
SUPPLEMENTARY	INFORMATION	
	

1. Deeper	penetration	of	diving	vessels	
	
In	the	manuscript,	we	pointed	flow	reorganization	across	different	cortical	layers	after	chronic	
cocaine	exposures.	Fig.s1	shows	the	MIP	images	(x-z	plane)	after	32	days	of	cocaine	treatment	vs	
its	baseline	(Day	0)	showing	increased	diving	path	and	enhanced	flow	in	deep	cortical	layers	(300-
600µm).	The	baseline	image	(a)	barely	shows	diving	vessels	beyond	600µm;	In	contrast,	flow	is	
readily	detectable	after	Day	32	of	cocaine	treatment	even	beyond	600µm	as	pointed	by	white	
arrows.	The	longer	vessels	or	faster	flow	implies	that	cocaine	associated	flow	increase	routs	to	
deeper	cortical	layers	as	an	effect	of	increasing	collateral	flow	to	compensate	for	local	flow	or	
metabolic	deficits	needed	for	neuronal	activity.		
	

	
	
Fig.s1	Increased	depth	of	penetrating	vessels	after	chronic	cocaine	treatment.	a)	and	b)	are	MIP	
images	(x-z	plane)	of	3D	µODT	to	show	cerebral	vascular	networks	in	mouse	sensorimotor	cortex	
on	Day	0	(baseline)	and	on	Day	32	after	chronic	cocaine	exposures,	respectively.	White	arrows	
point	out	the	deeper	diving	vessels	due	to	the	flow	reorganization	which	are	missing	on	Day	0.	
	
	

2. Microvascular	network	segmentation	
	
To	 segment	 binary	 vascular	 networks	 from	 µOCA	 images,	 we	 applied	 a	 hybrid	 approach	
combining	Frangi-Hessian	method	[4]	with	region	grow	algorithm,	in	which	Frangi-Hessian	and	
region	grow	methods	segment	microvascular	network	and	large	branches,	respectively.	Briefly,	
Frangi-Hessian	 filter	 calculates	 the	 vessel-likeness	 of	 individual	 pixel	 x0	 in	 a	 2D/3D	 image	 by	
analyzing	 eigenvalues	 (λ1,	 λ2,	 λ3)	 of	 Hessian	matrix	 applied	 on	 the	 original	 image.	 Taking	 the	
assumption	of	|λ1|≤|λ2|≤|λ3|,	the	smallest	eigenvalue	λ1	corresponds	to	the	vessel	orientation	
(λ1®0)	and	λ2,	λ3	are	eigenvalues	in	the	radial	directions.	In	a	3D	image,	eigenvalues	of	a	tubular	
structure	satisfy	|λ1|≈0, |λ1|<<|λ2|,	λ2≈λ3.		To	calculate	the	vessel	likeness	of	a	tubular	structure	
in	2D,	a	geometric	ratio	(RB)	and	magnitude	factor	(S)	were	defined,	
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Then,	the	vessel-likeness	of	a	tubular	structure	in	a	2D	image	can	be	calculated	by		
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(s2)	

where	 β	 and	 c	 are	 custom	 thresholding	 parameters	 that	 determine	 the	 sensitivity	 of	 Frangi-
Hessian	filtering	to	tubular	shape.		
	
Region	grow	algorithm	is	to	grow	a	manually	set	‘seed’	pixel	by	evaluating	the	intensity	difference	
between	the	test	pixel	 IT	 in	surrounding	neighborhood	and	the	‘seed’	pixel	 IS.	When	the	grey-
level	difference	between	the	test	and	the	 ‘seed’	pixel	 is	 smaller	 than	a	given	threshold	T,	we	
define	the	test	pixel	as	a	new	‘seed’	pixel.	The	growing	procedure	continues	and	does	not	stop	
until	no	more	test	pixels	could	be	included	in	‘seeds’	domain.		
	
