Supporting Information

Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

Sadhana Tiwari,^{1,2} Madhuri Vinchurkar,¹ V. Ramgopal Rao¹ and Gil Garnier^{2*}

- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
- BioPRIA, Chemical Engineering department, Monash University Clayton VIC 3800, Australia. * Corresponding author; e-mail: gil.garnier@monash.edu.

S1. EDX spectroscopic study:

Figure S1: EDX spectra of ZnO-NRs/WFP showing atomic concentration of different elements.

S2. Nanorods on paper area and density calculation:

Figure S2: SEM image of ZnO-NRs/WFP and shape of individual rod obtained from SEM and used for calculations.

2.1 Surface area calculation:

Shape of nanorod is like hexagonal prism

Parameter calculated from SEM image:

No. of nanorods in $100\mu m^2$ is 1000

Height(h): 1µm

Diagonal(D): 200nm

Edge length(a): D/2= 100nm

Area of a hexagonal prism= $3\sqrt{3a^2 + 6ah}$

Hence, area of one nanorod = $6.5 \times 10^{-13} \text{ m}^2 = 0.65 \mu \text{m}^2$

Area of 1000 rods will be= 650 μ m²

2.2 No. of nanorods/m² calculation:

Approximate no. of nanorods in 100um² area is 1000(from SEM image).

No. of $rods/m^2$ will be:

#rods in 10^{-4} m² is =1000, assuming uniform distribution

In $1\text{m}^2 = 1000/10^{-4} = 10^7 \text{ rods/m}^2$

So, density of rods= 10^7 rods/m^2

Surface coverage of paper by nanorods is about 90% as seen by SEM images.

Therefore, increase in surface area will be= density of rods x area of one rod

$$= 6.5 \times 10^{-13} \times 10^{7}$$
$$= 6.5 \times 10^{-6} \text{ m}^2 \text{ or } 6.5 \times 10^{6} \mu \text{m}^2$$
$$= 7 \times 10^{6} \mu \text{m}^2$$

S3. Relation with increase in fluorescence

Sample	Average Intensity
WFP	6440184
ZnO-NRs/WFP	22101495

Percent increase in fluorescence intensity=

```
\frac{FinalIntensity-InitialIntensity}{InitialIntensity} x100
```

Which gives,

= 22101495-6440184/6440184*100

> 200% increase in fluorescence.