it is the solid angle of the convex polyhedral cone [10, 11].

We define the quantity Ξ as

Ξ = 2S
# growth rate vectors corresponding to a feasible fixed point

total # growth rate vectors
. (21)

The factor 2S that appears in this equation is an arbitrary choice, and it has been introduced to

have Ξ = 1 when species are not interacting (Aij = 0 if i 6= j). In this case equation 1 reduces

to S independent logistic equations with equilibrium densities n∗i = −ri/Aii. Taking each Aii to

be negative (otherwise each species would have an unstoppable positive feedback on itself), this

equilibrium is feasible if and only if each ri is positive. For a single species then, the probability

of randomly drawing a feasible (i.e., positive) growth rate out of all possible growth rates is one

half. For two species, both growth rates must have the correct sign to have the two species with

positive abundance, and therefore the proportion of growth rate vectors satisfying this condition is

1/4. For S species the combinations of the growth rates leading to a feasible fixed point is 2−S . Ξ,

defined as in equation 21, is therefore equal to one when species do not interact.

In terms of geometrical properties and the convex polyhedral cone, Ξ can be defined as

Ξ = 2S
volS−1(K(A) ∩ SS)

volS−1(SS)
, (22)

where K(A) is defined in equation 13, SS is the unit sphere in RS , while volS(·) means volume in

S dimensions. This definition is equivalent to the one in equation 21 [10, 11].

These two equivalent definitions can be expressed in terms of an integral in the space of the

growth rate vectors:

Ξ =
2S

volS−1(SS)

∫
RS

dSr 2‖r‖ δ(‖r‖2 − 1)
S∏
i=1

Θ(n∗i (r)) , (23)
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where volS−1(SS) is the volume of the unit sphere’s surface in S dimensions, Θ(·) is the Heaviside

function (equal to 1 is the argument is positive and to zero otherwise), and δ(·) is the Dirac delta

function. In this expression, we integrate over the surface of the S-dimensional unit sphere. The

integral of a function f(x) on the unit sphere is given by∫
SS

dSx f(x) =

∫
RS

dSx 2‖x‖δ(‖x‖2 − 1) f(x) , (24)

where the term δ(‖x‖2 − 1) that appears in the integration constrains x on the surface of the unit

sphere, and the factor 2‖x‖ is the derivative of the delta function’s argument, which is needed

because the Dirac delta is nonlinear in ‖r‖. The factor volS−1(SS), the surface of sphere in S

dimensions, can be obtained by setting f(x) = 1:

volS−1(SS) =

∫
dSx 2‖x‖δ(‖x‖2 − 1) =

2πS/2

Γ(S/2)
, (25)

where Γ(·) is the Gamma function. Finally, the term
∏S

i=1 Θ(n∗i (r)) in equation 23 expresses the

constraint of all n∗i having to be positive: this product is equal to 1 if the equilibrium n∗(r) is

feasible and zero otherwise. The equilibrium n∗(r) is a function of r via equation 4.

Equation 23 defines Ξ as the volume of the domain of growth rates leading to feasible solu-

tions. Using the results of section Supplementary Note 2, we know that if the interaction matrixA

is negative definite then a feasible fixed point is globally stable. In this case Ξ is the volume of the

domain of intrinsic growth rates leading to feasible and (globally) stable solutions.

Unfortunately, direct numerical computation of Ξ is inefficient when the number of species

S is large. To evaluate the integral in equation 23, e.g., via Monte Carlo integration, we should

draw intrinsic growth rates at random and count how many of them, out of the total, lead to a

feasible equilibrium. In order to have a reliable estimate of this proportion, we should sample the

space in such a way that the number of feasible growth rates found is large. This goal requires an
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exponentially increasing sampling effort as S increases. In this section we provide an alternative,

much faster and reliable, way of estimating Ξ.

The equilibrium solution and the growth rates are linearly related via ri = −
∑S

i=1Aijn
∗
j

(equation 3). Our strategy is to use this to perform a change of variables in equation 23, and

integrate over n∗ instead of r. Since A is negative definite (and thus stable and not singular),

it is invertible, and so it is always possible to perform this change of variables. Note that, more

generally, the change of variables can be performed if A is nonsingular (i.e., det(A) = 0). We then

obtain

Ξ =
2S Γ(S/2) | det(A)|

2πS/2

∫
RS

dSn∗ 2δ

(∑
i,j,k

n∗iAkiAkjn
∗
j − 1

)
S∏
i=1

Θ(n∗i ) , (26)

where | det(A)| is the determinant of A, which is also the Jacobian of the change of variables.

After the change of variables, the integration is now performed over the feasible equilibrium points

and so the condition of feasibility is automatically implemented.

It is still difficult to evaluate the previous expression numerically, because of the constraint

that appears in the delta function. We can further simplify it by introducing polar coordinates. In

particular, we write the vector n as n = nu, where n = ‖n‖ and u is a vector of unit length. We

can perform a new change of variables, passing from n to n and u. Specifically, for any function

f(n), we can write∫
RS

dSn f(n) =

∫ ∞
0

dn nS−1
∫
RS

dSu 2δ(‖u‖2 − 1)f(nu) =

∫ ∞
0

dn nS−1
∫
SS

dSu f(nu) .

(27)

Using this expression in equation 26, we obtain

Ξ =
2S Γ(S/2) det(A)

2πS/2

∫ ∞
0

dn nS−1
∫
SS

dSu 2δ

(
n2
∑
i,j

uiGijuj − 1

)
S∏
i=1

Θ(ui) , (28)
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where we used the fact that Θ(ni) = Θ(ui) (since ni = nui, and n is positive by definition), and

we have introduced the matrix Gij =
∑

k AkiAkj . We can now perform the integration over n,

obtaining∫ ∞
0

dn nS−1 2 δ

(
n2
∑
i,j

uiGijuj − 1

)

=

∫ ∞
0

dn nS−1 2 δ

n− 1√∑
i,j uiGijuj

 1

2n
∑

i,j uiGijuj
=

(∑
i,j

uiGijuj

)−S/2
,

(29)

and therefore the integral of equation 23 finally reads

Ξ =
2S Γ(S/2)

√
det(G)

2πS/2

∫
SS

dSu
S∏
i=1

Θ(ui)

(∑
i,j

uiGijuj

)−S/2
, (30)

where we have used the fact that det(G) = det(ATA) = det(A)2. In terms of the interaction

matrix, the equation reads

Ξ =
2S Γ(S/2) | det(A)|

2πS/2

∫
SS

dSu
S∏
i=1

Θ(ui)

(∑
i,j,k

uiAkiAkjuj

)−S/2
. (31)

Equation 30 shows explicitly the role of the generators. The matrixG can indeed be rewritten

as

Gik =
∑
j

gijg
k
j cick = cickg

i · gk , (32)

where gkj are the generators of the convex cone defined in equation 12 and ci are arbitrary positive

constants. Their presence, which can be seen as a change of the normalization of the vectors

gk, does not affect the form of equation 30 and its dependence on G (see section Supplementary

Note 3). This property can be checked explicitly from equation 30, by introducing an explicit

dependence on ci and showing that Ξ is independent of their values.
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Unfortunately, the integral in equation 30 cannot be computed analytically. As mentioned

before, when the integral is written in the form of equation 23 it is impractical to evaluate it numer-

ically, since it would require an exponentially increasing sampling to get a reasonable precision.

Fortunately, this is not the case when the integral is written as in equations 30 and 31. The main

difference is that, after changing variables, we are directly sampling the space of feasible solu-

tions, without losing computational time in randomly exploring the space of intrinsic growth rates

looking for feasible solutions.

To evaluate the integral, we use the usual approach of Monte Carlo algorithms. In particular,

it is possible to write the integral as an average over random points:

1

T

T∑
a=1

(∑
i,j

uaiGiju
a
j

)−S/2
→ Γ(S/2)

2πS/2

∫
dSu

S∏
i=1

Θ(ui) 2δ(‖u‖2 − 1)
(∑

i,j

uiGijuj

)−S/2
(33)

when T → ∞. In this expression ua are independently drawn random vectors uniformly dis-

tributed on the unit sphere and with only positive components. These two conditions are intro-

duced to satisfy the constraints
∏S

i=1 Θ(ui) and 2δ(‖u‖2 − 1) that appear in the integral. T is the

sample size, and the average on the left hand side of equation 33 converges to the right hand side

in the large T limit.