Fig.s2	illustrates	the	flow	chart	of	the	hybrid	segmentation	method.	Firstly,	a	seed	is	manually	
placed	on	the	big	braches	to	initiate	the	region	grow	iteration	and	to	generate	a	binary	mask	of	
large	branches	(Fig.s2b).	At	the	meantime,	a	vessel-likeness	map	of	microvasculature	(Fig.s2c)	is	
calculated	by	Frangi-Hessian	method	with	small	Hessian	matrix	(1≤σ≤3).	The	second	step	is	to	
binarize	vessel-likeness	map	of	microvasculature	(Fig.s2c)	using	a	rolling	adaptive	thresholding	
window	(Fig.s3c).	After	obtaining	the	binary	image	of	both	large	branches	and	microvasculature,	
two	images	are	merged	and	yield	the	binary	mask	of	entire	cerebral	vascular	network	(Fig.s3e).		

	
	
Fig.s2	 Flow	 chart	 of	 hybrid	 segmentation	 combining	 Frangi-Hessian	method	 and	 region	 grow	
algorithm.	a)	and	a’):	Original	µOCA	image	of	mouse	sensorimotor	cortex	and	the	zoom-in	image	
of	ROI	(red	dashed	box).	b)	Binary	image	of	large	branches	by	region	grow	algorithm;	c)	Vessel-
likeness	map	calculated	by	Frangi-Hessian	filter	of	small	scale	(σ=1,	2,	3);	d)	Binary	image	of	the	



microvasculature.	e)	and	e’):	Binary	image	of	entire	vascular	network	and	the	zoom-in	image	of	
ROI	(red	dashed	box).	Green	arrows	in	a’)	and	e’)	point	out	the	uncovered	microvascular	details.		
	

3. Spatial	resolved	microvascular	density	map	of	full-thickness	cortex	
	
To	extract	the	microvascular	networks	from	the	vascular	tree,	diameter	thresholds	are	applied	
to	classify	vascular	networks	according	to	their	diameters	(Fig.s3g).	Fig.s3	is	the	flow	chart	for	
generating	 diameter	 coded	 skeleton	 image.	 Fig.s3b	 is	 the	 binary	 mask	 of	 vascular	 network	
generated	 by	 our	 hybrid	method	 and	 Fig.s3c	 is	 the	 inverted	mask.	 Then	 the	 skeleton	 image	
(Fig.s3d)	 and	 Euclidean	 distance	 map	 (Fig.s3e)	 which	 characterizes	 vessel	 diameters	 were	
calculated	based	on	Fig.s3b	and	Fig.s3c,	respectively.	Finally,	the	diameter	coded	skeleton	can	be	
obtained	by	‘point	to	point’	multiplication	between	Fig.s3d	and	Fig.s3e.	After	thresholding,	the	
skeleton	 image	 corresponding	 to	 certain	 diameter	 range	 was	 binarized	 again	 for	 density	
measurement.		
	

	
 

Fig.s3	Flow	chart	for	classifying	vascular	networks	of	different	diameter	range	in	a	thin	cortical	
layer	(e.g.	100µm	of	thickness)	a)	Original	µOCA	MIP	image	of	vascular	network	of	a	thin	cortical	
layer,	b)	Binary	image	by	hybrid	method,	c)	Inverted	binary	image	of	b),	d)	Skeleton	image,	e)	
Euclidean	distance	map,	f)	Skeletonized	Euclidean	distance	map,	and	glarge),	gmedium),	gsmall)	are	



segmented	vessel	skeletons	of	 large	(f≥40µm),	medium	(16µm≤f≤40µm)	and	small	 (f≤16µm)	
vessels.	
	

A	full-thickness	3D	µOCA	image	of	mouse	cortex	(600µm)	is	sectioned	into	6	sub-volumetric	µOCA	
images,	yielding	6	microvascular	skeleton	images	(Fig.	s4b).	Then	the	microvascular	skeleton	of	
upper	 (0-300µm)	 and	 bottom	 (300-600µm)	 cortex	 can	 be	 obtained	 by	 taking	 the	 maximum	
intensity	projection	of	the	corresponding	layers	(0-300µm:	MIP	of	layer	1-3,	300-600µm:	MIP	of	
layer	4-6).	To	generate	the	density	map,	an	adaptive	rolling	window	method	(window	size:	W×W,	
W=60	pixels)	is	utilized	to	calculate	vascular	density	fraction,	or	fill	factor	(FF)	which	characterizes	
the	density	level	of	the	target	window.	Then	FF	is	assigned	to	each	individual	pixel	covered	by	
the	rolling	window	to	generate	a	spatial	resolved	density	map.		
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Fig.s4	Calculation	of	spatial	resolved	density	map	a)	Skeleton	of	microvasculature	фT<16µm	of	a	
single	cortical	layer	b)	6	subsections	of	a	full-thickness	cortex	c)	MIP	image	of	skeleton	images	of	
the	first	3	cortical	layers	(0-300µm)	d)	Spatial	resolved	density	map	of	MIP	skeleton	image	c).	Red	
dashed	square	represents	the	adaptive	window	and	the	red	arrows	show	its	rolling	direction.		

