	Raw	Cleaned
Total # paired-end reads	101,707,414	90,049,877
Ave. read length (bp)	196	122
Ave. Q20 %	29.8 ± 0.52	33.8 ± 0.22
Ave. N%	1.42 ± 0.58	0.59 ± 0.29
Ave. GC %	43.8 ± 0.38	42.2 ± 0.39

Table S1: Summary of the statistics for the raw and cleaned MiSeq paired-end reads

					Before cleaning		After cleaning		ſ	
Sample	Treatment	Treatment length (hours)	Harvest time window	Read	Q20 %	N %	GC %	Q20 %	N %	GC %
1	Mock	1	1	1	27.03	3.24E-02	42	33.68	2.58E-03	41
1	WOCK	1	(13:30-14:10)	2	32.23	1.34E-02	41	34.41	2.33E-03	40
2	rac-GR24	1	1	1	29.14	7.94E-02	40	33.09	4.33E-03	38
2		1	(13:30-14:10)	2	34.7	5.61E-02	39	35.54	1.21E-02	38
З	Mock	2	1	1	28.92	1.10E-01	42	33	4.12E-03	41
5	WOCK	2	(13:30-14:10)	2	34.92	5.47E-02	40	35.96	1.24E-02	39
Λ	rac-GR24	2	1	1	27.04	8.57E-02	43	33.15	8.82E-03	41
-		2	(13:30-14:10)	2	32.25	1.67E-02	40	33.86	1.29E-02	39
5	Mock	Λ	1	1	25.17	1.80E-01	46	34.07	5.12E-03	44
5	WICCK	-	(13:30-14:10)	2	32.17	1.57E-02	46	34.07	1.42E-02	46
6	rac-GR24	Λ	1	1	26.88	8.84E-02	45	33.67	2.41E-03	43
U		-	(13:30-14:10)	2	31.81	1.32E-02	45	33.89	2.25E-03	44
7	Mock	6	1	1	26.54	1.49E-01	46	32.43	8.45E-03	44
,	WICCK	0	(13:30-14:10)	2	31.81	1.75E-02	46	33.47	1.27E-02	45
8		6	1	1	25.45	6.84E-01	45	32.22	3.56E-03	42
0	700-01124	0	(13:30-14:10)	2	23.7	14.9	45	29.25	6.18	43
0	Mock	1	2	1	26.71	4.15E-02	43	33.05	2.83E-04	41
5	IVIOCK	T	(14:10-14:50)	2	32.27	1.74E-02	41	33.62	1.00E-02	40
10	rac CP24	1	2	1	28.69	2.79E-02	48	32.8	3.85E-03	47
10	100-01/24	T	(14:10-14:50)	2	34.61	5.67E-02	50	35.73	1.38E-02	48
11	Mock	r	2	1	25.58	6.08E-01	44	32.31	3.71E-03	41
11	IVIOCK	2	(14:10-14:50)	2	24.26	14.75	41	29.63	6.34	40
10	rac CP24	r	2	1	25.43	3.58E-02	44	34.34	4.90E-03	41
12	100-9824	2	(14:10-14:50)	2	33.61	1.54E-02	42	35.42	1.51E-02	40
12	Mack	Λ	2	1	33.32	1.02E-01	41	34.59	6.81E-03	41
15	IVIOCK	4	(14:10-14:50)	2	35.08	1.05E-01	41	35.79	1.17E-02	39
14	rac CP24	Λ	2	1	26.9	1.26	45	33.83	2.72E-03	44
14	100-9824	4	(14:10-14:50)	2	30.91	1.29E-02	45	34.17	2.41E-03	43
15	Maak	C	2	1	25.36	4.89E-02	44	34.14	4.84E-03	41
15	IVIOCK	D	(14:10-14:50)	2	31.7	1.53E-02	41	33.95	1.35E-02	40
16	rae CD24	c	2	1	33.24	8.29E-02	42	34.52	6.41E-03	41
10	<i>10C-</i> GR24	D	(14:10-14:50)	2	35.39	1.06E-01	41	35.98	1.21E-02	40
17	Mode	1	3	1	28.49	3.27E-02	49	32.67	4.08E-03	47
1/	IVIOCK	Ţ	(15:50-16:20)	2	33.9	5.52E-02	51	35.13	1.28E-02	50
10	rae CD24	1	3	1	25.6	4.13E-02	44	34.51	5.04E-03	42
19	<i>rac-</i> GK24	1	(15:50-16:20)	2	32.61	1.51E-02	42	34.8	1.41E-02	41