One always has a finite sample size T , used to approximate the integral. It is therefore

important to have an estimate of the error made due to T < ∞. Since the left hand side of

equation 33 is an average of a function over random vectors, this error can be estimated by simply

using the variance of the function’s values. In particular, the error σMC is defined as

σMC =
1√
T

√√√√√ 1

T

T∑
a=1

(∑
i,j

uaiGijuaj

)−S
−

 1

T

T∑
a=1

(∑
i,j

uaiGijuaj

)−S/22

. (34)

The numerical simulation presented in the work where obtained were obtained with different
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sampling effort T . Instead of fixing T a priori, we determined a precision goal, that we measured

in terms of the relative error σMC/Ξ. We ran the simulations until σMC/Ξ < 0.05. In order to

avoid artificially small samples and to have enough statistical power not to undershoot to much

σMC, we ran 10× S Monte Carlo steps before checking the condition for the first time.

Supplementary Note 5 Stability, negative definiteness, and feasibility in random matrices

Random matrices are a useful tool in ecology, and have been studied since May’s seminal pa-

per [12]. Mostly, they have been used to model the community matrix [12, 13]. In the context of

this work, we use random matrices to model interaction matricesA. We consider random matrices

constructed in the following way:

• Aii = −d where d is a positive constant.

• Each pair (Aij, Aji) is set equal to a pair of random variables drawn from a joint distribution

with probability density function q(x, y).

• The random variables are exchangeable—i.e., the probability distribution function is sym-

metric in its arguments: q(x, y) = q(y, x)—and all the moments are finite.

We show that the three most important quantities for our problem are the moments

E1 =

∫
dx dy xq(x, y) =

∫
dx dy yq(x, y) , (35)

E2 =

√∫
dx dy (x− E1)2q(x, y) =

√∫
dx dy (y − E1)2q(x, y) , (36)

Ec =
1

E2
2

∫
dx dy (x− E1)(y − E1)q(x, y) . (37)
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In the limit of large S, they can be computed as proper sample means ofA’s entries:

E1 =
1

S(S − 1)

S∑
i=1

∑
j 6=i

Aij , (38)

E2 =

√√√√ 1

S(S − 1)

S∑
i=1

∑
j 6=i

(Aij)2 − E2
1 , (39)

Ec =
1

E2
2

(
1

S(S − 1)

S∑
i=1

∑
j 6=i

AijAji − E2
1

)
. (40)

The parameterization used by May [12] would correspond to

qMay(x, y) =
(

(1− C)δ(x) + Cp(x)
)(

(1− C)δ(y) + Cp(y)
)
, (41)

where δ(·) is the Dirac delta function and p(x) is an arbitrary distribution with mean zero and vari-

ance σ2. The connectance C sets the probability that each entry is equal to zero (with probability

1 − C) or randomly drawn from the probability distribution p(x) with probability C. In this case

E1 = Ec = 0, while E2
2 = Cσ2.

In the following, we summarize known results on the spectra, negative definiteness condi-

tions, and properties of Ξ for these matrices.

Supplementary Note 5.1 Known results on the spectra of random matrices Under the as-

sumptions of the previous section, the eigenvalues of A in the limit of large S are uniformly

distributed in an ellipse in the complex plane. If E1 6= 0 there is always an eigenvalue λm whose

value is approximately

λm ≈ −d+ SE1 , (42)

independently of the rest of the eigenvalue distribution. The ellipse is centered at−d−E1, its axes

are aligned with the real and imaginary axes, and their lengths are

a =
√
SE2(1 + Ec) (43)
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and

b =
√
SE2(1− Ec) . (44)

If λm = 0, the eigenvalue with the largest real part(s) is approximated by the rightmost

point of the ellipse. The system is stable if its real part is negative. In the most general case, this

condition is equivalent to

−d+ max
{
SE1,−E1 +

√
SE2(1 + Ec)

}
< 0 . (45)

In section Supplementary Note 2 we introduced the concept of negative definiteness. In

particular, we showed that when the matrix is negative definite then it is possible to disentangle

stability and feasibility. The matrix is negative definite if the eigenvalues of A + AT are all

negative. This condition reads [8]

−d+ max
{
SE1,−E1 +

√
2S(1 + Ec)E2

}
< 0 . (46)

Figure 1 shows the values of parameters leading to the possible combinations of stability and

negative definiteness in random matrices for the case E1 = 0. Since we imposed thatA is negative

definite, the region of parameters we explore is the one above the negative definiteness line. One

can see that in this way we are missing some parameterizations, corresponding to those that lead

to a stable but not negative definite matrices. From equations 45 and 46 one can see that the case

E1 < 0 is very similar to the case E1 = 0. More interestingly, for E1 > 0, the conditions for

stability and negative definiteness converge in the large S limit, implying that we are considering

all the possible cases.

What is remarkable in these conditions and in the distribution of eigenvalues is that they are

universal [14–17]. Universality means that they depend only on S, E1, E2, and Ec (and d, but via
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a trivial dependence). The spectrum of eigenvalues does not depend on the detailed form of the

distribution q(x, y).

For instance, consider the case q(x, y) = p(x)p(y), where the upper and lower triangular

entries Aij and Aji are independent random variables. In this case Ec = 0 and E1 and E2 are

the mean and standard deviation of the distribution p(x). The distribution of eigenvalues and the

conditions for stability and negative definiteness are the same for any probability distribution p(x)

as long as their mean E1 and standard deviation E2 are the same (provided some mild conditions

on higher moments hold). For instance, a Lognormal distribution, a Gaussian distribution and an

exponential distribution, having same mean and standard deviation, produce the same eigenvalue

distribution, and therefore the same conditions for stability [18].

From an ecological perspective, one can consider different interaction matrices correspond-

ing to different interaction types. The interaction type is given by the signs of the pairs (Aij, Aji):

competitive interactions will have both entries with a negative sign, while in trophic interactions

the entries will have opposite sign. The interaction pairs (Aij, Aji) for competitive interactions can

for instance be obtained from the following distribution:

qcomp(x, y) = (1− C)δ(x)δ(y) + Ch−(x)h−(y) , (47)

where h− is a probability distribution function with support on the negative axis (i.e., the ran-

dom variables are always negative), and C is the connectance (a pair is different from zero with

probability C). In the case of trophic interactions we could consider

qtroph(x, y) = (1− C)δ(x)δ(y) +
C

2
p−(x)p+(y) +

C

2
p+(x)p−(y) , (48)

where p+ and p− are two probability distribution functions with positive and negative support,

respectively. Suppose that the moments of h−, p+, and p− are chosen in such a way that qcomp(x, y)
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and qtroph(x, y) have the same values ofE1, E2, andEc. The interaction matrices will still look very

different in the two cases: one describes a foodweb and the other a competitive system. Despite

this difference, the two will have the same stability properties. In other words, different interaction

types influence the stability properties of the system only via E1, E2 and Ec.

Supplementary Note 5.2 Universality of Ξ In this section we show that, apart from their spec-

tral distribution, Ξ is also a universal quantity in large random matrices. That is, in the large S

limit, its value does not depend on the entire distribution of the coefficients, but only on the three

moments E1, E2, and Ec. It is important to remark that this result applies to the large S limit: the

sub-leading corrections depend in principle on all the moments.

In order to show that Ξ is universal, we parameterized random networks with different dis-

tributions and checked whether Ξ depends only on E1, E2, Ec, and S, but not on other properties.

To do this, we constructed several S × S matrices. Each individual matrix had its entries drawn

from some fixed distribution, but the shape of the distribution was different across matrices. How-

ever, regardless of the distribution’s shape, their moments were fixed at E1, E2, and Ec. We then

checked whether these matrices led to the same value of Ξ.

In our simulations we considered a distribution of the pairs (Aij, Aji) of the form

q(x, y) = (1− C)δ(x)δ(y) + Cp(x, y) , (49)

where the connectance C is the probability that two species i and j interact. The probability

distribution p(x, y) in equation 49 depends on three parameters µ, σ, and ρ, which define the

mean, variance, and correlation of the pairs drawn from p(x, y). Given the values of E1, E2, and

Ec, we can arbitrary choose C and tune µ, σ, and ρ to obtain any desired E1, E2, and Ec. If Ξ is

universal, then different matrices built with different values of C, µ, σ, and ρ but the same values
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of E1, E2, and Ec will lead to the same Ξ.

