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I. DATA

We enrolled a total of 744 undergraduate students from Harvard College, discerned

their friendship ties, and tracked whether they had the flu beginning on September 1,

2009, from the start of the new academic year, to December 31, 2009. Beginning on

October 23, 2009, we approached 1,300 randomly selected Harvard College students

(out of 6,650); we waited until a few weeks of the new school year had passed in order

to be able to obtain current friendship information. Of these 1,300 students, 396 (30%)

agreed to participate. All of these students were in turn asked to nominate up to three

friends, and a total of 1,018 friends were nominated (average of 2.6 friends per nom-

inator). This yielded 950 unique individuals to whom we sent the same invitation as

the initial group. Of these, 425 (45%) agreed to participate. However, 77 of these 950

subjects were themselves members of the original, randomly selected group and hence

were already participants. Thus, the sample size after the enrollment of the random

group and the friend group was 744.

Nominated friends were sent the same survey as their nominators; hence, the original

425 friends also nominated 1,180 of their own friends (average of 2.8 friends per nom-

inator), yielding 1,004 further, unique individuals. Although we did not send surveys

to these friends of friends, 303 (30%) were themselves already enrolled either in the

friends group or in the initial randomly selected group.

After giving informed consent, all subjects completed a brief background question-

naire soliciting demographic information, and flu and vaccination status since Septem-

ber 1, 2009. We obtained basic administrative data from the Harvard College registrar,

such as sex and class of enrollment and tracked cases of formally diagnosed influenza

among the students in our sample as recorded by University Health Services (UHS) be-

ginning on September 1, 2009 through December 31, 2009. Presenting to the health

service indicates a more severe level of symptomatology, of course, and so we do not

expect the same overall prevalence using this diagnostic standard as with self-reported

flu discussed below. However, UHS data offer the advantage of allowing us to obtain
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information about flu symptoms as assessed by medical staff. A total of 627 of the 744

students (84%) who agreed to participate in the survey portion of our study also gave

written permission for us to obtain their health records. Finally, 7 students reported

being diagnosed with flu by medical staff at facilities other than UHS (in response to

survey questions asked of all students), so we include these in the data as well.

Notably, we do not expect cases of flu to meaningfully alter the social networks and

friendship patterns of Harvard undergraduates, let alone over a two-month period. And,

we assume that the friendship network of Harvard students in our sample did not change

meaningfully over the period September to December. That is, we treat the network as

static over this time interval.

Beginning on October 23, 2009, we also collected self-reported flu symptom infor-

mation from participants via email twice weekly (on Mondays and Thursdays), con-

tinuing until December 31, 2009. The enrolled students were queried about whether

they had had a fever or flu symptoms since our last email contact, and there was very

little missing data (47% of the subjects completed all of the biweekly surveys, and 90%

missed no more than two of the surveys). Students were deemed to have a case of flu

(whether seasonal or the H1N1 variety) if they report having a fever of greater than 100

F (37.8 C) and at least two of the following symptoms: sore throat; cough; stuffy or

runny nose; body aches; headache; chills; or fatigue.

Hence, we had two measures of flu incidence. The medical-staff standard was a

formal diagnosis by a health professional and typically reflected more severe symptoms.

The self-reported standard captured cases that did not come to formal medical attention.

As expected, the cumulative incidence of the latter was approximately four times the

former (32% versus 8%) by the time of cessation of follow-up on December 31, 2009.

We checked the sensitivity of our findings by using this self-reported measure of flu (see

below).

As part of the foregoing biweekly follow-up, and to supplement the UHS vaccination

records, we also ascertained whether the students reported having been vaccinated (with
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seasonal flu vaccine or H1N1 vaccine or both) at places other than (and including) UHS.

For analyses using the network data we included 750 pairs of directed friendships

among the participants (there were 158 mutual ties and 592 pairs of undirected friend-

ships). The network degree of each subject is defined as the number of undirected

friendships he/she has in this social network. Data collection and analysis was approved

by the Harvard IRB committee.

II. ESTIMATION METHOD

We use the method of least squares to estimate the model parameters. We choose

as the starting point the day when the very first incidences of both vaccination and

infection take place. Our goal is to find parameter estimates that minimize the deviation

between the predicted and the real trajectories of the temporal incidence of infected

and vaccinated individuals over the time course under consideration. Denote by q∗ =

[qR∗
T ,qV∗

T ]T the real data and by q(b) = [qT
R ,q

T
V]T the model predicted data. We need

to find the parameters b = [β, γ, ω, a] that minimize e(b) = ||q∗ − q(b)||, where || · ||

denotes the 2-norm. We constrain the search of the parameter space within the simplex

[0, 1] × [0, 1] × [0, 1] × [0, 1].