Table S2: Read quality statistics for Read 1 and Read 2 of each of the 24 RNA libraries sequenced

10	N4 la	2	3	1	27.3	9.82E-02	43	33.83	2.85E-03	42		
19	IVIOCK	2	(15:50-16:20)	2	31.37	1.28E-02	43	33.85	2.03E-03	42		
20	20 <i>rac-</i> GR24	2	3	1	25.96	6.64E-01	44	32.59	4.09E-03	41		
20		2	(15:50-16:20)	2	25.78	14.8	42	30.48	9.32	40		
21	N4l-	4	3	1	29.16	2.16	46	33.37	8.87E-03	45		
21	21 IVIOCK	4	(15:50-16:20)	2	23.53	13.5	46	31.03	6.18	44		
22	22 <i>rac</i> -GR24 4	22 <i>rac-</i> GR24 4	22 6224 4	4	3	1	33.14	8.23E-01	46	34.89	7.09E-03	46
22			4	(15:50-16:20)	2	34.27	1.01E-01	46	35.77	1.20E-02	45	
22	N4l-	C	3	1	33.1	6.72E-01	44	34.76	6.77E-03	43		
23	IVIOCK	6	(15:50-16:20)	2	34.22	9.83E-02	45	35.53	1.02E-02	43		
24		C	3	1	29.33	1.18	43	34.14	1.28E-02	41		
24	<i>ruc</i> -GR24	rac-GK24 6 (15	(15:50-16:20)	2	31.18	1.65E-02	43	34.73	1.22E-02	40		

Figure S1: Length distribution of the isoforms in the pea axillary bud transcriptome

Table S3: Comparison of the Pisum sativum bud transcriptome isoforms using BLASTN (1E⁻⁰³) and

specifying a minimum hit coverage of 80%.

Type of match	# matches
Self	194,020
Different isoform within the same transcript	56,077
Different transcript	6
Total	250,103

Pea	Sequence	Реа	Transcriptome match	Transcriptome	Alignment	Реа	Positives	Gaps
sequence	type	sequence		match length	length	sequence		
		length (bp)		(bp)	(bp)	coverage		
PsApxI	mRNA	1054	comp92406_c0_seq1	1674	1034	98.0%	1033	1
PsBRC1	CDS	1367	comp78442_c0_seq1	2079	1170	85.3%	1166	0
PsEXGT1	mRNA	1125	comp88216_c0_seq5	1248	1124	99.5%	1119	0
			comp88216_c0_seq11	1080	821	72.9%	820	0
			comp88216_c0_seq8	1170	627	55.7%	627	0
			comp88216_c0_seq13	1580	648	56.6%	637	0
			comp88216_c0_seq1	1256	648	56.6%	637	0
			comp88216_c0_seq14	1412	345	30.0%	338	0
			comp88216_c0_seq7	1088	345	30.0%	338	0
PsFed-1	CDS	1995	comp55599_c1_seq1	1079	900	45.1%	900	0
			comp351273_c0_seq1	1058	527	25.5%	509	9
PsHMG-1	mRNA	807	comp81333_c0_seq1	1208	798	97.9%	790	0
PsKO1	mRNA	1797	comp71699_c1_seq1	1791	1754	97.6%	1754	0
			comp71699_c1_seq4	1977	1627	90.5%	1627	0
			comp71699_c1_seq3	2076	1164	64.7%	1163	0
			comp71699_c1_seq2	1890	1164	64.7%	1163	0
PsPCNA	mRNA	948	comp93178_c0_seq1	1095	926	96.8%	918	5
PsPETE	Genomic	1505	comp92360_c0_seq1	1084	1044	69.0%	1038	2
PsRMS4	CDS	2127	comp97254_c0_seq1	2895	2127	99.8%	2123	0
PsRMS5	CDS	3880	comp74555_c0_seq1	1085	788	20.0%	776	6
			comp27382_c0_seq1	423	291	7.4%	289	0

Table S4: BLASTX (1E⁻¹⁰⁰) results comparing single copy pea reference sequences against the pea axillary bud transcriptome