We considered five parameterizations of the distribution p(x, y):

• Random signs, normal distribution:

p(x, y) = BN(x, y|µ, σ, ρ) . (50)

The distribution BN(x, y|µ, σ, ρ) is a bivariate normal distribution with marginal means

equal to µ, marginal variances equal to σ2, and correlation equal to ρσ2. The pairs can in

principle assume all possible combinations of signs.

• Random signs, four corners:

p(x, y) =
q

2
δ(x− µ− σ)δ(y − µ− σ) +

q

2
δ(x− µ+ σ)δ(y − µ+ σ)

+
1− q

2
δ(x− µ− σ)δ(y − µ+ σ) +

1− q
2

δ(x− µ+ σ)δ(y − µ− σ) .

(51)

The pairs (x, y) can take on only four different, discrete values, potentially corresponding to

all combinations on signs. The probability distribution depends on three parameters µ and

σ2 are means an variances of the distribution, while the correlation ρσ2 can be obtained from

ρ = 2q − 1.

• (+,+), Lognormal:

p(x, y) = LBN(x, y|µ, σ, ρ) . (52)

The distribution LBN(x, y|µ, σ, ρ) is a bivariate lognormal distribution with marginal means

equal to µ > 0, marginal variances equal to σ2, and correlation equal to ρσ2. The pairs can

in principle assume only positive signs. Note that not all values of ρ between −1 and 1 can

be obtained when a Lognormal distribution is considered.
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• (−,−), Lognormal:

p(x, y) = LBN(−x,−y| − µ, σ, ρ) . (53)

This distribution takes the values drawn from a bivariate lognormal distribution, times −1.

It has marginal means equal to µ < 0, marginal variances equal to σ2, and correlation equal

to ρσ2. The pairs assume only negative signs. Note that not all values of ρ between −1 and

1 can be obtained when a Lognormal distribution is considered.

• (+,−), Lognormal:

p(x, y) =
1

2
LN(x|µ1, (1 + ρ)σ)LN(−y| − µ2, (1 + ρ)σ)

+
1

2
LN(y|µ1, (1 + ρ)σ)LN(−x| − µ2, (1 + ρ)σ) .

(54)

The distribution LN(x|µ, σ) is Lognormal distribution with mean µ1 + µ2 (where µ1 > 0

and µ2 < 0), variance σ2, and correlation ρσ2. The pairs assume only values with opposite

signs (+,−) or (−,+).

In ecological terms, the first two distributions correspond to a random community (where the

signs of the interaction strength are random), the (+,+) case corresponds to a mutualistic commu-

nity, (−,−) to a competitive community, while (+,−) corresponds to a food web. The mutualis-

tic/competitive matrices can lead only to positive/negative means E1, respectively, while the other

settings can produce arbitrarily values of E1.

Figure 2 shows the value of Ξ and of the largest eigenvalue λ for interaction matrices con-

structed with different connectances C and distributions, but with the same values of E1, E2, and

Ec. As seen from the figure, the values of Ξ and λ in any particular case match up precisely with

the average values over several different realizations, strongly suggesting that these two quantities

are indeed universal.
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Supplementary Note 6 Mean-field approximation of Ξ

The goal of this section is to compute an approximation for Ξ in the limit of large S. The volume

Ξ is defined (see section Supplementary Note 4) as

Ξ =
2S Γ(S/2)

√
det(G)

2πS/2

∫
SS

dSu
S∏
i=1

Θ(ui)

(∑
i,j

uiGijuj

)−S/2
, (55)

where the matrixG can be obtained from the generators of the polytope (see equations 12 and 32),

and therefore from the interaction matrixA.

We can introduce a Gaussian function in equation 55 using the fact that, for any positive

constant c,

c−S/2 =
2

Γ(S/2)

∫ ∞
0

dr rS−1 exp(−cr2) . (56)

Introducing this Gaussian integral in equation 55 by letting c =
∑

i,j uiGijuj , we obtain

Ξ =
√

det(G)

(
2√
π

)S ∫ ∞
0

dr rS−1
∫
SS

dSu

(
S∏
i=1

Θ(ui)

)
exp

(
−r2

∑
i,j

uiGijuj

)
, (57)

which can be rewritten as

Ξ =
√

det(G)
( 2√

π

)S ∫
RS

dSz
( S∏
i=1

Θ(zi)
)

exp
(
−
∑
i,j

ziGijzj

)
, (58)

where zi = rui. We can rewrite this equation as

Ξ =
√

det(G)

(
2√
π

)S ∫
RS

dSz
S∏
i=1

(
Θ(zi) e

−z2i exp

(
−
∑
j 6=i

ziGijzj

))
, (59)

where we used the fact that the diagonal entries of G, when expressed in terms of the normalized

generators, are equal to one.

The reader familiar with statistical mechanics will notice that equation 59, which can be

written as

Ξ ∝
∫
RS

dSz q(z)
S∏
i=1

(
exp

(
−
∑
j 6=i

ziGijzj

))
, (60)
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has the form of a partition function. For instance one can recover the Ising model [19] with the

choice q(z) =
∏

i δ(z
2
i = 1) or the spherical model [20] when q(z) = δ(S −

∑
i z

2
i ). The term

ziGijzj in particular plays the role of the interactions of the system.

Integrals of the form 60 are the most studied objects of statistical mechanics, and yet in most

cases are not analytically solvable. There are, on the other hand, many techniques that can be

used to obtain good approximations to 60. The most celebrated one is probably the mean-field

approximation [19] and it is the one we are using in this section. In particular, the idea of the

mean-field approximation is to replace the interactions of an entity (spins in the case of the Ising

model or species in our case) with an average “effective” interaction. This reduces a many-body

problem, where all interactions of spins or populations are coupled, into an effective one-body

problem.

If the system is large enough (in our case if S →∞), the mean-field approximation is know

to be exact in the case of “fully connected” interactions. In terms of equation 60, this corresponds

to a matrix G with the same constant in all its offdiagonal entries. The matrix G is constant

when A has constant offdiagonal entries. We will consider therefore the case of A’s diagonal

entries being equal to −1 and its offdiagonal entries to a constant E1. Using equation 12, the ith

component of the kth generator is then

gki = − E1

1 + (S − 1)E2
1

(61)

for i 6= k, and

gkk =
1

1 + (S − 1)E2
1

. (62)

Using equation 32, we therefore obtain that the diagonal entries of G are equal to 1, while the
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offdiagonal ones are constant and equal to

Gij =
−2E1 + (S − 2)E2

1

1 + (S − 1)E2
1

. (63)

We define the constant β as

β = S
−2E1 + (S − 2)E2

1

1 + (S − 1)E2
1

, (64)

and therefore we have Gii = 1 and Gij = β/S for i 6= j. The determinant of G in this case turns

out to be

det(G) =

(
1 +

S − 1

S
β

)(
1− β

S

)S−1
≈ (1 + β)e−β , (65)

where the last form holds for large S. In this case of constant interactions, we obtain, from equa-

tion 59,

Ξ =
√

det(G)

(
2√
π

)S ∫
RS

dSz
S∏
i=1

(
Θ(zi) e

−z2i exp

(
−zi

β

S

∑
j 6=i

zj

))
=

=
√

det(G)

(
2√
π

)S ∫
RS

dSz

(
S∏
i=1

Θ(zi)

)
exp

(
−
∑
i

z2i −
β

S
(
∑
i

zi)
2

)
,

(66)

up to subleading terms in S.

Equation 66 can be written as

Ξ =
√

det(G)

(
2√
π

)S
Zh

〈
exp

(
−β
S

(
∑
i

zi)
2 + h

∑
i

zi

)〉
h
, (67)

where

Zh :=

∫
RS

dSz

(
S∏
i=1

Θ(zi)

)
exp

(
−
∑
i

z2i − h
∑
i

zi

)
=

=

(∫ ∞
0

dz e−z
2−hz

)S
=

(√
π

2
eh

2/4 erfc(h/2)

)S
,

(68)

where erfc(·) is the complementary error function, defined as

erfc(x) =
2√
π

∫ ∞
x

dt e−t
2

. (69)
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The average 〈·〉h is defined as〈
f(z)

〉
h

:=
1

Zh

∫
RS

dSz

(
S∏
i=1

Θ(zi)

)
exp

(
−
∑
i

z2i − h
∑
i

zi

)
f(z) . (70)

Using Jensen’s inequality in equation 70 we have that

Ξ =
√

det(G)

(
2√
π

)S
Zh

〈
exp

(
−β
S

(
∑
i

zi)
2 + h

∑
i

zi

)〉
h
≥

≥
√

det(G)

(
2√
π

)S
Zh exp

(〈
−β
S

(
∑
i

zi)
2 + h

∑
i

zi

〉
h

)
.