We use simulated annealing to handle the presence of local minima in our parameter

optimization search. We run the iteration n = 106 times, starting with a guess of the

parameter values b0. The temperature Ti of each iteration is chosen to be ((n−i)/n)4. For

each iteration i, we randomly choose a new sets of parameters b1 drawn from the close

neighbourhood of b0 (using the Gaussian deviation N(0, 0.01)). If e(b1) < e(b0), we set

b0 = b1; otherwise with probability exp[(e(b0) − e(b1))/Ti], set b0 = b1. Throughout

this search process, we obtain the best fitting parameters b. The residual standard error

is σe = e(b)/
√

k − m, where k is the number of observations and m the number of

parameters. Denote by J the Jacobian matrix, where Ji j is given by

Ji j =
∂(q∗i − qi(b))

∂b j
= −

∂qi(b)
∂b j

(1)
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The Hessian matrix can be approximated by H ≈ JT J. Accordingly the standard error

of the parameter estimation bi can be approximated by

σi = σe

√
H−1

ii . (2)

III. MODEL SELECTION CRITERION

Following previous practice [1–3], we use the estimation method above to fit our

data to four candidate models based on how individuals make vaccination decisions: (i)

the full model (with parameter a) where individuals vaccinate in response to both social

influence and disease prevalence, (ii) the ‘rational response’ model (with a = 0) where

individuals base their vaccination decisions solely on the disease prevalence, (iii) the

‘social contagion’ model (with a = 1) where individuals vaccinate only when others

have already done so, and (iv) the ‘no vaccination’ model that assumes vaccination does

not play a role in the course of the epidemic. We use the modified Akaike information

criterion (AICc) for model selection:

AICc = −2 log(Lmax) + 2m +
2m(m + 1)
n − m − 1

, (3)

where the maximum likelihood estimator Lmax = (2πeRSS/n)−n/2 (RSS is the residual

sum of squares), m is the number of fitted model parameters, and n is the number of data

points. The value of AICc indicates the goodness of fit and the desired model is the one

with the lowest value of AICc.

Using the full model, the best estimated parameters are found to be β0 = 0.1715 ±

0.0054 day−1, γ0 = 0.1094 ± 0.0053 day−1, ω0 = 0.7028 ± 0.1955 day−1, and a0 =

0.2435 ± 0.0801. The residual standard error is 0.123. These estimates suggest a basic

reproductive ratio of R0 ≈ 1.56. For the candidate model with fixed a = 0, the parameter

search range for ω is set as [0, 10]. For network models, the effective R0 = β/γ〈k2〉/〈k〉2,

where the factor 〈k2〉/〈k〉2 accounts for the effects of network heterogeneity on disease

transmission (for homogeneous populations, it reduces to β/γ)[4, 5]. Parameter esti-

mates for other candidate models give poorer fitting results and can be found in Table 1

6



of the main text. Furthermore, we repeated the same fitting procedure but using all avail-

able information regarding flu infections (i.e., self-reported flu cases[6]) and obtained

somewhat larger estimates of the epidemiological parameters because of the higher in-

cidence of self-reported flu (Table S1), but these additional results confirm that social

contagion is a key determinant of vaccination behaviour.

IV. NETWORK-SPECIFIC DUELING CONTAGION MODEL

Aside from the “coarse-grained” results reported in Figs. 3 and 4 in the main text, we

also fit the data to the network-specific dueling contagion model (Eqs. 1-4 in the main

text). Because the mapped social network is very sparse and consists of a few com-

ponents, we choose to focus only on its largest connected component (76 individuals)

and use it to represent both the biological contagion network and the social contagion

network. We report the best parameter estimates in the last column of Table S1. For

comparison, we also plot similar figures corresponding to Figs. 3 and 4 in the main

text (Figs. S1 and S2). We confirm that these results for the network-specific dueling

contagion model are consistent with those reported in the main text: the final epidemic

size could be mitigated approximately by half if the spread of vaccination behaviour

was twice as fast or was driven solely by social contagion. Despite the intriguing one-

humped curve in Fig. S2a (cf. Fig. 4a), the spread of flu is still most suppressed when

individuals’ vaccinations are influenced only by social contagion (a = 1, Fig. S2c).
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FIG. S1: Fitting results using the network-specific dueling contagion model. (a) Shown are the

real data about the aggregate levels in the largest connected component of the mapped social

network (solid) and the best-fitting curves (dashed) using a simple dueling contagion network

model (Eqs. 1-4 in the main text). Panel (b) shows the dependence of the epidemic size (t =

120) on the network responsiveness, ω, for other model parameters fixed with the estimated

values. The circle marks the estimated value of ω0. (c) and (d) Plotted are the predictions

of population aggregate behaviors, based on the network-specific SIRV model of the dueling

contagion processes, for a smaller ω = ω0/2 (the triangle in panel b) and for a larger ω = 2ω0

(the square in panel b), respectively.

