
1. ECDNA count and presence statis-
tics
Estimation of frequency of samples containing ECDNA:

There is a wide variation on the number of ECDNA across different samples and within
metaphases of the same sample. We want to estimate and compare the frequency of samples
containing ECDNA for each sample type. We label a sample as being EC-positive by using
the pathology standard: a sample is deemed to be EC-positive if we observe ≥ 2 ECDNA in
≥ 2 images out of 20 metaphase images. Therefore, we ensure that every sample contains
at least 20 metaphases.

We define indicator variable Xij = 1 if metaphase image j in sample i has ≥ 2 ECDNA;
Xij = 0 otherwise. Let ni be the number of metaphase images acquired from sample i. We
assume that Xij is the outcome of the j-th Bernoulli trial, where the probability of success
pi is drawn at random from a beta distribution with parameters determined by

∑
j Xij.

Formally,

pi|αi, βi ∼ Beta(αi = max{ε,
∑
j

Xij}, βi = max{ε, ni − αi}). (1.1)

We model the likelihood of observing k successes in n = 20 trials using the binomial density
function as:

k|pi ∼ Binom(pi, n = 20) (1.2)

Finally, the predictive distribution p(k), is computed using the product of the Binomial
likelihood and Beta prior, modeled as a “beta-binomial distribution” [1].

p(k) = Epi [k|pi] =

∫ 1

0

k|pi · pi|αi, βi dpi (1.3)

=

∫ 1

0

(
n

k

)
pki (1− pi)n−k ·

1

B(αi, βi)
pαi−1i (1− pi)βi−1 dpi

=

(
n

k

)
1

B(αi, βi)

∫ 1

0

pk+αi−1i (1− pi)n−k+βi−1 dpi

=

(
n

k

)
B(k + αi, n− k + βi)

B(αi, βi)

We model the probability for sample i being EC-positive with the random variable Yi such
that:

Yi = 1− Pr(sample i is EC-negative) (1.4)

= 1− (k = 1|pi)− (k = 0|pi)
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The expected value of Yi is:

Epi(Yi) = 1− p(k = 1)− p(k = 0) (1.5)

= 1−
(

20

1

)
B(1 + αi, 19 + βi)

B(αi, βi)
−
(

20

0

)
B(αi, 20 + βi)

B(αi, βi)

The variance of Yi is:

Var(Yi) = Var(k = 1|pi) + Var(k = 0|pi) + 2Cov(k = 1|pi, k = 0|pi), (1.6)

where,

Var(k|pi) = Epi [(k|pi)2]− Epi [k|pi]2 (1.7)

=

∫ 1

0

(k|pi)2 · pi|αi, βi dpi − (

∫ 1

0

k|pi · pi|αi, βi)2 dpi

=

(
n

k

)(
n

k

)
1

B(αi, βi)

∫ 1

0

p2k+αi−1i (1− pi)2n−2k+βi−1 dpi −
(
n

k

)(
n

k

)
B(k + αi, n− k + βi)

2

B(αi, βi)2

=

(
n

k

)(
n

k

)
1

B(αi, βi)
[B(2k + αi, 2n− 2k + βi)−

B(k + αi, n− k + βi)
2

B(αi, βi)
],

and

Cov(k = 1|pi, k = 0|pi) = Epi [k = 1|pi · k = 0|pi]− Epi [k = 0|pi]Epi [k = 1|pi] (1.8)

=

(
n

0

)(
n

1

)
1

B(αi, βi)
[

∫ 1

0

p1+αi−1i (1− pi)2n−1+βi−1 dpi −
B(αi, n+ βi)B(1 + αi, n− 1 + βi)

B(αi, βi)

=

(
n

0

)(
n

1

)
1

B(αi, βi)
[B(1 + αi, 2n− 1 + βi)−

B(αi, n+ βi)B(1 + αi, n− 1 + βi)

B(αi, βi)
].

Let T be the set of samples belonging to a certain sample type t, e.g. immortalized samples.
We define

YT =

∑
i∈T Yi

|T |
(1.9)

We estimate the frequency of samples under sample t containing ECDNA (bar heights on
Figures 2C and 2D) as

E[YT ] =

∑
i∈T E[Yi]

|T |
(1.10)

and error bar heights (Figure 2C and 2D) as:

sd(YT ) =
(
∑

i∈T Var[Yi])
1
2

|T |
(1.11)

assuming independence among samples i ∈ T . For any αi or βi = 0, we assign them a
sufficiently small ε.
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2. ECdetect: Software for detection
of extrachromosomal DNA from DAPI
staining metaphase images
2.1 Introduction

The DAPI staining metaphase image extrachromosomal DNA (ECDNA) detection software
provides a conservative estimation to the number of ECDNA in DAPI staining metaphase
images. The software performs a pre-segmentation of the image in order to distinguish
chromosomal and non-chromosomal structures, and computes an ECDNA search region of
interest (ROI). The designated ROI is displayed on a user interface for the investigator to
modify via masking and unmasking desired regions on the image, to correct for potential
inaccurate segmentation and/or exclude debris from the ROI. The modifications made on the
ROI are saved once verified, and are available for future usage. The output of the software
includes the original images with ECDNA detections overlayed, the count of ECDNA found,
and their coordinates in the image. ECdetect does not require a pan-centromeric probe, and
works on DAPI staining metaphase images only, therefore any detected ECDNA is assumed
to not contain a centromere.