(71)

In the following we will approximate the first expression with the second one. It is possible to

prove that, in the large S limit, the second expression converges to the first one.

Applying the mean-field approximation we neglect fluctuations of the variables, i.e. we have〈
−β
S

(
∑
i

zi)
2 + h

∑
i

zi

〉
h

= −β
S

〈
(
∑
i

zi)
2
〉
h

+ h
∑
i

〈zi〉h ≈ S
(
−βm2 + hm

)
, (72)

where

m := 〈zi〉h = − 1

S

∂

∂h
log(Zh) . (73)

By introducing equation 72 in equation 71 we have

Ξ ≈
√

det(G)Zh

(
2√
π

exp
(
−βm2 + hm

))S
= ΞMF . (74)

This equation is a function of h, which is a free parameter. Since it is a lower bound for the

actual value of Ξ, the best approximation would correspond to the value of h which maximizes the

approximation. We have therefore that h is a solution of the following equation

0 =
∂

∂h
log(ΞMF ) =

∂

∂h
log(Zh) + S

∂

∂h
(−βm2 + hm) = S(h− 2βm)

∂m

∂h
, (75)

where m is given by equation 73. We obtain therefore m = h/(2β) and then, by neglecting

sub-leading terms in S and introducing m = h/(2β) in equation 74

1

S
log ΞMF ≈ log

(
erfc(h/2) exp

(
h2

4

1 + β

β

))
. (76)
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By maximizing this equation respect to h we obtain

0 =
∂

∂h
log(ΞMF ) =

h

2

(
1

β
+ 1

)
+

∂

∂h
log (erfc(h/2)) =

h

2

(
1

β
+ 1

)
− e−h

2/4

√
π erfc(h/2)

. (77)

Equation 77 cannot be solved exactly. By expanding around h = 0 we obtain

0 =
h

2

(
1

β
+ 1

)
− 1√

π
− h

π
, (78)

which is solved by

h =
2β
√
π

π + β(π − 2)
. (79)

One can observe that the solution h = 0 corresponds to β = 0, i.e. to a non-interacting ecosystem.

Expanding around h = 0 is therefore meaningful when the interactions are not too strong. It is

possible to verify that the approximate solution 79 is very close to the actual solution obtained by

solving numerically equation 77 also for not too small values of β

Using equation 79 into equation 76 we obtain

1

S
log ΞMF ≈

β(1 + β)π

(π + β(π − 2))2
+ log erfc

( √
πβ

π + β(π − 2)

)
, (80)

which is our final result. In figure 3 we compare this equation with the volume computed numeri-

cally in the case of constant interactions, finding a very good match.

In the most general case of an interaction matrix with nonconstant offdiagonal entries, we

can consider equation 72 as an approximation valid in the case of E2 → 0. As β was defined in

terms of the generators, we can extend the approximation to the case E2 > 0 by considering β

as the expected value of G’s entries, which corresponds to the average overlap of two rows of the

interaction matrix 〈cos(η)〉, defined in equation 109. In this more general case the mean-field value
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of Ξ is expected to be a good approximation when var(cos(η)) is small enough. By substituting

β = 〈cos(η)〉, using equation 112, into equation 72 we obtain

1

S
log(Ξ) ≈ πE1(2d− E1S) (2dE1 + d− S (2E2

1 + E2
2))

(d(2(π − 2)E1 + π)− S (2(π − 1)E2
1 + πE2

2))
2

log

(
erfc

( √
πE1(E1S − 2d)

S (2(π − 1)E2
1 + πE2

2)− d(2(π − 2)E1 + π)

))
.

(81)

When var(cos(η)) is not small, we observed that the empirical formula

1

S
log(Ξ) ≈ πE1(2d− E1S) (2dE1 + d− S (2E2

1 + E2
2))

(d(2(π − 2)E1 + π)− S (2(π − 1)E2
1 + πE2

2))
2

log

(
erfc

( √
πE1(E1S − 2d)

S (2(π − 1)E2
1 + πE2

2)− d(2(π − 2)E1 + π)

))
+

+ log

(
1 +

3SE2
2(1 + Ec)

2π

)
.

(82)

explains well the values obtained in simulations. This is the formula we used to make figure 2 in

the main text.

In order to simplify the expression and make it more readable, we can expand equation 80

around β = 0, i.e., when the interactions between species are small. By expanding (ΞMF )1/S

around β = 0 and taking the logarithm of the expression, we obtain

1

S
log ΞMF ≈ log

(
1− β

π

)
. (83)

Equation 2 of the main text was obtained by substituting β = 〈cos(η)〉, using equation 112, in the

case of E2 = 0.

Supplementary Note 7 Feasibility of consumer-resource communities

This section considers explicitly a community with two trophic levels and consumer-resource inter-

actions. While empirical communities have a more complicated interaction structure, this example

is particularly relevant to better understand how Ξ should be interpreted.
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We consider a system with SR resource and SC consumer (SR+SC = S) populations, whose

dynamics is described by equation 1 with the interaction matrix

A =

 −C −B

ZBTW 0

 , (84)

where C is an SR × SR nonnegative matrix, B is an SR × SC nonnegative matrix, while Z and

W are two positive diagonal matrices of dimension SC × SC and SR × SR, respectively.

If C is a positive diagonal matrix, any feasible fixed point is globally asymptotically sta-

ble [21]. WhenC is not diagonal, one can prove that any feasible fixed point is globally asymptot-

ically stable if CW−1 is positive definite (i.e., −CW−1 is negative definite). Assuming that this

condition holds, stability of feasible fixed points is ensured and we can study feasibility alone.

Using equation 3, we obtain the equations

rRi =

SR∑
j=1

Cijn
R∗
j +

SC∑
j=1

Bijn
C∗
j , (85)

−rCi =

SR∑
j=1

ZiBjiWjn
R∗
j , (86)

where rR and rC are the intrinsic growth rates of resources and consumers, while nR∗ and nC∗ are

their equilibrium abundances. Since all the matrices that appear in this equation are nonnegative,

an intrinsic growth rate vector is contained in the feasibility domain only if rRi > 0 for all i =

1, . . . , SR and rCi < 0 for all i = 1, . . . , SC . An intrinsic growth rate vector that does not respect

these conditions is not in the feasibility domain. The feasibility domain is therefore fully contained

in one orthant, implying that the maximum value of its size is Ξ = 1.

The S-dimensional volume of the feasibility domain is nonzero only if it is defined by S

linearly independent generators. The generators of the feasibility domain are proportional to the
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columns of the interaction matrix. If the interaction matrix has the form of equation 84, SR gen-

erators will have the form g = (v,0), where v has SC components. These generators can be

linearly independent only if SR ≥ SC , and therefore Ξ > 0 only if SR ≥ SC . More generally, if

det(A) = 0, then Ξ = 0 [22].

Assuming that the determinant of A is different from zero, we can use equation 26 obtaining

Ξ =
√

det(A)

(
2√
π

)S ∫
RS

dSz

(
S∏
i=1

Θ(zi)

)
exp

(∑
ij

ziAijzj

)
. (87)

Given the structure of the matrix A, it is convenient to write z = (v,u), where v and u are two

vectors with SR and SC components respectively. The argument of the exponential can be rewritten

as ∑
ij

ziAijzj = −
SR∑
i=1

SR∑
j=1

viCijvj −
SR∑
i=1

SC∑
j=1

viBij(1− ZiWj)uj . (88)

By integrating over the variables u, we finally obtain

Ξ =
√

det(A)

(
2√
π

)S ∫
RS

dSRv

(
SR∏
i=1

Θ(vi)

)
exp

(∑
ij

viCijvj

)
1∏SC

j=1

∑SR

i=1 viBij(1− ZiWj)
.

