
 

Supplementary Note 1. Details of the wavelet-based compression  

A widely used compression algorithm is the JPEG standard of image encoding, which is based on discrete 

cosine transforms (DCTs). We discard this compression procedure as it cannot capture abrupt changes in 

𝜑𝑖𝑗  that are already present in a focusing meta-surface. In this study we used a compression algorithm 

based on the discrete wavelet transform (DWT). Based on waveforms with an average value of zero (i.e., 

parent wavelets), the DWT is typically used in image processing to separate the fine details in an image. 

This is achieved by decomposing the image into a superposition of shifted and scaled representations of 

the original parent wavelet, which are mutually orthogonal. The procedure generates not a single matrix 

of coefficients, as in the DCT case, but a hierarchical tree of matrices where the spatial resolution doubles 

at each step (Supplementary Fig. 1). These matrices together form the transform 𝜑𝐾
DWT, where K is the 

level of decomposition. In this work, we used the Haar wavelet 𝐻(𝑥), which corresponds to a square wave 

in the interval of definition. 

Once an image is decomposed, compression can be achieved by decimating the coefficients of the 

wavelets below a certain threshold value 𝛿. The inverse transform 𝜑̃𝑖𝑗  is then computed, which contains 

a number of unique phases dependant on the threshold chosen (i.e. on the compression level for the 

specific image). This is a lossy process, as information is reduced by the thresholding step: a lossless 

approach is detailed later. 

It is worth noting that, since the coefficients depend on the parent wavelet chosen (i.e. on the base used), 

we tried also the Shannon wavelet 𝑆(𝑥), i.e. the function 2(sin 2𝜋𝑥 − cos 𝜋𝑥)/(𝜋 − 2𝜋𝑥) in the 𝜆0-wide 

interval of definition, yielding to similar results. 

 

Supplementary Note 2. Discussion on phase quantization 

As mentioned in the main text, various authors consider an equally spaced M-subdivision interval [0, 2𝜋) 

and then compute a histogram of 𝜑𝑖𝑗  using M bins. This results in a simple AD conversion step: substitute 

each analogue phase value with the corresponding bin value, such that 𝜑̃𝑖𝑗
(𝑀)

= 𝜑𝑚; here,  
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, with 𝑖, 𝑗 =  1 … 𝑁, and 𝑚 = 1 … 𝑀.  

To decide on the optimal number of unique phases, i.e. quanta, we define the error function: 
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where 𝜑E
(𝑁)

(𝑀) represents the error in reproducing the analogue phase distribution 𝜑𝑖𝑗  for a N×N grid 

with M available phases.  

Supplementary Fig. 2a shows the value of 𝜑E
(16)

(𝑀) for a 16×16 grid emulating a focused beam with a 

focal point 𝐹0 varying from 3𝜆0 and 47𝜆0 (26 mm and 400 mm at 40 kHz) along the axis; here, the number 

of discrete phases varies from 𝑀 = 2 to 𝑀 = 50. A simple piston-like model was implemented to produce 

a focused beam. A very small relative reduction in 𝜑E  is noted when using more than 16 phases, and the 

same effect can be observed in the pressure distribution in the focal region (Supplementary Fig. 2b): a 4-



bit quantisation (16 unique phases) yields to a maximum approximation error of 0.1 dB. Supplementary 

Fig. 2b also shows that, if a 2-bit (4 unique phases) or a 3-bit (8 unique phases) quantization is used, the 

sound pressure level (SPL) maintains the same trend as the one generated by an analogue phase 

distribution, with differences as large as 1 and 3 dB, respectively. As a result of this analysis, we have 

selected a hexadecimal phase distribution for the metamaterial bricks in the main text. 

 

Supplementary Note 3. Additional information on the brick design 

The brick design described in the main text was selected among other possible ones, as shown in 

Supplementary Fig. 3, in order to maximise the robustness of the assembly process and to minimise the 

energy loss across the single layer, thus facilitating stacking.  

Supplementary Table 1 reports in brief the key characteristics of the bricks used in the main text. 

Particularly important for stacking is the transmission coefficient, which was found to be 0.98 ± 0.02. 

Note that the thickness of the brick walls was fixed to 𝜆0/40 , while the bar thickness is 𝜆0/20; the radius 

of the bar fillets is such that 𝜌𝑟 = min(𝑏𝑙 , 𝜆0/10). 

 

Supplementary Note 4. Realisation of a focusing meta-surface 

Supplementary Fig. 4 reports the realisation of a focusing meta-surface with a focal point at 𝐹0 =

(0,0,100). Here, a uniform 4-bit quantization of the phase domain is compared both numerically and 

experimentally with a non-uniform 3-bit quantization.  

 

Supplementary Note 5. Physical realisation of the wavelet decomposition  

A wavelet transform is a signal decomposition technique that can achieve both lossless and lossy signal 

compression. In the main text and in Supplementary Fig. 4 we used this decomposition to achieve a lossy 

compression. There is, however a lossless alternative, conceptually illustrated in Fig 1c (of the main text). 