Figure S12: Length distribution of the long non-coding RNA in the pea axillary bud transcriptome

Abbrev.	Type of repeat	Transcriptome	Transcriptome	IncRNA
		All Isoforms	Longest Isoform	
RLGTT	LTR/gypsy/Tat	267	118	48
RLGOG	LTR/gypsy/Ogre	4,307	1,625	2,094
RLGCH	LTR/gypsy/chromo	317	127	138
RLGAT	LTR/gypsy/Athila	936	336	259
RLCTK	LTR/copia/Tork	167	46	23
RLCTR	LTR/copia/TAR	76	29	10
RLCMX	LTR/copia/Maximus	1,247	439	364
RLCIV	LTR/copia/Ivana	512	158	42
RLCAN	LTR/copia/Angela	87	22	41
RLCA2	LTR/copia/AleII	219	31	16
RLCA1	LTR/copia/AleI	8	3	1
RLXXX	LTR/unclassified	387	89	117
TRIMx	LTR/TRIM	97	46	50
DHHxx	Helitron	10	6	0
DTMxx	DNA/MULE	230	78	55
DTAxx	DNA/hAT	7	3	0
DTCxx	DNA/CACTA	395	40	33
SAT09	Satellite/PST_TR9	1	1	1
SAT07	Satellite/PST_TR7	0	0	0
SAT03	Satellite/PST_TR3	1	1	1
SAT27	Satellite/PST_TR27	3	1	0
SAT25	Satellite/PST_TR25	2	1	0
SAT11	Satellite/PST_TR11_TR19	62	15	58
SAT01	Satellite/PST_TR1	24	3	16
SAT06	Satellite/PS_TR6	1	1	1
SATOB	Satellite/PisTR-B	2	2	2
SATxx	Satellite/other	20	4	13
RDN05	rDNA/5S	1	1	0
RDN45	rDNA/45S	6	6	2
CONTM	contam.	1	1	0
PLAST	plastid	24	13	0
XXXXX	unclassified repeat	2,617	954	789
	Total repeats	12,034	4,200	4,174
	Total in set	194,067	81,773	47,322

Table S8: Summary of the number of sequences with similarity to a pea repetitive DNA sequence [23] using BLAST ($1E^{-10}$)

Figure S13: The carbon fixation in photosynthetic organisms KEGG pathway with enzymes highlighted that were identified in the pea axillary bud transcriptome.

Time window	1	2	3
Time	13:30 - 14:10	14:10 - 14:50	15:50 - 16:20
Samples harvested	1, 3, 5, 7	9, 11, 13, 15	17, 19, 21, 23

Table S16: Timetable of sample harvest for the differential expression analysis

Transcript **Fold change** FDR comp55670 c0 29.99273454 6.71E-05 comp38965 c0 67.96124778 6.74E-05 comp91844 c6 21.89150914 6.74E-05 comp35107_c1 12.87711767 0.000615261 comp91844 c0 191.4521392 0.000615261 155.7358145 comp80518_c0 0.000615261 comp92923_c0 37.90478548 0.000615261 comp81803 c0 2.937871057 0.001049039 comp388637 c0 66.33635356 0.001480698 comp86806 c0 84.25789332 0.001568536 comp51650 c0 0.001568536 86.01018718 comp72075_c0 2.345996512 0.001756021 comp55670_c1 47.76202731 0.001858386 comp90592 c12 12.9588119 0.003091317 comp91844 c4 30.36488816 0.00500408 comp91844 c5 92.66608899 0.008037182 comp79487 c0 0.105749722 0.012025699 comp55670_c2 16.62011456 0.012465091 comp82517_c0 4.349992898 0.012465091 comp35755_c0 5.244088628 0.020082174 comp55149 c0 0.503804682 0.02193618 comp92265 c0 9.22923673 0.02193618 comp89084 c0 29.43663111 0.02193618 comp48055 c0 28.22927049 0.023531557 comp83707_c0 2.034885925 0.023921647 comp89415 c1 2.098533173 0.026265933 comp91844_c1 37.55825232 0.028886441 comp62497_c0 13.89751364 0.031060459 comp87035 c5 0.522368803 0.032163598 comp75928 c0 85.09750094 0.036731105 comp82468 c1 6.646879517 0.036936271 comp35877 c1 8.558968348 0.036936271 comp86920_c1 0.42039615 0.041893328 comp91844 c3 85.10279393 0.041893328 comp255391 c0 0.122154402 0.041893328 comp87071 c2 5.591675309 0.041893328 comp35285_c0 2.18272596 0.046608407