(89)

Figure 4 shows the size of the feasibility domain of a consumer-resource community, com-

puted using Monte Carlo integration as explained in section Supplementary Note 4. We consider

an interaction matrix with the structure of equation 84, with a diagonal C (i.e., Cij = 1 if i = j

and zero otherwise) and scalar matrices Z and W (i.e., Zii = Wii =
√
η and Zij = Wij = 0 if

i 6= j). The elements of the rectangular matrix B were independently drawn from a lognormal

distribution with mean µ and variance c2vµ
2, where cv is the coefficient of variation. Since C is

equal to the identity matrix, then the interaction matrix is diagonally stable and therefore any fea-

sible point is globally stable [21]. Figure 4 shows the effect of η, µ and cv on the size Ξ of the

feasibility domain. Interestingly, η and µ have a small effect on Ξ, while the coefficient of variation
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has a strong influence on it. It is important to notice that, as explained above, as the interspecific

interaction goes to zero (and therefore both cv and µ tend to zero), Ξ→ 0 as well.

Supplementary Note 8 Empirical networks and randomizations

We considered 89 mutualistic networks and 15 food webs. Empirical networks are encoded in

terms of adjacency matrices L, with Lij = 1 if species j affects species i and zero otherwise.

Supplementary Note 8.1 Mutualistic networks The 89 mutualistic networks (59 pollination

networks and 30 seed-dispersal networks) were obtained from the Web of Life dataset (www.web-of-life.es),

where references to the original works can be found. When the original network was not fully con-

nected, we considered the largest connected component.

In the case of mutualistic networks, the adjacency matrix L is bipartite, i.e., it has the struc-

ture

L =

 0 Lb

LTb 0

 , (90)

where Lb is a SA × SP matrix (SA and SP being the number of animals and plants respectively).

The adjacency matrix contains information only about the interactions between animals and plants,

but not about competition within plants or animals.

We parameterized the interaction matrix in the following way:

A =

 W A Lb ◦W AP

LTb ◦W PA W P

 , (91)

where the symbol ◦ indicates the Hadamard or entrywise product (i.e., (A◦B)ij = AijBij), while

W A, W AP , W PA, and W P are all random matrices. W A and W P are both square matrices (of
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dimension SA×SA and SP ×SP ), whileW AP andW PA are rectangular matrices of size SA×SP

and SP × SA respectively. The diagonal elements WA
ii and W P

ii were set to −1, while the pairs

(WA
ij ,W

A
ji ) and (W P

ij ,W
P
ji ) were drawn from a bivariate normal distribution with mean µ−, vari-

ance σ2
+ = cµ2

−, and correlation ρσ2
+. Since these two matrices represent competitive interactions,

µ− < 0. The the pairs (WAP
ij ,W PA

ji ) were extracted from a bivariate normal distribution with mean

µ+, variance σ2
− = cµ2

+, and correlation ρσ2
−, where µ+ > 0.

We analyze more than 600 parameterizations, obtained by considering different values of µ−,

µ+, c, and ρ. For each network and parametrization we computed the size of feasibility domain Ξ.

The bottom panel of Figure 2 in the main text was obtained by comparing Ξ obtained in this way

with the analytical prediction obtained in equation 81.

Supplementary Note 8.2 Food webs A summary of the properties and reference of the food

webs can be found in table 1. In the case of food webs the adjacency matrix L is not symmetric,

and an entry Lij = 1 indicates that species j consumes species i. We removed all cannibalistic

loops. Since both Lij and Lji are never simultaneously equal to one (there are no loops of length

two), we parameterized the offdiagonal entries ofA as

Aij = W+
ij Lij +W−

jiLji , (92)

while the diagonal was fixed at −1. Both W+ and W− are random matrices, where the pairs

(W+
ij ,W

−
ij ) are drawn from a bivariate normal distribution with marginal means (µ+, µ−) and

correlation matrix  cµ2
+ ρcµ2

+

ρcµ2
− cµ2

−

 (93)

We analyzed more than 200 parameterizations, obtained by considering different values of
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µ−, µ+, c, and ρ. For each network and parametrization we computed the size of feasibility do-

main Ξ. The bottom panel of Figure 2 in the main text was obtained by comparing Ξ obtained in

this way with the analytical prediction obtained in equation 81. In this case the analytical predic-

tion overestimate the actual value of Ξ, indicating that there is a role of structure in determining

structural stability.

Supplementary Note 9 Randomization of empirical networks: assessing the role of struc-

ture

Supplementary Note 9.1 Mutualistic networks We compared the size of the feasibility do-

main obtained for empirical networks with the corresponding randomizations. For each network

we randomized the block Lb 100 times, by generating connected networks with same size and

number of links. We parameterized each randomized network independently as described in sec-

tion Supplementary Note 8, and we compared their properties with those of the empirical network,

parameterized independently 100 times. Figure 5 shows the comparison between Ξ of random and

empirical networks. As expected from the fact that the analytical prediction for random matri-

ces works well, the empirical values and the values obtained with randomizations are compatible.

Comparing this figure with figure 2 of the main text we observe that the empirical values and

the ones obtained with randomizations match also in the cases were the analytical approximation

failed. This implies that the reason of the mismatch is due to the difference between the analytical

approximation and the randomizations, and it is not due to the specific structure of the empirical

interactions. There are two main sources of errors in this case. On one hand, ours analytical predic-

tion is expected to work is the number of species is large enough and if the variance of interactions

is not to high (that is not always true for the parametrizations used). On the other hand, our ap-

proximation was formulated for random matrices, while randomizations of mutualistic networks
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still conserve a bipartite structure.

The randomization procedure explained above and figure 5 show that the size of the coexis-

tence domain obtained with empirical network structure is well predicted by the one obtained with

random structure. This result does not imply that structure has no effect on Ξ, but it shows that, if

this effect exists, it must be relatively small (compared for instance to the variation of Ξ obtained

by changing the interaction strengths), i.e. the relative error made by approximating empirical

networks with random structure must be small.

Since the effect of structure is small, it is also expected to be very sensible to the interaction

strengths. When we parametrized empirical networks and their randomizations to obtain figure 5,

we drawn the interaction strengths several times from a given distributions. The realized coeffi-

cients were therefore different across different networks, and the values of Ξ shown in figure 5

were averaged over these independent extractions. Since the difference between randomizations

and empirical structure is small, it might be impossible to detect any difference with this procedure.

In order to explore and quantify the effect of the empirical structure on the size of feasibility

domain, we adopted a different parametrization and randomization method. Given an empirical

network, we drawn the interaction strengths only once from a given distribution (as described in

section Supplementary Note 8). Using this list of interaction strenghts we parametrized 100 times

each empirical network. Different parametrization differ in the position of the coefficients, but

not in their values that are conserved across parametrizations. We then compared their size of

feasibility domain with the one obtained by parameterizing with the same list of coefficients 100

randomized networks obtained as explained above.

Figures 6, 7, 8 and 9 show the results obtained for different distributions of interaction
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strengths (parametrized as explained in section Supplementary Note 8). In absence of competition

and in absence of variation in the interaction strengths, there is the maximum observable effect.

As the competition level is increased and once variation in the interaction strengths is introduced,

the effect of the network topology on the total size of feasibility domain becomes negligible.

Supplementary Note 9.2 Food webs We compared the size of feasibility domain of empirical

networks with their corresponding randomizations and a network generated accordingly to the

cascade model [23].

For each network, we randomized the adjacency matrix L 100 times, by generating con-

nected networks with the same size and number of links.

We also generated networks generated accordingly to the cascade model (using the same

method explained in [24]). In this case the adjacency matrix was obtained by generating connected

networks with the same size and number of links, by assigning a link between species i and j only

if i > j.

Figure 10 is the same as figure 2 of the main text, with the addition of randomizations and

networks generated with the cascade model. As expected the analytical prediction works very

well in describing random networks, while it fails significantly to predict the size of the feasibility

domain of cascade and empirical networks. To better quantity the difference between those em-

pirical structures and randomizations, we compared each network separately in figure 11 and 12.

We observe that random networks have always larger feasibility domain than networks generated

by the cascade model and the empirical ones. Networks generated via the cascade model almost

always overestimate the empirical feasibility domains, showing that empirical network structure

has a significant negative effect on the size of the feasibility domain.
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Supplementary Note 10 Distribution of side lengths

In section Supplementary Note 3 we showed that the feasibility domain is a convex polyhedral

cone in the space of intrinsic growth rates r. Since the stationary solution of equation 1 is linear

in r, we can study the feasibility domain considering only vectors on the unit sphere’s surface. In

section Supplementary Note 4 we defined Ξ, which quantifies the volume of the feasibility domain.