2.2 Software

Input

The ECDNA detection software uses Tagged Image File Format (.tiff) DAPI staining metaphase
images. In this project we used 2572 images, after checking for duplicates, each at resolution
1392x1040. The investigator needs to provide the parent folder containing all imaging data
as input and no other parameter will be required. The software will recursively process every
tiff image under the parent folder.

Image pre-segmentation

The software applies an initial coarse adaptive thresholding [2, 3] to detect the major com-
ponents in the image, with a window size of 150x150 pixels, and T = 10%. After filling
the closed structures, components breaching 3000 pixels and 80% of solidity (the ratio of the
area of the component to the area of its convex hull) are masked as non-chromosomal regions
in order to remove the intact nuclei regions from subsequent analysis. Small components are
also discarded, and the remaining image is accepted as the binary chromosomal image (BCI).
The weakly connected components of the BCI are computed to find the separate chromoso-
mal regions. The weakly connected components breaching a cumulative pixel count of 5000
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are considered as candidate search regions, and their convex hull with a dilation of 100 pixels
are added into the ECDNA search region of interest (ROI).

ROI verification

The software provides a user interface as shown in Figure S2.1, where the original DAPI
image is displayed next to its segmentation result, alongside an overview image.

We manually masked any non-chromosomal region that the software failed to discard
during the pre-segmentation as shown in Figure S2.2. Similarly, we also unmasked any
region that the software mistakenly discarded as non-chromosomal region. The segmentation
results are displayed in three colors: teal (chromosomal region qualified to be inside of the
search region), dark blue (non-chromosomal/masked region), and green (chromosomal or
small components not qualified to be inside of the search region). The color orange shows
the current ECDNA search ROI. At the end of every masking/un-masking, the ECDNA
search ROI is recomputed based on the newly generated BCI and displayed.

ECDNA detection

Figure S2.3 shows the steps of ECDNA detection. After the verification of the ECDNA
search ROI (Figure S2.3a), the software applies a 2-D Gaussian smoothing to the image with
standard deviation of 0.5, performs a second finer adaptive thresholding, with a window size
of 20x20 pixels and T = 7%, and fills any closed structures. Components that are greater
than 75 pixels are designated as non-ECDNA structures and their 15-pixel neighborhood
is removed from the ECDNA search ROI, in order not to mistakenly call chromosomal
extensions or other near intact nuclei structures as ECDNA (Figure S2.3b). Any component
detected with a size less than or equal to 75 and greater than or equal to 3 pixels inside the
final search ROI is returned as ECDNA (Figure S2.3c).

Output

The detected ECDNA elements are shown in the original image with overlayed red circles,
as well as their coordinates in a separate file for every image. The total ECDNA count per
image is also recorded.

Manual ECDNA marking

For ECDNA detection evaluation purposes, we allowed the investigator to manually select
the ECDNA structures while being able to have access to the verified ECDNA search region
(including the chromosome region neighborhood) and segmentation results, alongside zoom-
ing, if desired. Figure S2.4 shows an example set of marked ECDNA at a specified zooming
level.
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Comparison of software vs. visual inspection

The ECDNA coordinates detected by the software and selected by manual marking are com-
pared and they are accepted to match if the distance between them is no more than 7 pixels.
A sample comparison result is shown in Figure S2.10. The green circles show the software
detected ECDNA coordinates that agree with manually marked ECDNA, blue circles show
manually marked ECDNA that the software missed, and red circles show software detected
ECDNA that were not manually marked. Notice that a majority of blue circles appear in
the immediate neighborhood of chromosomal structures, which we deliberately removed from
the ECDNA search ROI. The red circles appear to have faint pixel intensities, which the
visual inspection may have missed or discarded.

2.3 Results

We arbitrarily chose 28 images, in which we could confidently mark the ECDNA, while also
aiming for a large range of ECDNA count across images, from various different tumor cell
lines for purposes of robustness. We evaluated the performance of the ECDNA detection
software by comparing it with manual ECDNA marking on the aforementioned 28 DAPI
metaphase images from various tumor cell lines with varying count of ECDNAs. The com-
parison results are shown in Figures S2.5-S2.32 for each picture in detail. Out of 406 detected
ECDNA, 392 of them (97%) agreed with manually marked ECDNAs, however among the
737 total manually marked ECDNAs, the software missed 345 of them, resulting in a under-
estimation by 53%. We would like to emphasize, however, that it was by design to discard
the regions at the immediate neighborhood of non-ECDNA structures, e.g. chromosomal
regions, from the ECDNA search ROI and undercall ECDNAs in order not to accept any
questionable structure as extrachromosomal DNA. Indeed, 88% of the ECDNAs missed by
the software compared to manual marking resides in the aforementioned discarded region.
The software provides a conservative estimate of the total ECDNA signal; it achieves high
precision at the expense of sensitivity compared to visual inspection, which may also have
imperfections. Figure 1F shows the high correlation (Pearson; r = 0.98, P < 2.2 × 10−16)
achieved between the ECDNA counts detected by the software and manual marking, sug-
gesting a balanced undercalling of ECDNAs accross images, and a reliable estimation for
correlative studies.