Table S17: List of 37 transcripts identified as DE in a pairwise comparison between time window 2 andtime window 3

Transcript	Fold Change	FDR
comp35107_c1	41.62059352	1.63E-08
comp92265_c0	44.16514369	5.14E-07
comp38965_c0	124.5553127	1.69E-06
comp86806_c0	351.5948264	8.15E-05
comp80157_c2	4.875100562	9.92E-05
comp89617_c0	0.283276641	9.92E-05
comp78391_c2	3.078677156	0.000177796
comp35693_c0	0.254851951	0.000540388
comp72468_c0	0.234277618	0.000690412
comp81803_c0	2.971293206	0.000773246
comp89415_c1	2.536580022	0.000773468
comp42921_c0	2.44513865	0.000837202
comp388637_c0	66.33635356	0.001104366
comp92923_c0	32.52828075	0.00121689
comp94434_c0	2.402020453	0.001359336
comp94479_c0	8.677547285	0.001481186
comp51650_c0	72.39438954	0.001671554
comp35102_c0	2.609360842	0.001671554
comp72075_c0	2.271907111	0.002768533
comp87227_c2	0.281042559	0.003059639
comp93451_c0	0.490816238	0.003076272
comp75928_c0	296.4334779	0.003076272
comp55051_c0	0.458834444	0.003522094
comp89084_c0	46.10386084	0.003547779
comp77929_c0	2.476602443	0.003547779
comp92807_c0	4.369939288	0.004278948
comp54867_c0	0.158205609	0.004464485
comp86920_c1	0.384591552	0.005495493
comp81416_c0	0.281721148	0.005495493
comp35297_c0	0.307749793	0.005495493
comp90925_c6	0.386170581	0.005578998
comp71289_c1	2.450371111	0.005848849
comp35767_c0	50.88281029	0.006125543
comp91531_c2	0.488835605	0.006125543
comp35134_c1	5.078354074	0.006331317
comp91844_c6	9.588393283	0.006331317
comp62653_c1	0.264478854	0.006950003
comp93714_c0	2.345100401	0.008421684
comp75525_c2	3.4475625	0.008518746

Table S18: List of 124 transcripts identified as DE in a pairwise comparison between time window 1 andtime window 3

comp69006_c0	0.193777858	0.008660182
comp101029_c0	8.342688272	0.009146392
comp55866_c0	2.743141967	0.009146392
comp90592_c12	9.745642207	0.009146392
comp96310_c0	5.177483256	0.010631298
comp64053_c1	2.383494979	0.011046193
comp77793_c3	3.703659127	0.011591791
comp88866_c1	18.25062458	0.011591791
comp90918_c1	0.238067911	0.011591791
comp92821_c0	0.234629843	0.011591791
comp83232_c1	0.418244114	0.01212127
comp35188_c0	2.512101169	0.01212127
comp84301_c1	0.528306176	0.013802408
comp85451_c1	4.054877957	0.013802408
comp93257_c0	0.435928722	0.013802408
comp34724_c0	0.267386195	0.013802408
comp96168_c0	0.387384733	0.013802408
comp86806_c1	35.31901296	0.014355245
comp81954_c0	0.144236576	0.014699988
comp77793_c2	3.300349104	0.015079458
comp62497_c0	13.79001673	0.015675878
comp71932_c0	2.191711532	0.015675878
comp35867_c0	0.463667913	0.016037764
comp103811_c0	0.438422109	0.016086194
comp78122_c1	0.510227368	0.019400733
comp77973_c0	3.614087566	0.019400733
comp147611_c0	0.174430724	0.020012179
comp71348_c1	6.096575179	0.020012179
comp55670_c0	8.477802142	0.020012179
comp87716_c1	0.424807026	0.020012179
comp31797_c1	0.036780193	0.020012179
comp89772_c0	0.489748035	0.021058981
comp592517_c0	0.184439745	0.021058981
comp88228_c0	11.34001519	0.021275559
comp93952_c0	2.215977928	0.02142318
comp35285_c0	2.199379674	0.021539194
comp84585_c0	0.54072815	0.021565982
comp99868_c0	3.556355483	0.021565982
comp79509_c0	0.244724285	0.02193375
comp79487_c0	0.124821608	0.022851406
comp84080_c0	0.525602531	0.023148154
comp70446_c0	0.485318874	0.023631247