The size of the feasibility domain, i.e., how many combinations of the intrinsic growth rates

correspond to a feasible fixed point, is not the only interesting property. Two systems having the

same number of feasible combinations of growth rates (i.e., the same value of Ξ), can respond

very differently to perturbations of the growth rates. We imagine here that a perturbation (e.g., a

change of the abiotic conditions) correspond to a change in the growth rate vector. Since we can

consider normalized growth rate vectors (because of the linearity of the equations), the effect of a

perturbation on feasibility depends only on the angular change of the growth rate vector and not

on its length.

The volume Ξ quantifies how many growth rate vectors are compatible with coexistence.

Let us consider a feasible growth rate vector, and perturb it in a random direction. What is the

probability that the new vector is still feasible? This is not just a function of the size Ξ of the

feasibility domain. Indeed, one can imagine that the feasibility domain is about equally spread in

every direction—or that, for the exact same value of Ξ, the feasibility domain is streched in some

directions but is very narrow in some other ones. A perturbation in one of the “narrow” directions

is much more likely to lead out of the feasibility domain in the latter case than in the former.

To quantify this property, one strategy could be to measure the different responses on the

perturbation (i.e., the probability of being feasible) depending on the direction of the perturbation
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(in which direction we change the growth rate vector). This choice has the big disadvantage of

depending not only on the properties of interactions (the interaction matrix A), but also on the

strength of the perturbation (the angular displacement between the initial and the final growth rate

vector) and the growth rate vector before the perturbation (e.g., if the initial vector is close or

far from the edge of the feasibility domain). We propose instead a purely geometrical method to

quantify the response to different perturbations (see figure 1 of the main text).

The feasibility domain, when restricted to the surface of a hypersphere, can be imagined as

the generalization of a triangle on a sphere (see section Supplementary Note 12). The natural,

geometric quantities bounding the maximal perturbation that will leave the system feasible, are the

lengths of the triangle’s sides. When S species are considered, there are S(S − 1)/2 sides. Their

lengths measure the maximum permissible perturbation of the growth rates in the corresponding

direction if one is to retain feasibility. This property has the advantage of being purely geometrical,

depending only on the interactions (via the interaction matrix) and not, for instance, on any choice

of the initial conditions.

We can measure the distribution of the side lengths. Imagine we have two interaction matri-

ces with the same Ξ, but with very different distributions of side lengths. One of them has all sides

of equal length, while the other one has a more heterogeneous distribution. In the first case any

direction of the perturbation is expected to have a similar effect, and there are no particularly dan-

gerous directions. In the second case there are some directions of the perturbation that are much

more dangerous than others, and even a small change of conditions along one of those dangerous

direction can lead to the extinction of one or more species.

We know that the feasibility domain is a convex polyhedral cone (see section Supplementary
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Note 3). Its “corners” are identified by its generators and its sides are determined by all pairs of

generators (see section Supplementary Note 12 for the S = 3 case).

Since we are considering growth rates on the unit (hyper)sphere, and the generators are

normalized to one, any pair of generators will lie on the sphere’s surface. The scalar product of

two generators is the cosine of the angle between the two. Since the two generators are on the unit

ball’s surface, the arc between the two (which is the side length) is equal to the angle. We have

therefore that the length of the side of the feasibility domain corresponding to a pair of generators

gi and gj is

ηij = arccos
(
gi · gj

)
. (94)

Using equation 12, we can express the S(S − 1)/2 side lengths of the convex polytope explicitly

in terms of the interaction matrix:

ηij = arccos

( ∑
k AkiAkj√∑

k AkiAki
∑

lAljAlj

)
. (95)

We are interested in the distribution of the side lengths, and in particular in its heterogeneity. In

the following section we will calculate these quantities for random matrices.

Supplementary Note 10.1 The distribution of side lengths in random matrices In this sec-

tion we obtain the distribution of sides length for large random matrices, whose entries are dis-

tributed accordingly to an arbitrarily bivariate distribution.

We assume that the diagonal elements ofA are all equal to−d (this hypothesis can be easily

generalized), while the offdiagonal pairs (Aij, Aji) are random variables with distribution q(x, y).
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Our goal is to find the distribution of the side lengths η in the large S limit, defined as

P (η) = lim
S→∞

1

S(S − 1)

∑
i 6=j

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
× δ

(
η − arccos

( ∑
k AkiAkj√∑

k AkiAki
∑

lAljAlj

))
,

(96)

Since we are summing over all i and j, and all the rows are identically distributed, we can remove

the sum and consider just two rows:

P (η) = lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
× δ

(
η − arccos

( ∑
k Ak1Ak2√∑

k Ak1Ak1
∑

lAl2Al2

))
,

(97)

Since we are interested in the large S limit, we have that∑
k

Ak1Ak1 =A11 +
∑
k>1

(Ak1)
2 ≈ −d+ (S − 1)

∫
dxdy q(x, y) x2

=− d+ (S − 1)(E2
1 + E2

2),

(98)

where E1 and E2 are the first and second marginal moments of q (equations 35 and 36). Let us call
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this quantity Z. In this limit we therefore obtain

P (η) = lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
δ

(
η − arccos

(∑
k Ak1Ak2
Z

))

= lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
Z | sin(η)| δ

(
Z cos(η)−

∑
k

Ak1Ak2

)

= Z| sin(η)| lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
δ

(
Z cos(η)−

∑
k

Ak1Ak2

)

= Z| sin(η)| lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
× δ

(
Z cos(η)− A11A21 − A22A12 −

∑
k>2

Ak1Ak2

)

= Z| sin(η)| lim
S→∞

∫ ∏
m>n

(
dAmndAnmq(Amn, Anm)

)
× δ

(
Z cos(η) + d(A12 + A21)−

∑
k>2

Ak1Ak2

)

= Z| sin(η)|
∫

dt

∫
ds

∫
dA12dA21q(A12, A21)δ(t− A12 − A21)

×
∫ ∏

k>2

dAk1dAk2q(Ak1)q(Ak2)δ

(
s−

∑
k>2

Ak1Ak2

)

× δ

(
Z cos(η) + dt−

∑
k>2

Ak1Ak2

)

= Z| sin(η)|
∫

dt

∫
ds

∫
dxdy q(x, y)δ(t− (x+ y))

×
∫ (S−2∏

k=1

dzkdwkq(zk)q(wk)

)
δ

(
s−

S−2∑
k=1

zkwk

)
δ(Z cos(η) + dt− s) ,

(99)

where q(z) is the marginal distribution of q(x, y):

q(z) =

∫
dx q(x, z) =

∫
dx q(z, x). (100)

We can introduce the distribution of the sum:

qs(t) =

∫
dxd yq(x, y)δ(t− (x+ y)). (101)
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The term ∫ (S−2∏
k=1

dzkdwk q(zk)q(wk)

)
δ

(
s−

S−2∑
k=1

zkwk

)
(102)

is the distribution of a sum of S − 2 uncorrelated random variables. These random variables are

the product zw of two random variables whose distribution is q. Since the second moment of q(x)

is finite, the central limit theorem holds and this distribution converges, in the large S limit, to a

Gaussian distribution with mean

S

∫
dxdy q(y)q(x) xy = SE2

1 (103)

and variance

S

(∫
dxdy q(y)q(x) (xy)2 − E2

1

)
= SE4

2 . (104)

We have therefore

P (η) = Z| sin(η)|
∫

dtds qs(t)
exp

(
−(s−SE2

1)
2

2SE4
2

)
√

2SπE2
2

δ(Z cos(η) + dt− s) = (S(E2
1 + E2

2)− d)

× | sin(η)|√
2SπE2

2

∫
dt qs(t) exp

(
−
(
S(E2

1 + E2
2) cos(η)− d cos(η)− SE2

1 + dt
)2

2SE4
2

)
.

(105)

The distribution of η is not universal as it depends on qs(t), which depends on the distribution of

the coefficients. On the other hand, the dependence is explicit, and it is possible to calculate P (η)

for any distribution q(x, y).

We show explicitly the case of q(x, y) being a bivariate normal distribution, i.e.,

q(x, y) =
1

2πE2
2

√
1− E2

c

exp

(
−(x− E1)

2 + (y − E1)
2 − 2Ec(x− E1)(y − E1)

2E2
2

)
. (106)
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In this case qs(t) is a normal distribution, and can be obtained from eq 101

qs(t) =
1

2πE2
2

√
1− E2

c

∫
dy exp

(
−(t− y − E1)

2 + (y − E1)
2 − 2Ec(t− y − E1)(y − E1)

2E2
2

)
= exp

(
−(1− Ec)(t− 2E1)

2

4E2
2

)
1

2
√
πE2(1 + Ec)

√
1− Ec

.