We also show the ECDNA count histograms for all samples analyzed by ECdetect in
Figures S2.33-S2.41.
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(a) Pre-segmented and original DAPI images.

(b) Overview of pre-segmentation.

Figure S2.1: User interface for ECDNA search ROI verification.

6



(a) Selection of the undesired region. (b) Masking and removing from the ECDNA
search ROI.

Figure S2.2: Non-chromosomal region masking.
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(a) Step 1: Verified ECDNA search ROI. (b) Step 2: 15-pixel neighborhood of any larger
than ECDNA structure is removed.

(c) Step 3: ECDNA detection on final search
ROI.

Figure S2.3: ECDNA detection steps.
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Figure S2.4: Manual marking of ECDNA.
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Figure S2.5: RXF623 - 003
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Figure S2.6: OVCAR3 - 013
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Figure S2.7: H23 - 032
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Figure S2.8: M14 - 042
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Figure S2.9: A549 - 029
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Figure S2.10: M14 - 004
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Figure S2.11: TK10 - 030
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Figure S2.12: SF295 - 002
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Figure S2.13: CAKI1 - 005
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Figure S2.14: CAKI1 - 004
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Figure S2.15: Hs578T - 009
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Figure S2.16: IGROV1 - 036
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Figure S2.17: H23 - 037
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Figure S2.18: U251 - 041
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Figure S2.19: UACC62 - 001
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Figure S2.20: 786-0 - 037
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Figure S2.21: SkMel2 - 24
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Figure S2.22: SKOV3 - 019
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Figure S2.23: RXF623 - 001
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Figure S2.24: BT549 - 031
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Figure S2.25: CAKI1 - 014
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Figure S2.26: H322M - 023
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Figure S2.27: PC3 - 006
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Figure S2.28: HK301 - 016
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Figure S2.29: UACC62 - 022
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Figure S2.30: BT549 - 053
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Figure S2.31: HOP62 - 038
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Figure S2.32: PC3 - 003
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Figure S2.33: ECDNA count histograms of normal samples.

38



0

10

20

30

40

0 1 2

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

gm12878

0

10

20

0 1 2 3 4 6 8 12 16 23 32

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

hg731

0

10

20

0 1 2

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

gm19193

0

10

20

0 1 2 3 4 6 8 12

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

hg732

0

5

10

15

0 1 2 3

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

gm19240

0

5

10

15

20

0 1 2 3

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

gm18505

0

10

20

0 1 2 3 4

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

hg00512

0

5

10

15

20

0 1 2

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

hg00514

0

10

20

0 1 2

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

hg733

0

10

20

0 1 2

number of EC DNAs

nu
m

be
r 

of
 m

et
ap

ha
se

s

hg00513

Figure S2.34: ECDNA count histograms of immortalized samples.
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Figure S2.35: ECDNA count histograms of tumor cell line samples.
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Figure S2.36: ECDNA count histograms of tumor cell line samples.
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Figure S2.37: ECDNA count histograms of tumor cell line samples.
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Figure S2.38: ECDNA count histograms of tumor cell line samples.
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Figure S2.39: ECDNA count histograms of tumor cell line samples.
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Figure S2.40: ECDNA count histograms of tumor cell line samples.
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Figure S2.41: ECDNA count histograms of tumor PDX samples.
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3. AmpliconArchitect: Sequence anal-
ysis for identification and reconstruc-
tion of focal amplifications
For the purpose of the AmpliconArchitect software, we focused on a set of genomic inter-
vals that are simultaneously amplified to a high copy number. We define a focal amplification
or an amplicon as a set of genomic intervals that are amplified to a high copy number, such
that the intervals may be either contiguous or discontiguous on the reference genome, but
are connected in the tumor cells in circular or linear structures. Different cells may contain
different combinations of these genomic elements, and as long as they share common seg-
ments, we consider them as one amplicon in a sample. While we do not distinguish between
the terms focal amplifications and amplicons, we do separate these events from aneuploidies
where large chromosomal scale segments are amplified.