	
4. Ultrahigh-resolution	optical	coherence	tomography	(µOCT)	

	
A	custom	µOCT	system	was	used	for	ultrahigh-resolution	optical	coherence	angiography	(µOCA)	
and	 optical	 Doppler	 tomography	 (µODT),	 which	 enabled	 capillary-resolution	 imaging	 of	 3D	
cerebral	 vasculature	 (µOCA)	 and	 flow	 networks	 (µODT)	 by	 decoding	 the	 spectral	 fringes	
backscattered	from	the	sample	and	the	reference	arms.	Briefly,	the	µOCT	setup	was	powered	by	
an	ultra-broadband	superluminescence	diode	(λ0=1310nm,	ΔλFWHM=200nm)	whose	output	light	
illuminated	a	2´2	wideband	monomode	fiberoptic	coupler.	The	reference	light	was	reflected	by	
stationary	mirror	after	passing	through	a	prism	pair	for	dispersion	compensation.	Light	exiting	
the	sample	arm	was	collimated	to	~f5mm	and	focused	by	an	achromatic	lens	(f18mm/NA0.25)	
on	 the	 capillary	 beds	 under	 the	 surface	 of	 mouse’s	 somatosensory	 cortex	 through	 a	 cranial	
window.	The	backscattered	light	(along	z-axis)	was	collected	by	the	same	optics	path	back	to	the	
sample	arm	and	interfered	with	the	reference	light	in	the	detection	fiber.	The	recombined	light	
passed	through	a	custom	high-throughput	spectrometer	 (Wasatch	photonics),	whose	spectral	



components,	including	spectral	interference	fringes,	were	evenly	projected	onto	a	linear	InGaAs	
array	(GL2048,	Sensors	Unlimited)	with	a	highest	line	rate	of	147kHz.	For	the	system	setup,	an	
axial	 resolution	 (defined	 by	 the	 coherence	 length	 Lc=2ln2/p×l2⁄Dlcp)	 of	 ~2.8µm	 and	 a	 lateral	
resolution	 of	 ~3.2µm	 were	 reached	 in	 brain	 tissue.	 The	 Doppler	 velocity	 was	 retrieved	 by	
measuring	the	phase	difference	Δфz,x	between	adjacent	A-scans,	which	were	calculated	by	either	
the	phase	subtraction	method	 (PSM)	as	vz,x=λΔфz,x/(4πnτcosθ),	where	θz	 is	 the	angle	between	
blood	flow	and	the	light	incidence,	n	is	refractive	index	of	tissue	and	τ	is	time	interval	between	2	
adjacent	A-scans,	or	by	the	phase	intensity	method	(PIM)[1].	As	the	process	was	computationally	
intensive,	graphic	processing	unit	(GPU)	was	implemented	to	boost	both	FFT	and	PSM	or	PIM	
reconstruction,	 allowing	 for	 real-time	 rendering	 (e.g.	 473fps	 1k×2k	 pixels	 B-scan)	 and	
instantaneous	display	of	maximum	intensity	project	(MIP)	[2,	3].		
	

 
 

 
Fig.s5	Schematic	diagram	of	the	µODT	system.	SLD:	superluminescence	diode,	BS:	beam	splitter,	
CM:	 Collimator,	 FPC:	 Polarization	 controller,	 G:	 Galvo	 scanner	 L1:	 Sample	 arm	 objective,	 L2:	
Reference	arm	lens,	L3:	Detector	lens	group,	D:	dispersion	compensation	prism	pairs.	
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