(107)

Substituting into equation 105, we see that P (η) has the form of a convolution of two Gaussians,

and turns out to be equal to

P (η) =
| sin(η)|√

2π var(cos(η))
exp

(
−
(

cos(η)− 〈cos(η)〉
)2

2 var(cos(η))

)
. (108)

The mean 〈cos(η)〉 and variance var(cos(η)) will be computed in the next section in the most

general case of an arbitrary interaction distribution.

Supplementary Note 10.2 Moments for random matrices As explained in the previous sec-

tion, the distribution of the side lengths is not a universal quantity, as it depends on the distribution

of interaction strengths. In this section we compute the mean and the variance in the general case,

showing that they depends only on E1, E2 and Ec.

Here and in the main text we do not report the moments of the side length η, but the mo-

ments of its cosine. The cosine of the side length measures the overlap between two rows of the

interaction matrix (or the scalar product of two generators of the convex polytope). As its value

gets close to one, the side length approaches zero.

Starting from equation 95, we have that

〈
cos(η)

〉
=

1

S(S − 1)

∑
i 6=j

cos(ηij) =
1

S(S − 1)

∑
i 6=j

( ∑
k AikAjk√∑

k AikAik
∑

lAjlAjl

)
, (109)

Since we are interested in the large S limit, we can write the denominator as in equation 98 and
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obtain 〈
cos(η)

〉
=

1

S(S − 1)

∑
i 6=j

( ∑
k AikAjk

−d+ S(E2
1 + E2

2)

)
, (110)

and then 〈
cos(η)

〉
=

1

S(S − 1)

∑
i 6=j

(
AiiAji + AijAjj +

∑
k 6=i,j AikAjk

−d+ S(E2
1 + E2

2)

)
. (111)

In the large S limit, this becomes

〈
cos(η)

〉
=

−2dE1 + SE2
1

−d+ (S − 2)(E2
1 + E2

2)
(112)

to leading order in S.

In a similar way, we can write the second moment as

〈
cos(η)2

〉
=

1

S(S − 1)

∑
i 6=j

cos(ηij)
2 =

1

S(S − 1)

∑
i 6=j

( ∑
k AikAjk√∑

k AikAik
∑

lAjlAjl

)2

. (113)

In the large S limit we obtain

〈
cos(η)2

〉
=

1

S(S − 1)

∑
i 6=j

(∑
k AikAjk

)2
(
−d+ S(E2

1 + E2
2)
)2 =

1

S(S − 1)

∑
i 6=j

∑
k

∑
lAikAjkAilAjl(

−d+ S(E2
1 + E2

2)
)2

=
1

S(S − 1)

∑
i 6=j

(
AiiAji + AijAjj +

∑
k 6=i,j AikAjk

)(
AiiAji + AijAjj +

∑
l 6=i,j AilAjl

)(
−d+ S(E2

1 + E2
2)
)2

=
1

S(S − 1)

∑
i 6=j

d2(Aij + Aji)
2 − 2d(Aij + Aji)

∑
k 6=i,j AikAjk + (

∑
k 6=i,j AikAjk)

2(
−d+ S(E2

1 + E2
2)
)2 .

(114)

We can compute the averages of the different terms, obtaining

1

S(S − 1)

∑
i 6=j

(Aij + Aji)
2 =

1

S(S − 1)

∑
i 6=j

(A2
ij + A2

ji + 2AjiAji)

= 2(E2
1 + E2

2) + 2(EcE
2
2 + E2

1) = 4E2
1 + 2(1 + Ec)E

2
2 ,

(115)
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1

S(S − 1)

∑
i 6=j

(Aij + Aji)
∑
k 6=i 6=j

AikAjk =
1

S(S − 1)

∑
i 6=j

(Aij + Aji)(S − 2)E2
1

= 2(S − 2)E3
1 ,

(116)

and

1

S(S − 1)

∑
i 6=j

(∑
k 6=i 6=j

AikAjk

)2

=
1

S(S − 1)

∑
i 6=j

∑
k 6=i,j

∑
l 6=i,j

AikAilAjkAjl

=
1

S(S − 1)

∑
i 6=j

∑
k 6=i,j

(∑
l 6=i,j,k

(AikAilAjkAjl) + A2
ikA

2
jk

)

= (S − 2)(S − 3)E4
1 + (S − 2)(E2

1 + E2
2)2 .

(117)

We finally get that, in the large S limit,

var(cos(η)) =
〈

cos(η)2
〉
−
〈

cos(η)
〉2

=
2d2(1 + Ec)E

2
2 + S(E2

2 + E2
1)2 − SE4

1

(−d+ S(E2
1 + E2

2))
2 . (118)

Supplementary Note 11 Side heterogeneity for different structures and empirical networks

In figure 13 we considered the effect of four nonrandom structures on the mean and variance

of the side lengths. The interaction strengths were drawn from a normal distribution with given

mean, variance, and correlation. For some structures we considered multiple interaction types and

therefore multiple means (one positive and one negative), in which case the coefficient of variation

of the interactions and the correlation was constant and independent of the mean. Networks were

parametrized as explained in section Supplementary Note 8.

• Modular. In this case we considered interaction matrices with a perfect block structure (to

generate figure 3 we considered four blocks of equal size).

• Bipartite. In this case we considered an interaction matrix with two bipartite blocks of equal

size. The mean interaction of the offdiagonal blocks was set to be negative, while the one of

the in-diagonal blocks was positive.
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• Nested. The interaction matrix had a bipartite structure. The diagonal blocks had a random

structure with negative mean interaction strength. In the offdiagonal blocks, we consider a

connectance equal to one half and we built a perfectly nested matrix. The mean interaction

strength was positive in the offdiagonal blocks.

• Cascade. We build a matrix using the cascade model, and parameterize it with a positive

and a negative mean depending on the role of the species in the interaction.

In the case of empirical structures, figure 3 of the main text, was obtained considering the

same networks and the same parameterizations considered in section Supplementary Note 8. We

compared var(cos(η)) with the values expected in the random case. Figure 14 shows the compar-

ison between
〈

cos(η)
〉

obtained for empirical networks with the null prediction. Its value is well

predicted by the null expectation for mutualistic networks, while the null expectations underesti-

mates this value for food webs. This is consistent with the fact that the size of feasibility domain

of random networks is larger that the one of empirical networks.

Supplementary Note 12 Feasibility domain for S = 3

When S = 3, it is possible to visualize in three dimensions a convex polyhedral cone and the

feasibility domain [1]. In figure 15 we show a convex polyhedral cone in three dimensions and its

generators.

An important feature of convex polyhedral cones is that if r belongs to the cone, then so does

cr for any positive constant c. As explained in section Supplementary Note 3, this is a consequence

of the linearity of equation 1. It is relevant therefore to limit our analysis to the growth rate vectors
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on the unit sphere, i.e., to vectors r such that

‖r‖ =
√
r21 + r22 + r23 = 1 . (119)

When we consider the vector in the feasibility domain on the surface of a unit sphere we obtain the

areas of figure 1 in the main text. In this case, the quantity Ξ is the area of the triangle, while the

side lengths are the three sides of the triangle. Note that the polygon is not a triangle (as it lies on

a sphere), but rather a spherical triangle. Its sides are arcs of a circumference, while its corners are

identified by the three generators of the convex polyhedral cone.

In the S = 3 case it is possible to obtain a closed expression for the area Ξ [11]:

Ξ =
8

π
arctan

( | det(G)|
1 + g1 · g2 + g2 · g3 + g1 · g3

)
+ Θ

(
−1− g1 · g2 − g2 · g3 − g1 · g3

)
, (120)

where the second term adds one to the first term when the argument of the arctangent is negative,

while the matrixG is defined as

Gij = gi · gj . (121)

Equation 120 can be expressed directly in terms of the matrixA using equation 12.

Supplementary Note 13 Nonlinear per capita growth rates

In general, the effect of a species on the per capita growth rate of other species is not linear.