Using cytogenetic (mainly FISH) analysis, we can observe the existence of focal ampli-
fications of the probed regions. By using multiple metaphase spreads, we can determine if
those probes are amplified extra-chromosomally, intra-chromosomally, or both, and may be
able to observe some heterogeneity in terms of size differences. However, cytogenetic analysis
is limited to a few cells, does not reveal the fine structure of the amplicons. In contrast,
genome sequencing techniques enable us to zoom into the fine-scale structure of genomic
variants [4,5], but provide additional complexities due to sampling from a heterogenous mix
of amplicons from many cells. For this reason, existing computational tools (mainly tools
that allow structural variation, or SV detection) are limited to identification of one or more
rearrangement events and do not provide information of the connectivity and architecture
of the larger genomic architecture (layout of genomic segments in one or more structures
in a heterogenous mixture). We designed and developed AmpliconArchitect to enable
the reconstruction of complex rearrangements in cancer amplicons from WGS data. Ampli-
conArchitect uses pre-processed data from mapped WGS reads, as described below.

3.1 Pre-processing

Identification of amplified regions.

We mapped whole genome paired-end Illumina reads from each tumor and normal sample
to the hg19 (GRCh37) human reference sequence [6] downloaded from the UCSC genome
browser site [7]. The BWA software version 0.7.9a was used with default parameters for
mapping [8]. We inferred copy number variants from these mapped reads using the Read-
Depth CNV software [9] version 0.9.8.4 with parameters FDR= 0.05 and overDispersion
parameter= 1.
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Filtering amplicons.

We used stringent filtering criteria to select amplified regions from both sequencing and
TCGA datasets. In our starting set, we considered only CNV gain segments with copy
count > 5 for samples from each dataset. We merged segments within 300kbp of each other
into a single region and considered regions > 100kbp in size. We applied 3 criteria to filter
amplicons in repetitive/low-copy genomic regions as well as amplified regions reported in
normal tissue samples to avoid sequencing and mapping artefacts:

1. Regions amplified in normal samples: Regions which had copy number of > 5 in
2 or more normal samples were labelled as uninteresting and extended by 1Mbp. A
high copy region from a tumor sample which overlapped an uninteresting region was
required to be at least 2Mbp in size after the part which overlapped the uninteresting
region was trimmed.

2. Repetitive regions: We eliminated segments with average repeat count of > 2.5 (5
accounting for diploid genome) in the reference genome. The average reference repeat
count of the region was calculated by defining a duke35 score [10, 11] of a genomic
region based on Duke35 mappability. The duke35 score for an interval I was defined
as

duke35(I) =

∑
s∈I(length(s)/d35(s))

length(I)
(3.1)

where s refers to each genomic segment defined in the Duke35 file which overlaps
our region of interest, length(s) refers to length in base-pairs of the part of segment
which overlaps the region and d35(s) refers to the value assigned to the segment in
the Duke35 files. 1/d35(s) corresponds to the repeat count of the segment (extended
by 34 base-pairs) in the reference genome. Thus regions with duke35(I) > 2.5 were
eliminated.

3. Segmental duplication regions: We eliminated the regions of segmental duplica-
tions from the human paralog project [11–13] depending on the observed copy counts
in our samples. If an interval I overlapped one or more segmental duplications, then
the copy count of this interval was revised as the

NewCount(I) =
OriginalCount(I) · length(I)

length(I) +
∑

length(overlapping segmental duplications)
(3.2)

Only regions which had a revised copy count > 5 were retained.

3.2 Reconstructing amplicon architecture using Am-

pliconArchitect.

For each sample, AmpliconArchitect(AA) takes as input, an initial list of amplified inter-
vals and whole genome sequencing (WGS) paired-end reads aligned to the human reference.
The high level steps in AA are as follows:
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1. Identify boundaries of segments in the reference genome that are part of the amplicon.

2. Build a breakpoint graph with nodes corresponding to segment-endpoints, and edges
connecting pairs of nodes. The pairs may be from the same or different segments.

3. Use an optimization to estimate copy numbers of edges.

4. Extract paths and cycles in the graph that explain most of the copy number. These
paths and cycles correspond to putative amplicon structures.

These steps are expanded upon below.

Sequencing statistics.

AmpliconArchitect samples a random subset of paired-end WGS reads to estimate se-
quencing parameters like read length, insert size, depth of coverage, and variability in cover-
age. We also estimate percentage of read pairs mapping concordantly (in the expected size
and orientation). and expected number of read pairs that map across a genomic location.
This expected number of read pairs within 3 standard deviations is used to identify clusters
of discordant read pairs that indicate a genomic rearrangement.

Detecting segment boundaries.

We used two genomic signatures that suggest segment boundaries, as well as connections.

� Discordant read pair clusters: Recall that a genomic rearrangement can be indicated
by a set of discordantly mapping read pair [4,5]. The coordinates where the two reads
map also provide the boundary of the segment, and indicate that the two segments
are connected in the tumor genome. We used clusters of reads supporting the same
rearrangement to identify segment boundaries as well as interconnections. We used
filtering strategies based on the Duke35 mappability score described above to minimize
false signals for rearrangements.