comp84940_c2	24.32895611	0.023829678
comp91837_c4	24.32444728	0.023829678
comp77858_c0	2.726496511	0.023829678
comp89398_c0	0.215875969	0.024801449
comp82323_c0	2.64569673	0.02779823
comp414989_c0	24.37367646	0.028369781
comp90486_c1	0.366662457	0.030502355
comp73339_c0	3.275138883	0.030744869
comp38609_c0	0.043311641	0.030744869
comp66814_c0	0.04334664	0.030744869
comp79848_c1	0.039679042	0.031876991
comp85721_c1	0.371170827	0.031986683
comp86930_c0	0.374360704	0.033530463
comp78315_c0	0.502308382	0.033746451
comp117149_c0	0.100488563	0.033746451
comp35337_c0	5.321273778	0.034945224
comp79176_c0	0.209526904	0.036280221
comp34931_c0	0.414122298	0.036280221
comp88021_c0	0.320873657	0.037224073
comp55974_c0	0.366132034	0.038195687
comp378614_c0	0.042646378	0.038246215
comp74630_c0	7.592060618	0.038391387
comp75279_c0	22.35969196	0.039156917
comp87121_c0	0.460622995	0.039277231
comp93445_c0	2.127930473	0.039442018
comp34949_c0	2.858494038	0.04080457
comp83562_c0	0.383569793	0.041149023
comp82340_c1	0.414984732	0.043924934
comp34934_c1	0.200406735	0.043924934
comp89250_c4	0.35787063	0.044566686
comp303244_c0	14.94919677	0.047008271
comp94085_c0	3.157270063	0.048079281
comp95443_c0	1.824167904	0.048481555
comp35195_c0	0.559542992	0.048525017
comp86255_c2	0.357267624	0.048525017
comp36828_c0	10.03561238	0.048525017
comp82539_c0	10.02910353	0.048525017
comp85037_c0	10.02113494	0.048525017
comp70806_c0	2.497715551	0.048525017
comp83593_c0	0.497083606	0.048525017
comp252844_c0	0.047485263	0.048525017
comp94060_c0	5.836095459	0.048677117

comp68925_c0 1.83125968 0.049249639

Table S19: List of 31 DE transcripts annotated with a long non-coding RNA

comp35693_c0 comp72468_c0 comp86920_c1 comp81416_c0 comp91531_c2 comp62653_c1 comp75525_c2 comp101029_c0 comp90918_c1 comp96168_c0 comp62497_c0 comp77973_c0 comp147611_c0 comp71348_c1 comp592517_c0 comp88228_c0 comp84940_c2 comp414989_c0 comp90486_c1 comp38609_c0 comp66814_c0 comp378614_c0 comp74630_c0 comp34949_c0 comp82340_c1 comp94085_c0 comp86255_c2 comp252844_c0 comp48055_c0 comp255391_c0 comp87071_c2

Transcript	Arabidopsis gene name	Arabidopsis gene annotation	AT#	Bound by PRR5?	Upregulated by PRR5?
comp91531_c2	RSH2	RELA-SPOT HOMOLOG 2	AT3G14050	Yes	No
comp89415_c1	JMJD5/ JMJ30	JUMONJI DOMAIN CONTAINING 5 / JUMONJI-C DOMAIN-CONTAINING PROTEIN 30	AT3G20810	Yes	No
comp78122_c1	LNK1/2	NIGHT LIGHT-INDUCIBLE AND CLOCK- REGULATED 2	AT3G54500	Yes	Yes
comp93952_c0	RPL23aB	60s ribosomal protein L23a-2	AT3G55280	Yes	No
comp35195_c0	TIR1	TRANSPORT INHIBITOR RESPONSE 1	AT3G62980	Yes	No
comp71932_c0	QCR7	Cytochrome b-c1 complex subunit 7-1	AT4G32470	Yes	No
comp83562_c0	BBX19	B-BOX DOMAIN PROTEIN 19	AT4G38960	No	Yes
comp35134_c1	-	Histone h2b	AT5G02570	Yes	No
comp90486_c1	PRR5	PSEUDO-RESPONSE REGULATOR 5	AT5G24470	Yes	Yes
comp84080_c0	-	P-loop containing nucleoside triphosphate hydrolases superfamily protein	AT5G35970	No	Yes