8



0 0.5 1
0

0.1

0.2

0.3

Weight of peer influence, a

Fl
u 

ep
id

em
ic

 s
iz

e

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Days since September 1, 2009

C
um

ul
at

iv
e 

in
ci

de
nc

e

Reduced peer influence, a = a0/2

 

 

Infected
Vaccinated

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Enhanced peer influence, a = 2a0

Days since September 1, 2009

C
um

ul
at

iv
e 

in
ci

de
nc

e

 

 

Infected
Vaccinated

a

b c

FIG. S2: Quantifying the impact of social contagion on health outcomes using the network-

specific dueling contagion model. Panel (a) depicts the final epidemic size (t = 120) as a

function of the parameter a describing the extent of the role that social contagion, in comparison

to the risk of infection, plays in an individual’s vaccination decision. The circle marks the

estimated value of a0 ≈ 0.30 inferred from our real data. Panels (b) and (c) plot the aggregate

levels of vaccination and infection, predicted by our network-specific dueling contagion model,

with halving (a = a0/2, the triangle in panel a) versus doubling (a = 2a0, the square in panel a)

the relative effect of peer influence on vaccinating decisions of individuals.
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V. PARAMETER ESTIMATES USING SELF-REPORTED FLU DATA

We performed similar parameter estimates as in the main text but using all available

information regarding flu infections (through self-report of subjects). Not surprisingly,

the total number of self-reported flu illness far exceeds that of diagnosed flu, that is,

237 versus 57. As a result, self-reported flu data gives a much higher estimation of the

epidemiological parameters (R0 ∼ 2.9). It is worth noting that, albeit with much elevated

flu incidence (namely, higher perceived risk of infection) in this situation, the ‘rational

response’ model does not fit better than the ‘social contagion’ and the full model. In line

with our conclusion in the main text, this additional result suggests that social contagion

is a key determinant of vaccination. Detailed fitting results using self-reported flu data

can be found in Table S1.

VI. TIME-SCALE SEPARATION ANALYSIS

We describe the dueling contagion processes of vaccination and infection based on

the following aggregate fractions:

dρS

dt
= −ω(κ − ρV)[aρV + (1 − a)ρI] − βρSρI , (4)

dρI

dt
= βρSρI − γρI , (5)

dρR

dt
= γρI , (6)

dρV

dt
= ω(κ − ρV)[aρV + (1 − a)ρI]. (7)

We find no closed-form solutions to the ordinary differential equations above, but we can

obtain analytical approximations using the time-scale separation technique for extreme

values of ω.

Specifically, for ω → 0 (when individuals show very little or no responsiveness to

either vaccination or infection), the spread of vaccination occurs much more slowly,

compared to the spread of infection. Thus, the dueling contagion dynamics will con-
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verge to the slow dynamic of vaccination, dρV
dt = ω(κ − ρV)[aρV + (1 − a)ρI], following

the fast dynamic of infection in which the spread of vaccination is decoupled and has

almost no effects on the disease transmission:

dρS

dt
= −βρSρI , (8)

dρI

dt
= βρSρI − γρI , (9)

dρR

dt
= γρI . (10)

(11)

It yields:
dρS

ρS
= −R0dρR. (12)

Integrating the above equation, we get:

ln ρS (∞) − ln ρS (0) = −R0(ρR(∞) − ρR(0)). (13)

Using the initial condition, ρS (0) ∼ 1 and ρR(0) ∼ 0, and ρS (∞) = 1−ρR(∞) at the end of

the epidemic spreading, we obtain the transcendental equation below, which determines

the final epidemic size, ρR:

ρR = 1 − exp[−R0ρR]. (14)

For R0 = 1.56, ρR is approximately 0.61.

On the other limit, for sufficiently large values of ω (when the population shows

high levels of responsiveness), the spread of vaccination behavior is a fast dynamic

and rapidly converges to the equilibrium level κ, while the spread of flu infection is a

slow dynamic. Therefore, the epidemic spreading dynamic recovers to the classic SIR

model with the pre-emptive vaccination level κ. In our study, the equilibrium level of

vaccination is 0.415, which exceeds the herd immunity threshold, 1 − 1/R0 (0.35), so

the disease cannot persist in the population, ρR ∼ 0, in this scenario.

For intermediate values of ω, the dueling contagion dynamics exhibit strong mutual

interdependence (i.e., no time-scale separation): the epidemic size ρR monotonically
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decreases with the increasing network responsiveness, ω, leading to a transition from

high numbers of infection to rare infections, as shown in Fig. 3b in the main text.
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