Supporting Information

Title: Glycol Derived Carbon- TiO₂ as Low Cost and High Performance Anode Material for Sodium-Ion Batteries

Hongwei Tao†, Min Zhou†, Kangli Wang*, Shijie Cheng, Kai Jiang*

[†] These authors contributed equally to this work

1. FTIR-Spectra of TiO₂-raw, TiO₂@C and TiO₂

Fig. S1 FTIR-Spectra of TiO₂-raw, TiO₂@C and TiO₂

The FT-IR spectrum of the TiO₂-raw material reflects all the characteristic absorptions of the typical precursor Ti[(OCH₂CH₂)_nO]₂. The peaks of 3393 cm⁻¹ and 1640 cm⁻¹ are assigned to the stretching vibrations of O-H, corresponding to the adsorbed water.^{1,2} The bands located at 2928 cm⁻¹ and 2869 cm⁻¹ belong to the stretching vibrations of C-H.³⁻⁶ The peak at 1459 cm⁻¹ is assigned to O-CH₂ bending vibration.³⁻⁵ Three peaks at 1359 cm⁻¹, 1280 cm⁻¹ and 1226 cm⁻¹ can be attributed to C-H wagging and twisting vibration, respectively.³⁻⁵ The peak at around 1119 cm⁻¹ and 1077 cm⁻¹ is assigned to the C-O and C-O-C stretching vibration, indicating the formation of polyethyleneglycol.³⁻⁵ The bands at 640 cm⁻¹ and 575 cm⁻¹ can be assigned to Ti-O-C, while the band at 490 cm⁻¹ is the characteristic of the Ti-O-Ti stretching and bending vibration, indicating the coordination of the polymer with Ti^{4+,6} All the adsorption bands stated above suggest the formation of the polymeric ligand, which pyrolize and convert to carbon coated TiO₂ particles in the subsequent annealing process.

2. X-ray photoelectron spectroscopic (XPS) spectra of TiO₂@C.

Fig. S2 Typical XPS spectra of the TiO₂@C: (a) survey spectra, (b) Ti 2p region XPS spectrum.

3. The photo images of the $TiO_2@C$ and TiO_2 .

Fig. S3 The photo images of the (a)TiO₂@C and (b)TiO₂.

4. TEM images of TiO₂.

Fig.S4 TEM images of TiO₂: (a) Low and (b) high magnification.

5. The electrochemical performance of TiO_2 electrode

Fig. S5. The charge-discharge profiles of TiO_2 electrode in 1.0 mol L⁻¹ NaPF₆ +EC-DEC (v/v=1/1) electrolyte at the current density of 0.05 A g⁻¹ in a voltage range of 0 to 3 V.

6. The electrochemical performance of carbon additives (acetylene black)

Fig. S6. The charge-discharge profiles of acetylene black (AB) in 1.0 mol L⁻¹ NaPF₆ +EC-DEC (v/v=1/1) electrolyte at the current density of 0.05 A g⁻¹ in a voltage range of 0 to 3 V.

As shown in Fig. S3, the carbon addictive acetylene black (AB) can deliver a reversible capacity of 76.8 mAh g⁻¹ at the current densities of 0. 05 A g⁻¹. As the weight ratio of TiO₂/AB=8:1, the capacity contribution of the carbon addictive is calculated to be 9.6 mAh g⁻¹.

7. Electrochemical impedance spectra (EIS) of the $TiO_2@C$ and TiO_2 at fully charge state after 100 cycles.

Fig. S7. Electrochemical impedance spectra (EIS) of the (a) TiO₂@C and (b) TiO₂ at fully charge state after 100 cycles.

Table S1 Fitting results of the Nyquist plots using the equivalent circuit.

samples	$R_i(\Omega)$	R _{SEI}	$CPE_1(F)$	$R_{ct}(\Omega)$	CPE ₂ (F)	Chi-
		(Ω)				Squared

TiO ₂ @C	3.2	13.3	1.4×10 ⁻⁵	305.4	8.0×10 ⁻⁵	1.0×10^{-3}
TiO ₂	3.3	87.2	1.5×10 ⁻³	403.9	1.5×10^{-5}	1.0×10^{-3}

Reference

- Mansur, H. S., Or éfice, R. L. & Mansur, A. A. Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. *Polymer* 45, 7193-7202 (2004).
- 2 Zhang, Y., Kohler, N. & Zhang, M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. *Biomaterials* 23, 1553-1561 (2002).
- 3 Brubach, J. *et al.* Structural and thermal characterization of mono-and diacyl polyoxyethylene glycol by infrared spectroscopy and X-ray diffraction coupled to differential calorimetry. *The Journal of Physical Chemistry B* **108**, 17721-17729 (2004).
- 4 Evans, C. C., Bates, F. S. & Ward, M. D. Control of hierarchical order in crystalline composites of diblock copolymers and a molecular chromophore. *Chemistry of materials* 12, 236-249 (2000).
- Jeevanandam, P. & Vasudevan, S. Intercalation of Alkali Metal-Polyethylene
 Oxide Polymer Electrolytes in Layered CdPS3. *Chemistry of materials* 10, 1276-1285 (1998).
- 6 Wang, D., Yu, R., Kumada, N. & Kinomura, N. Hydrothermal synthesis and characterization of a novel one-dimensional titanium glycolate complex single crystal: Ti (OCH₂CH₂O)₂. *Chemistry of materials* **11**, 2008-2012 (1999).