As discussed in Section S1, we used the Haar function, 𝐻(𝑥), as a parent wavelet: at the first level of the 

wavelet hierarchy, this is a signal of amplitude 1, when 𝑥 ∈ (0, 𝜆0/2), and of amplitude −1, when 𝑥 ∈

(𝜆0/2, 𝜆0). As shown in Supplementary Fig. 1, the original 4-bit image is decomposed into:  

𝜑𝑖𝑗 = {0} × 𝐻𝜆0
+  {1}  × 𝐻𝜆0

+ {2} × 𝐻𝜆0
+ {3} × 𝐻𝜆0

  (2) 

where {0}, {1}, {2} and {3} are the matrices of the coefficients in Supplementary Fig. 1, and 𝐻𝜆0
 is the 

spatial representation of the Haar function.  

Since phases are additive, it is possible to obtain the sum in supplementary equation (2) in an experimental 

way by stacking four different meta-surfaces: each will represent one of the addends in supplementary 

equation (2). 



Each coefficient of the wavelet transform then applies to a 2×2 part of the grid. In terms of bricks, this 

means that in each 2×2 cell, the first two bricks will have a phase given by the corresponding coefficient 

of the wavelet transform, while the other two will have a phase opposite. Since phases are modular to 

2𝜋, however, a negative phase −𝜙0 will need to be reported as 2𝜋 − 𝜙0 and the same applies to the 

coefficients between [−2𝜋, 8𝜋] reported in Supplementary Fig. 1. 

In this example, we exploited both modularity and additivity of phases by identifying the Haar function 

with a brick of the same spatial resolution. In this way, the coefficients of the first hierarchical level 

become the phase that needs to be represented by a brick and each matrix of coefficients can be seen as 

a meta-surface with a reduced spatial resolution. This method, detailed in Fig. 1c of the main text, is 

technically lossless. An example of successful application can be found in Supplementary Fig. 5, where we 

realise a focusing meta-surface (previously realized in Supplementary Fig. 4) with by stacking the 4 meta-

surfaces corresponding to the first level of the wavelet hierarchy. We observed the focus at ~80 mm, with 

a spot size in line with the Rayleigh principle. Crucially, this method exploits stacking to represent 𝜑𝑖𝑗  

using 3.5 bits and a spatial resolution 𝜆0. 

  



Supplementary Figure 1 | Example of discrete wavelet transform. a, Original phase distribution 𝜑𝑖𝑗 to form a focus at (0,0,100) 

mm where the 2𝜋-range has been normalised to 1. Note here the size of each pixel in the 16×16 grid is 𝜆0/2. b, Hierarchical 
representation of the DWT using the Haar wavelet. Here, the coefficients in the hierarchical representation cover the range 
[−1, 4], which is much larger than the original [0,1].  

  



 

Supplementary Table 1 | Key characteristics of the metamaterial bricks used in this study. 

  



 

Supplementary Figure 2 | Effect of the phase quantization on a 16x16 grid. a, Error in reproducing the analogue phase 
distribution for varying focal distances along the axis. b, Sound pressure level (SPL) along the axis for different numbers of 𝑀 
uniformly distributed phases.  

  



 

Supplementary Figure 3 | Parametric sweep study on |𝒃𝒔,𝒃𝓵⟩ and tabulation of the selected data. a, Geometrical details on the 

design of the bricks (see also Supplementary Table 1). b, Transmitted phase map through a brick build with 1200 possible 

combinations of varying bar length 𝑏ℓ (30 points) and inter-bar spacing 𝑏𝑠 (40 points). The overlaid contour corresponds to the 

pressure field 𝑅𝑒(𝑝) at a constant level of |𝑝| = 0.95 – this is the threshold used in this study. The symbols represent the 15 

selected parameters with a phase delay swiping uniformly the interval [0,2𝜋). c, Zoom of the selected region in figure b; here, 

e.g. the index interval (720:760) corresponds to {𝑏𝑠
(1:30)

, 𝑏ℓ
18}. d, Pressure field map showing a clear constant phase shift over a 

wavelength 𝜆0 for 15 selected bricks.  

  



 

Supplementary Figure 4 | Effect of the different phase quantization levels for a focusing surface. a, Simulations and b, 
measurements showing the pressure field maps at different bit-rates. Here, the pressure field is probed in the vertical plane 𝑌 =
0. c, Experimental pressure field maps in the horizontal plane at 𝑍 = 100 mm. d, Schematic design of the two meta-surfaces and 
their practical realization. 

  



 

Supplementary Figure 5 | Physical realization of the wavelet decomposition by stacking. a, Measurements showing the pressure 
field maps in planes at 𝑍 ≈ 80 mm (top panel) and 𝑌 = 0 (bottom panel). b-c, Photographs of the fabricated stack (top and side 
views, respectively). d, Experimental setup used for microphone measurements.  