� Meanshift in coverage: Segment boundaries were also detected by a steep copy number
change between adjacent or nearby locations. We used a mean-shift technique used in
image processing for edge detection [14]. Specifically, we used a smoothed Gaussian
kernel density function for coverage to find a span of genomic coordinates with similar
values followed by a second span with different kernel density values (See also [15]).
The locations determined to have shift in coverage were further investigated for rear-
rangements using discordant read clusters with less stringent criteria e.g., fewer number
(∼ 3) of read pairs.
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Breakpoint graph construction.

Segment boundaries represent vertices in the breakpoint graph. Consecutive vertices that
represented the beginning and end of a segment along the genome were connected by
sequence-edges. Vertices linked by discordant read-pair clusters were connected using breakpoint-
edges. We also used breakpoint edges to connect the end of one segment to the beginning
of an adjacent segment. We introduced a special source vertex to represent ends of linear
contigs or unidentified connections. A breakpoint edge was used to connect an existing ver-
tex and the source vertex if we observed one-end mapping reads on the vertex, under the
assumption that it represented an undiscovered rearrangement because one of the end-points
was located in repetitive or novel/mutated sequence.

Copy count determination.

We assigned edge weights proportional to the number of reads mapping to each sequence-edge
and breakpoint-edge. Assuming that shotgun reads follow a Poisson process, we formulated
and optimized an objective function to normalize raw read counts into estimated copy counts
for all edges of the breakpoint graph.

Paths and cycles in the graph that have a uniform copy number on all edges correspond
to an amplified genomic sequence in the tumor genome. Given that the breakpoint graph
represents the union of all of these amplifications, we obtain linear constraints on the copy
numbers. The linear constraint (balanced-flow constraint) enforces that copy counts for
breakpoint-edges incident at a breakpoint vertex should sum up to the copy count of the
sequence-edge connected to the vertex. The optimized counts represent edge-weights in the
breakpoint graph.

Amplicon Architecture determination.

We processed the edge-weighted breakpoint graph and extracted cycles. Cycles containing
the source vertex represent paths beginning and ending at the two vertices adjacent to the
source. The balanced-flow constraint ensures that we can always decompose the breakpoint
graph into cycles and linear contigs such that the copy counts of edges in the subgraphs add
up to the copy counts in the original graph. We used a polynomial-time heuristic which
iteratively identifies the most dominant cycle or path, i.e. the cycle or path with the highest
copy count until 80% of the genomic content in the breakpoint graph was accounted for in the
extracted cycles. We note that the short insert lengths do not always allow an unambiguous
and complete reconstruction of the amplified segment. However, the cycles provide a ‘basis’
decomposition, and cycles with common sequence-edges may be combined in multiple ways
to form larger cycles to explore the full architecture and heterogeneity in the amplicon. An
example of such a basis decomposition is presented in Figure S3.1 and the corresponding
fine structure interpretation and visualization is presented in Figure S3.2.
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3.3 Results

We sequenced 117 tumor samples including 63 cell lines, 19 neurospheres (PDX) and 35
cancer tissues with coverage ranging from 0.6× to 3.89×, excluding one sample with 0.06×
coverage. See Extended Data Figure E4 for the coverage distribution across samples. We
also sequenced additional 8 normal tissues as controls.

While the sequencing depth is low, it is sufficient to capture large regions with increased
copy number. Consider the lowest mean coverage in our samples c = 0.6. For a region of
size w (w = 105 in our tests), and copy count d, the expected number of 100bp reads with
diploid genome

λ =
wcd

100 · 2
=

105 · 0.6d
200

= 150d

We assume the Null hypothesis that the number of reads in the region is Poisson distributed
with parameter λ. Our goal is to exclude all regions with normal copy count, while including
all regions with high copy numbers (e.g. d ≥ 6). Consider an experiment where we select all
regions of size w, containing at least 750 mapped reads. Then, the probability of a Type I
error (including a region with copy count 2) is given by

1.0− Poisson-cdf(750, λ = 300) ' 0.0

The probability of a Type II error (missing a region with d ≥ 6) is at most

Poisson-cdf(750, λ = 900) = 1.5 · 10−7

The numbers are better for samples with higher sequence coverage, and larger amplified
regions.

We identified 265 high-copy amplifications in 61 samples (see methods 3.1). We analyzed
putative genomic connections between amplified regions to identify amplicon structures con-
sisting of 1 or more amplified regions. The amplifications were assembled in 183 independent
amplicons with copy count ranging from 2.64 to 132.11 and size ranging from 111Kbp to
67Mbp.

In order to estimate the significance of our observations, we downloaded copy number
variation calls for 11079 tumor-normal samples covering 33 different tumor types from TCGA
[16]. After merging and filtering the variant calls according to our criterion in Section 3.1,
we identified 16408 amplicons in 3919 samples.