Table S20: List of DE transcripts that are bound or upregulated by PRR5 [34]

 Table S21: List of DE transcripts that have previously been identified as circadian clock-associated

 and/or light/diurnally-regulated

Transcript	Arabidopsis gene name	Arabidopsis gene annotation	AT#	Supporting references
comp42921_c0	FKF1	FLAVIN-BINDING, KELCH REPEAT, F BOX 1	AT1G68050	[58]
comp70806_c0	BBX21	B-BOX DOMAIN PROTEIN 21	AT1G75540	[59]
comp72075_c0	CRY2	CRYPTOCHROME 2	AT1G04400	[60, 61]
comp78122_c1	LNK1/2	NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 2	AT3G54500	[62]
comp83562_c0	BBX19	B-BOX DOMAIN PROTEIN 19	AT4G38960	[63]
comp84080_c0	-	P-loop containing nucleoside triphosphate hydrolases superfamily protein	AT5G35970	[64]
comp84301_c1	TIC55	TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55	AT2G24820	[65]
comp84585_c0	PHOT2	PHOTOTROPIN 2	AT5G58140	[66]
comp87227_c2	EPR1	EARLY PHYTOCHROME RESPONSIVE	AT1G18330	[67]
comp89415_c1	JMJD5/ JMJ30	JUMONJI DOMAIN CONTAINING 5/JUMONJI-C DOMAIN- CONTAINING PROTEIN 30	AT3G20810	[68]
comp89617_c0	CRY3	CRYPTOCHROME 3	AT5G24850	[69]
comp90486_c1	PRR5	PSEUDO-RESPONSE REGULATOR 5	AT5G24470	[70]
comp91531_c2	RSH2	RELA-SPOT HOMOLOG 2	AT3G14050	[71]

[58] Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science. 2012;336(6084):1045-1049.

[59] Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F, Andersson MX et al. Convergence of light and ABA signaling on the *ABI5* promoter. PLoS Genet. 2014;10(2):e1004197.

[60] Lin CT, Yang HY, Guo HW, Mockler T, Chen J, Cashmore AR. Enhancement of blue-light sensitivity of *Arabidopsis* seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A. 1998;95(5):2686-2690.

[61] Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L. Circadian clock-regulated expression of phytochrome and cryptochrome genes in *Arabidopsis*. Plant Physiol. 2001;127(4):1607-1616.

[62] Rugnone ML, Soverna AF, Sanchez SE, Schlaen RG, Hernando CE, Seymour DK et al. *LNK* genes integrate light and clock signaling networks at the core of the *Arabidopsis* oscillator. Proc Natl Acad Sci U S A. 2013;110(29):12120-12125.

[63] Li G, Siddiqui H, Teng YB, Lin RC, Wan XY, Li JG et al. Coordinated transcriptional regulation underlying the circadian clock in *Arabidopsis*. Nat Cell Biol. 2011;13(5):616-U275.

[64] Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand A. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of *Arabidopsis* to high irradiance. Plant Physiol. 2007;144(3):1391-1406.

[65] Boij P, Patel R, Garcia C, Jarvis P, Aronsson H. *In vivo* Studies on the Roles of Tic55-Related Proteins in Chloroplast Protein Import in *Arabidopsis thaliana*. Mol Plant. 2009;2(6):1397-1409.

[66] Christie JM, Salomon M, Nozue K, Wada M, Briggs WR. LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci U S A. 1999;96(15):8779-8783.

[67] Kuno N, Moller SG, Shinomura T, Xu XM, Chua NH, Furuya M. The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in *Arabidopsis*. Plant Cell. 2003;15(10):2476-2488.

[68] Jones MA, Covington MF, DiTacchio L, Vollmers C, Panda S, Harmer SL. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc Natl Acad Sci U S A. 2010;107(50):21623-21628.

[69] Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO. Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc Natl Acad Sci U S A. 2008;105(52):21023-21027.