Equation 1 assumes this to be linear and the results presented in this paper were obtained under

this assumption. Nonlinearity of the per capita growth rates can be thought of as a dependence of

the interaction matrixA on n:

dni
dt

= ni

(
ri +

S∑
j=1

Aij(n)nj

)
. (122)
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For instance, in the case of predator-prey interactions with a Holling type II functional response, it

would have the form

Aij(n) =
A0
ij

1 +
∑

j hijA
0
ijnj

, (123)

where the hij are the handling times.

The presence of nonlinearity has strong consequences for both feasibility and stability. It

is no longer possible to disentangle feasibility and stability with a simple condition on A0
ij . This

means that feasibility will depend not only on the direction of r, but also on its length.

The results presented here are a necessary stepping stone for assessing the feasibility of

nonlinear systems. When the degree of nonlinearity is small (e.g., hij ≈ 0), one can use our

results, valid for the case hij = 0, to find the center of the feasibility domain and the generators.

One can then treat the departure from hij = 0 as a small perturbation, and therefore, instead of

having to explore the full vast parameter space, use the solution of the linear case as a starting

point for numerical calculations to converge on the actual, nonlinear feasibility domain. On the

other hand, in the limit of very large hij values, It is possible to show that the nonlinear form in

equation 123 is approximately linear, and so again it is possible to use our method. The effect of

intermediate values of hij on the feasibility domain is, however, still an open question.
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Stable and negative definite

Stable but not negative
 definite

0
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2

−1.0 −0.5 0.0 0.5 1.0
Ec

−
d

S
E 2

Unstable and not
negative definite

Supplementary Figure 1: Negative definiteness and stability for random matrices in the case

E1 = 0. The red curve describes the condition for stability (equation 45), while the blue curve

corresponds to the negative definiteness condition (equation 46). The region above the blue curve

corresponds to matrices that are both stable and negative definite, while the region below the red

curve corresponds to unstable and non-negative definite matrices. The parameterizations that may

still lead to stable and feasible points but we are not considering are in the region between the

two curves. The shape of this region does not change substantially if S and E2 are changed or if

E1 < 0. For E1 > 0 the not negative definite but stable region is always smaller and eventually

disappears (i.e., the blue and the red curve become the same) when S is large enough.
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Supplementary Figure 2: Universality of λ and Ξ in random matrices. The two left panels refer

to the eigenvalue with the largest real part λ of the interaction matrix A, while the right ones

to the size Ξ of the feasibility domain. We consider different values of the connectance (colors)

and different distributions (shape), such that there were multiple combination of connectances

and distributions having the same values of E1, E2, and Ec. We computed the averages
〈
λ
〉

and〈
log(Ξ)

〉
over all realizations of the matrices having the same values of E1, E2, and Ec. If the

value of λ and Ξ are universal, then they depend only on E1, E2, and Ec, and therefore their values

are equal to the mean: universality holds if λ =
〈
λ
〉

and log(Ξ) =
〈

log(Ξ)
〉
. The top panels show

that these two quantities are equal and the bottom panels quantify their deviations. We know that

λ is universal, and since Ξ has a similar behavior, we conclude that Ξ is also universal.
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Supplementary Figure 3: Approximation of Ξ using mean field theory. The black dots are nu-

merical simulations obtained by integrating Ξ numerically (see section Supplementary Note 4) for

a constant interaction matrix. The red curve is the analytical approximation obtained using the

mean-field approximation (see equation 81). β is a function of E1 and S, and is defined in equa-

tion 64. The range of β considered here is the same of the one appearing in figure 1 of the main

text.
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Supplementary Figure 4: Feasibility domain of consumer-resource community. We considered an

interaction matrix of the form of equation 84, with SR = 40 and SC = 30, Cij = 1 if i = j and

zero otherwise, ZiWj = η > 0 for any i and j, and B with entries independently drawn from a

Lognormal distribution with mean µ and variance c2vµ
2. For each parameterization we computed

the feasibility domain Ξ using the method explained in section Supplementary Note 4. The value

of Ξ is mostly determined by the coefficient of variation of the interaction, and it depends only

weakly on the mean interaction strength µ and the efficiency η.

51



Food webs Mutualistic

10−20

10−15

10−10

10−5

100

105

1010

10−20

10−15

10−10

10−5

100

105

1010

10−1510−1010−5 100 105 101010151020 10−20 10−15 10−10 10−5 100 105 1010

Randomized Network Ξ

E
m

pi
ric

al
 Ξ

Supplementary Figure 5: Size of feasibility domain Ξ in empirical networks and randomizations.

Empirical networks and their randomizations were parametrized as explained in section Supple-

mentary Note 8. Each empirical network was parametrized 100 times and the average Ξ was

compared with the one obtained by averaging 100 randomizations. Each point in this plot corre-

spond therefore to a value of Ξ of an empirical network and its randomizations averaged over the

extraction of the interaction strenghts for a given combination of the parameters as explained in

section Supplementary Note 8.
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Supplementary Figure 6: We measure the effect of mutualistic network structure on the size of

the feasibility domain as described in section Supplementary Note 9.1. Red violin plots are ran-

domizations, green ones are empirical networks. The empirical networks are grouped in four rows

based on the number of species (S < 50, 50 ≤ S < 80, 80 ≤ S < 150 and S ≥ 150, respectively).

This figure was obtained with µ+ = 0.25µmax, µ− = 0 and for three different values of c.
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Supplementary Figure 7: Same as figure 6 but with µ+ = 0.25µmax and µ− = 0.5µ+
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Supplementary Figure 8: Same as figure 6 but with µ+ = 0.5µmax and µ− = 0
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Supplementary Figure 9: Same as figure 6 but with µ+ = 0.5µmax = µ− = 0.5µ+
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Supplementary Figure 10: In this figure we compared the analytical prediction of the feasibility

domain obtained in section Supplementary Note 6 with the numerical calculated values for random

networks, empirical networks and networks generated via the cascade models. The feasibility do-

main of random networks is well predicted by our analytical approximation, which fails to predict

the empirical one and the one obtained using the cascade model.
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Supplementary Figure 11: We measure the effect of food web network structure on the size of

the feasibility domain as described in section Supplementary Note 9.2. Red violin plots are ran-

domizations, green ones are empirical networks, while blue ones correspond to the cascade model.

This figure was obtained as explained in section Supplementary Note 9.2 with µ− = 0.25µmax,

µ+ = 0.5µ− and for three different values of c.
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Supplementary Figure 12: Same as figure 12 but with µ− = 0.25µmax and µ+ = 2µ−
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Supplementary Figure 13: We measure the effect of non random structures of mean and variance

of side lengths. With the exception of the cascade model, all the structures considered do not have

an important effect on 〈cos(η)〉. On the other side, all the non-random structures considered have a

positive effect on the variance of cos(η). All the networks considered had a connectance C = 0.2.
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Supplementary Figure 14: Comparision between
〈

cos(η)
〉

obtained for empirical networks and its

null expectation for empirical food webs and mutualistic networks. This figure was realized with

the same parametrization of figure 3 of the main text and as described in section Supplementary

Note 8.
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Supplementary Figure 15: Convex polyhedral cone and its section on a sphere. Left: the feasibility

domain is a convex polyhedral cone, which is completely determined by its S generators (when

S = 3 we have 3 generators g1, g2, and g3). Center: since we consider a linear equation we

can focus the analysis only on the intersection between the convex polyhedral cone and the unit

sphere’s surface, which in three dimensions results in a spherical triangle. Right: each side of the

convex polyhedral cone can be determined from a pair of generators as an arc η of the sphere’s

surface. Since we are considering the unit sphere, the arc length η is equal to the angle between

the two generators.
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Supplementary Table 1: References and properties of the 15 food webs analyzed in the

work

Name S Number of links Connectance

Ythan Estuary [25] 92 414 0.1

St. Marks [26] 143 1763 0.17

Grande Cariçaie [27] 163 2048 0.16

Serengeti [28] 170 585 0.04

Flensburg Fjord [29] 180 1567 0.1

Otago Harbour [30] 180 1856 0.12

Little Rock Lake [31] 181 2316 0.14

Sylt tidal basin [32] 230 3298 0.12

Caribbean Reef [33] 249 3293 0.11

Kongs Fjorden [34] 270 1632 0.04

Carpinteria Salt Marsh [35] 273 3878 0.1

San Quintin [35] 290 3934 0.09

Lough Hyne [36] 349 5088 0.08

Punta Banda [35] 356 5291 0.09

Weddell Sea [37] 488 15435 0.13
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