For each dataset, genome sequencing and TCGA, we computed a histogram for percent-
age of samples displaying an amplification at each genomic position. The weight in the his-
togram for samples in the genome sequencing dataset was adjusted to reflect the frequency of
corresponding tumor types in TCGA samples. We found 20 peak regions amplified in more
than 1% of TCGA samples. We compared these regions against 522 oncogenes from the
COSMIC database (Aug 2014) [17] 13 out 20 regions contained an oncogene. We observed
that 17 out of 20 regions were also captured by amplifications reported from our sequencing
dataset, including all 13 oncogene regions most of each were amplified in multiple samples.
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The genome sequencing samples displayed a wide variety of amplicon structures ranging
from a simple circularization of a single genomic segment to mixtures of multiple structures(Sw620-
MYC Supplementary Figure S3.2), amplicons containing complex rearrangements (MB002-
MYC Supplementary Figure S3.3), similar structure simultaneously in EC and HSR (H460-
MYC Supplementary Figure S3.4), multiple connected genomic regions. We identified one
instance of a Breakage Fusion Bridge (HCC827-EGFR Supplementary Figure S3.5). FISH
analysis revealed that some of these amplicons occurred as ECDNAs, HSRs or sometimes
both, in the same sample. Many amplicons could be represented as cycles or closed walks on
the breakpoint graph indicative of either ciruclar ECDNAs or tandemly duplicated HSRs.
For many amplicons, most of the copy count could be explained by one or only a few cy-
cles/walks indicating that the copies of amplificons consisted of a single or mixture of only
a few distinct structures arising from a common origin.
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Sw-620: Amplicon 1

List of cycle segments:

Segment 1 chr8 128603201 128773339

Segment 2 chr8 128604396 128773339

Segment 3 chr8 128604396 129210095

Segment 4 chr8 129014958 129210095

Segment 5 chr8 129014958 129307341

Segment 6 chr8 129014958 129465168

Segment 7 chr8 129216719 129307341

Segment 8 chr8 129307359 129337939

Segment 9 chr8 129307359 129338888

Segment 10 chr8 129307359 129787552

Segment 11 chr8 129371801 129465168

Segment 12 chr8 129415256 129465168

Segment 13 chr8 129451283 129465168

Segment 14 chr8 129465169 129555740

Segment 15 chr8 129471266 129555740

Segment 16 chr8 129471266 129787552

Segment 17 chr8 129480064 129555740

Segment 18 chr8 129485384 129555740

Segment 19 chr8 129485384 129789000

List of cycles:

Cycle=1;Copy count=9.8734302058;Segments=6+,15+,16-,12-,2-

Cycle=2;Copy count=7.92364061752;Segments=7+

Cycle=3;Copy count=3.06666021945;Segments=16+,15-,11-,9-,4-,2+,12+

Cycle=4;Copy count=1.9861498683;Segments=0+,2-,5+,0-

Cycle=5;Copy count=1.68895699871;Segments=0+,11-,0-

Cycle=6;Copy count=1.68623749159;Segments=0+,1-,0-

Cycle=7;Copy count=1.4485094014;Segments=0+,14-,0-

Cycle=8;Copy count=1.43019802705;Segments=0+,19-,0-

Cycle=9;Copy count=0.797613789551;Segments=16+,18-,13+

Cycle=10;Copy count=0.682924332011;Segments=0+,3+,8+,17+,10-,3-,0-

Figure S3.1: Sample output from AmpliconArchitect for amplicon reconstruction for Sw-620-
cMYC amplicon
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Figure S3.2: Fine structure analysis of c-MYC Amplification in Chromosomal DNA in Sw620
Colon Cancer Cells
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Figure S3.3: Fine structure analysis of c-MYC Amplification in Extrachromosomal DNA in
Medulloblastoma MB002 Cells
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Figure S3.4: Fine structure analysis of c-MYC Amplification in Extrachromosomal and Chromo-
somal DNA in NCI H460 Non-Small Cell Lung Cancer Cells

x5 Inverted Duplications
x2 Haploid Chromosomes

Figure S3.5: Fine structure analysis of EGFR Amplification in Chromosomal DNA via Breakage-
Fusion-Bridge (BFB) mechanism in HCC827 Lung Adenocarcinoma Cells displays inverted dupli-
cations.
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4. A theoretical model of extrachro-
mosomal and intrachromosomal dupli-
cation
4.1 Model

Consider an initial population of N0 cells, of which Na cells contain a single extra copy of an
oncogene. We model the population using a discrete generation Galton-Watson branching
process [18]. In this simplified model, each cell in the current generation containing k ampli-
cons (amplifying an oncogene) either dies with probability dk, or replicates with probability
bk to create the next generation. We set the selective advantage

bk
dk

=

{
1 + sfm(k), 0 ≤ k < Ma

0 otherwise
(4.1)

dk = 1− bk (4.2)