[70] Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of *Arabidopsis thaliana*. Plant Cell Physiol. 2005;46(5):686-698.

[71] Mizusawa K, Masuda S, Ohta H. Expression profiling of four RelA/SpoT-like proteins, homologues of bacterial stringent factors, in *Arabidopsis thaliana*. Planta. 2008;228(4):553-562.

Table S22: List of 29 DE transcripts identified as diurnally regulated in Blasing et al. [35]

comp35188_c0 comp35195_c0 comp42921_c0 comp55866_c0 comp70446_c0 comp70806_c0 comp75525_c2 comp77858_c0 comp77929_c0 comp78122_c1 comp78315_c0 comp79848_c1 comp80157_c2 comp81803_c0 comp83232_c1 comp83562_c0 comp84080_c0 comp84301_c1 comp85451_c1 comp85721_c1 comp89415_c1 comp89617_c0 comp89772_c0 comp91531_c2 comp92821_c0 comp93257_c0 comp93952_c0 comp94434_c0 comp99868_c0 **Table S23:** List of online resources used in this article and their sources

Databases / transcriptomes	Source
Medicago truncatula CDS	ftp://ftp.jcvi.org/pub/data/m_truncatula/Mt4.0/Annotation/Mt4.0v1/Mt4.0v
	1_GenesCDSSeq_20130731_1800.fasta
Duarte contigs	http://www.ncbi.nlm.nih.gov/nuccore/GAMJ00000000
Franssen contigs	http://www.ncbi.nlm.nih.gov/nuccore?term=66035%5BBioProject%5D
Kaur contigs	http://www.ccforum.com/content/supplementary/1471-2164-13-104-s1.txt
Kaspa contigs	http://www.ncbi.nlm.nih.gov/nuccore?term=277074%5BbioProject%5D
Parafield contigs	http://www.ncbi.nlm.nih.gov/nuccore?term=277076%5BBioProject%5D
Uni-prot pea proteins	http://www.uniprot.org/uniprot/?query=organism:3888
Swiss-prot pea proteins	http://www.uniprot.org/uniprot/?query=organism:3888+reviewed:yes
Ultra-conserved orthologs	http://cgpdb.ucdavis.edu/cgpdb2/data_analysis/reference_genome_set/Arab
	idopsis/A_thaliana_ATGC_2006_08_24.protein.COS_ULTRA.fasta

 Table S24:
 List of primers used for qRT-PCR analysis.

Transcript	Forward primer (5' to 3')	Reverse primer (5' to 3')
PsTUBLIN2	AGATGGCTTCAACTTTCATTGG	GCTCTCGGCTTCGGTGA
comp35195_c0	AAAATGGCAGCAAGTCCATC	GGTTGGGGTGGTTATGTTTG
comp35285_c0	TCGATCTGGGAGAAGAATGG	AGCGTGACGAAACTGATTCC
comp55670_c0	GCCGACTTTCGTCTCTGTTC	TAGTTTATCTGGGGCGGATG
comp62497_c0	TGAGGTTTTTGCTTTGATGC	TGCAAAGAATCCCAATTGAT
comp62653_c1	GAATGATGGTTTCGGTTTGAG	TCCCTCCACTCATCTCTCTCT
comp70446_c0	CGGTGCAGTCTCATAGCAAA	ATCTCCGACATCACGTTTCC
comp72075_c0	CAATTGTTCCCTTGCCAAAT	GGAGGAAATACGATCCAGCA
comp75279_c0	TGGCAAAAGTATGGCTATTGG	AGCATGTAGAGAGGGCTTCG
comp81803_c0	CAAATGGCAATGATGATGGA	ACTCCTCTTGTGGCTGCCTA
comp84301_c1	ATGCCGTGTCCCACTTTATC	TCCATCAGAATGCAAGCAAG
comp86920_c1	GCAATCTGTTTCCACCATCC	GGTTCTAGCTCAGCCAATCG
comp86930_c0	TAATGTTTCTCCCGATCACG	CGAAAACCCGACTAACAACC
comp90486_c1	AACGAGCAAGACCCTAAGCA	CGTTTGAGAATGGGTGAGGT
comp93451_c0	CCACCGCTCGAAATATCAGT	GGGCGTCTCTAGCAACATTC