Magnetic nanoparticles: a strategy to target the choroidal layer in the posterior segment of the eye

Martina Giannaccini¹*, Lucia Pedicini¹, Guglielma De Matienzo¹, Federica Chiellini², Luciana Dente¹, Vittoria Raffa^{1,3}

- 1. Department of Biology, Università di Pisa, 56127, Pisa, Italy
- 2. Department of Chemistry and Industrial Chemistry, Università di Pisa, 56124, Pisa, Italy
- 3. Institute of Life Science, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- *corresponding author: martina.giannaccini@gmail.com; phone +39 0502211537; fax +39 0502211495

Supplementary materials

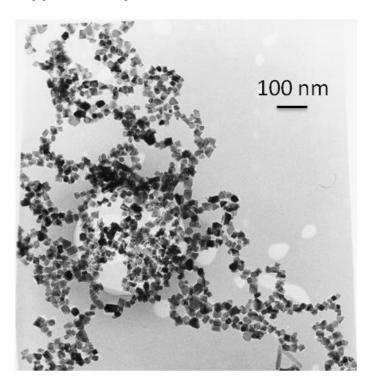
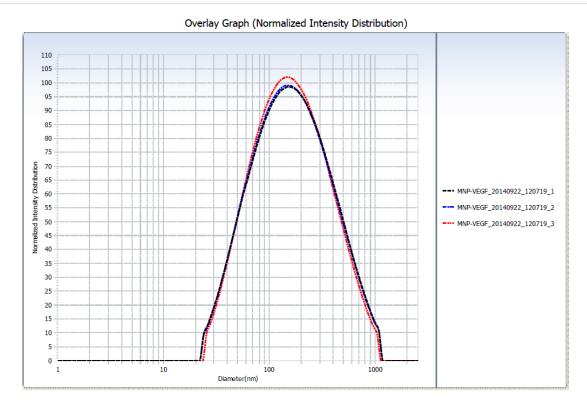



Figure S1: Commercial MNP produced by Micromod (79-02-501, nanomag® -D -spio)

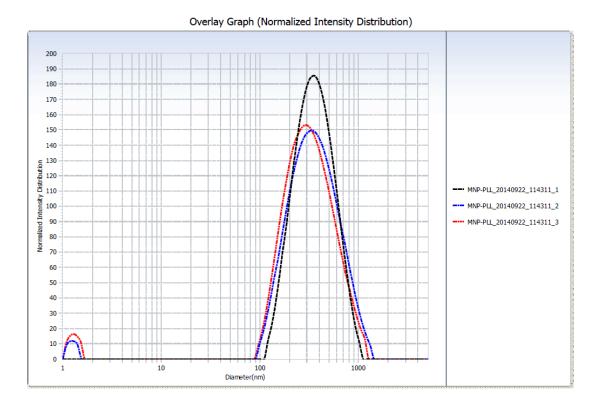

Overlay Graph (Normalized Intensity Distribution) 130 110 100 90 Normalized Intensity Distribution 80 --- MNP_20140922_113740_1 --- MNP_20140922_113740_2 60 MNP_20140922_113740_3 50 20 10 Diameter(nm) pH Ave. Diameter(nm) Polvdispersity Index D (10%) (nm) D (50%) (nm) D (9 No Data Repet. No 1 MNP_20140922_113740_1 2 MNP_20140922_113740_2 3 MNP_20140922_113740_3 0.231 27.8 67.1 NA 60.8 59.4 63.1 0.309 0.250 2 NA3 NA 25.3 29.3 68.8 71.1

Figure S2: DLS analysis of MNP samples

No Data	Repet. No	pН	Ave. Diameter(nm)	Polydispersity Index	D (10%) (nm)	D (50%) (nm) D	(90%) (nm)
1 MNP-VEGF_20140922_120719_1	1	NA	128.9	0.302	49.8	151.4	475.7
2 MNP-VEGF_20140922_120719_2	2	NA	128.6	0.294	49.9	150.0	471.6
3 MNP-VEGF_20140922_120719_3	3	NA	128.2	0.286	51.0	148.2	452.2

Figure S3: DLS analysis of MNP-rVEGF samples

No	Data	Repet. No	pН	Ave. Diameter(nm)	Polydispersity Index	D (10%) (nm)	D (50%) (nm) [) (90%) (nm)
1	MNP-PLL_20140922_114311_1	1	NA	318.0	0.171	183.9	334.8	611.7
2	MNP-PLL_20140922_114311_2	2	NA	300.5	0.235	154.2	324.6	693.0
3	MNP-PLL_20140922_114311_3	3	NA	279.0	0.247	141.8	291.6	625.2

Figure S4: DLS analysis of MNP-PLL samples

Overlay Graph

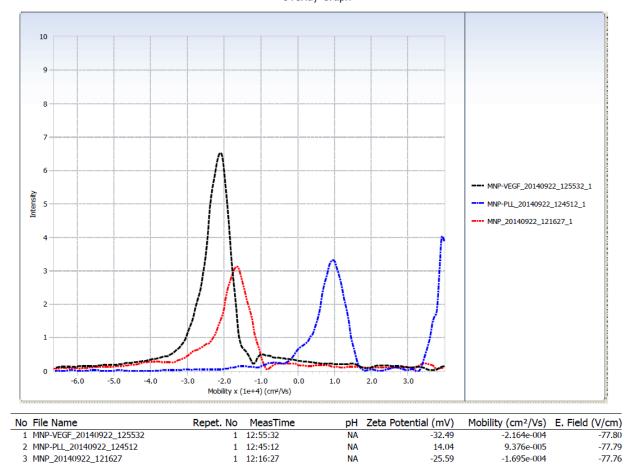


Figure S5: Z potential analysis of MNP (red), MNP-rVEGF (black) and MNP-PLL (blue) samples.

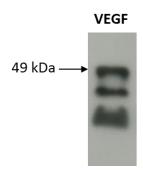


Figure S6: Western blot of purified rVEGF using an antibody against VEGF (sc-507 Santa Cruz, dilution 1:200). The rVEGF has a molecular weight of 49 kDa while the other bands are possibly generated by truncated forms of the fusion protein.

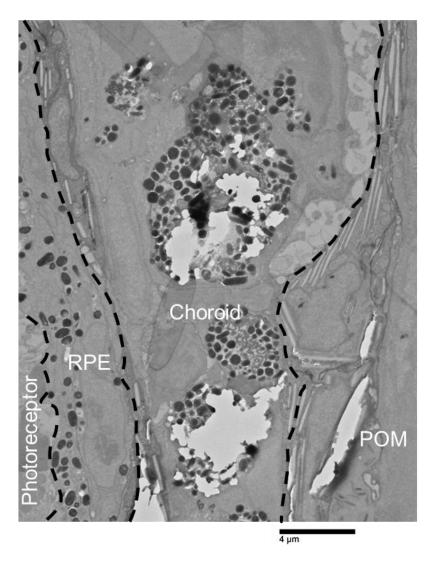


Figure S7: TEM image of an ultrathin section of zebrafish larva eye 72hpf. The photoreceptor, the RPE and the choroid layers are marked in the image. POM: periocular mesenchyme.