In other words, cells with k copies of the amplicon stop dividing after reaching a limit of Ma

amplicons. Otherwise, they have a selective advantage for 0 < k ≤ Ma, where the strength
of selection is described by fm(k), as follows:

fm(k) =

{ k
Ms

(0 ≤ k ≤Ms) ,
1

1+e−α(k−m) (Ms < k < Ma).
(4.3)

Here, s denotes the selection-coefficient, and parameters m and α are the ‘mid-point’, and
‘steepness’ parameters of the logistic function, respectively. Initially, fm(k) grows linearly,
reaching a peak value of fm(k) = 1 for k = Ms. As the viability of cells with large number
of amplicons is limited by available nutrition [19], fm(k) decreases logistically in value for
k > Ms reaching fm(k)→ 0 for k ≥Ma. We model the decrease by a sigmoid function with a
single mid-point parameter m s.t. fm(m) = 1

2
. The ‘steepness’ parameter α is automatically

adjusted to ensure that min{1− fm(Ms), fm(Ma)} → 0.
The copy number change is effected by different mechanisms for extrachromosomal (EC)

and intrachromosomal (HSR) models. In the EC model, the available k amplicons are on
EC elements which replicate and segregate independently. We assume complete replication
of EC elements so that there are 2k copies which are partitioned into the two daughter cells
via independent segregation. Formally, the daughter cells end up with k1 and k2 amplicons
respectively, where

k1 ∼ B(2k,
1

2
) (4.4)

k2 = 2k − k1 (4.5)

In contrast, in the intrachromosomal model, the change in copy number happens via
mitotic recombination, and the daughter cell of a cell with k amplicons will acquire either
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k + 1 amplicons or k − 1 amplicons, each with probability pd. With probability 1− 2pd, the
daughter cell retains k amplicons.

4.2 Model parameters

We started with an initial population N0 = 105 and a small number of cells (Na = 100)
with one extra copy of an amplicon. We set Ms = 15,Ma = 103 for both, based on the
observation of cells with ∼ 103 EC elements (e.g. Extended Data Figure E10). While the
number is excessive for intrachromosomal amplifications, we kept Ms,Ma identical for both
EC and intrachromosomal events to allow for direct comparisons. It is well known that tumor
cells have a selective advantage and proliferate; the rates are however different for different
tumors and also within a sample, as cells acquiring multiple oncogenic mutations quickly
grow more aggressively [18]. We chose different values of s {0.5, 1.0} to explore different
growth rates. For s = 0.5, bk

dk
≤ 1.5, implying a tumor growth rate of bk− dk = 2bk− 1 = 0.2

per generation. For s = 1, bk
dk
≤ 2 implying a growth rate of 0.33 per generation. The

results are not substantially different across different choices of s, with impact only on the
rate of amplification and heterogeneity. While these choices provide maximum growth rate,
the choice of the selection function fm(k) reduces the growth rate with increasing number
of amplicons to model the effect of excessive metabolic demands on the cell. Once a cell
reaches Ma = 1000, it stops replicating. The decay in selection function is modeled by a
single parameter m, denoting the number of amplicon copies at which the selection strength
is half of the peak strength.

Exponential growth of amplicon containing cells is seen in both extrachromosomal and in-
trachromosomal duplications. However, the tumor mass cannot grow indefinitely. We model
the tumor as a sphere, and assume that 109 cells account for a tumor of 1cm diameter [20]
although more recent accounts put the number for tumor cells as 108 cm−3 [21]. A physical
limit of 20cm for the tumor diameter [22] implies a limit of 1013 tumor cells. We stop the
simulation once the number of tumor cells reach 1014. Note that more realistic models have
been proposed where growth rate depends upon spatial constraints (e.g., see [23]). Tumors
are modeled as spheres, but can only replicate on the surface of the sphere, or when there
is dispersion of the tumor cells. Here, we work with the simpler model to focus on the
differences between extrachromosomal and intrachromosomal methods of amplification.

In summary, the main difference in the two models is in the differing mechanisms for
amplification. For intrachromosomal model, we experimented with different duplication
probabilities (0.01 ≤ HSR ≤ 0.1). We chose a generation time of 3 days to measure time in
days.

4.3 Results

Figures S4.1-S4.5 give the results for s = 0.5, while Figures S4.6-S4.9 show the results for
s = 1.0. For each choice of s, the different figures vary only in the mid-point of the logistic
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decay of the selection function (parameter m), which models the metabolic constraints.
The results are consistent in all cases. We see an exponential growth in the overall cell

population, as well as in cells containing amplicons (Figures S4.1-S4.10). The amplicon con-
taining cells take some time to establish, and then grow exponentially (Panel A in Figures).
The rate of growth depends upon selection coefficient (s), and metabolic constraints (m).
Our model is somewhat simplified as in most real situations, the growth does not continue
indefinitely, but stabilizes due to spatial and metabolic constraints. We model metabolic con-
straints, but not spatial, in order to keep the model simple and to focus on the differences
between extrachromosomal and intrachromosomal amplification.

The copy number of the amplicon (average number of copies per cell) grows for all cases,
but the growth is slower for intrachromosomal compared to extrachromosomal (Panel B in
all Figures). Similar behavior is observed for the number of amplicons per cell (Panel C in all
Figures), and heterogeneity of copy number, measured as the Shannon entropy of the copy
number distribution of amplicons (Panel D in all Figures). We note that when the metabolic
constraints are weak (high values of m), heterogeneity and average number of amplicons per
cell continue to grow. However, for stringent metabolic constraints, both heterogeneity and
number of amplicons per cell stabilize, and even decrease, consistent with some long term
studies [24].

Finally, heterogeneity grows along with copy number, but stabilizes (Panel E in all Fig-
ures). These model predictions are robust to choice of model parameters, and are borne out
by experimental observations (Figure 4F of main paper).

Figure S4.10 shows the variance in trajectories in 10 simulation runs. We note that much
of the variance comes from the fact that the amplicon containing cells take some time to
establish, or reach their maximum growth rate. This time to establishment varies due from
experiment to experiment due to the stochastic nature of the experiment. Otherwise, the
results are consistent from run to run. As there can be a significant time gap between the
establishment of cells, we did not compute the variance in number of cells between runs, but
showed each trajectory separately.
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Figure S4.1: Evolution of tumor amplicons, with Initial Population N0 = 105,
selection-coefficient s = 0.5, decay parameter m = 50. (A) The selection function fm(k)
with m = 50. The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k).
(B) Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase
in the amplicon copy number per cell over time. (D) Change in Shannon entropy of the number of
amplicons per cell with time. (E) Change in entropy compared to change in copy number.
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Figure S4.2: Tumor evolution with N0 = 105, s = 0.5, m = 100. (A) The selection func-
tion f100(k). The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k).
(B) Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase
in the amplicon copy number per cell over time. (D) Change in Shannon entropy of the number of
amplicons per cell with time. (E) Change in entropy compared to change in copy number.
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Figure S4.3: Tumor evolution with N0 = 105, s = 0.5, m = 300. (A) The selection func-
tion f300(k). The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k).
(B) Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase
in the amplicon copy number per cell over time. (D) Change in Shannon entropy of the number of
amplicons per cell with time. (E) Change in entropy compared to change in copy number,
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Figure S4.4: Tumor evolution with N0 = 105, s = 0.5, m = 600. (A) The selection func-
tion f600(k). The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k).
(B) Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase
in the amplicon copy number per cell over time. (D) Change in Shannon entropy of the number of
amplicons per cell with time. (E) Change in entropy compared to change in copy number.
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Figure S4.5: Tumor evolution with N0 = 105, s = 0.5, m = 900. (A) The selection func-
tion f900(k). The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k).
(B) Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase in
average amplicon copy number over time. (D) Change in Shannon entropy with time. (E) Change
in entropy compared to change in copy number.
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Figure S4.6: Tumor evolution with N0 = 105, s = 1.0, m = 50. (A) The selection function
f50(k). The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k). (B)
Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase in
average amplicon copy number over time. (D) Change in Shannon entropy with time. (E) Change
in entropy compared to change in copy number.
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Figure S4.7: Tumor evolution with N0 = 105, s = 1.0, m = 100. (A) The selection func-
tion f100(k). The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k).
(B) Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase in
average amplicon copy number over time. (D) Change in Shannon entropy with time. (E) Change
in entropy compared to change in copy number.
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Figure S4.8: Tumor evolution with N0 = 105, s = 1.0, m = 300. (A) The selection func-
tion f300(k). The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k).
(B) Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase in
average amplicon copy number over time. (D) Change in Shannon entropy with time. (E) Change
in entropy compared to change in copy number.
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Figure S4.9: Tumor evolution with N0 = 105, s = 1.0, m = 600. (A) The selection func-
tion f600(k). The ratio of birth to death rate for a cell with k amplicon copies is given by 1+sfm(k).
(B) Growth of cells over time with EC amplicon (black) compared to growth with intrachromosomal
amplification (HSR) with duplication probabilities 0.1 (red-line); 0.05 (dark-orange); 0.01 (blue).
The dotted lines represent the number of cells containing amplicons, starting with 100 amplicon
containing cells, while solid lines depict the total number of cells in the population. (C) Increase in
average amplicon copy number over time. (D) Change in Shannon entropy with time. (E) Change
in entropy compared to change in copy number.
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Figure S4.10: Tumor evolution trajectories with N0 = 105, s = 1.0, m = 50. (A) The
selection function f50(k). The ratio of birth to death rate for a cell with k amplicon copies is given
by 1 + sfm(k). (B-D) 10 simulation trajectories showing growth of cells over time (B); Increase
in average amplicon copy number over time (C); and, Change in Shannon entropy with time (D).
The trajectories are consistent, with variation due to difference in ‘establishment time’ of amplicon
containing cells.
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