1 Supplementary Information

2 Materials and Methods

3 Environmental sample preparation

4 Soil samples were collected from a used cooking oil deposit site of a restaurant (Dortmund,

5 Germany, Latitude/Longitude: 51.528874,7.458762) with the assumption that long-term

6 exposure to oil contamination led to a natural selection for microbes capable of metabolizing oil.

7 Each soil sample was homogenized by grinding and sieving (2 mm particle size). Lipase-

8 producing bacteria were enriched by inoculating 1 L of modified Belitzky Minimal Medium [27]

9 with 1 g of soil. The medium was supplemented with olive oil (2 %) as the sole carbon source.

10 Upon growth (3 days), the cultures were centrifuged to acquire the pellet and stored at -80 °C.

11 Protein Extraction and 2D Gel Electrophoresis

The cell pellets of oil-metabolizing organisms were disrupted to acquire the proteome for 2D 12 polyacrylamide gel electrophoresis analysis by a bead-beating method in the presence of a non-13 14 ionic detergent, n-Dodecyl β-D-maltoside. Approximately 3-5 ml cell pellet was resuspended in 350 µl Sample Buffer [28] (50 mM Bis-Tris, 50 mM NaCl, 1 mM EDTA, pH 7) and 100 µl of 15 16 10% (w/v) n-dodecyl β -D-maltoside. Glass beads (diameter 0.5 mm) in a volume approximating 17 the size of the cell pellet were added. The suspension was vortexed 5 min and incubated for 20 min on ice. Subsequently, it was centrifuged at 16,000 x g at 4° C. Proteins were precipitated 18 19 from the supernatant using a methanol/chloroform extraction. For this purpose, 3 volumes of 20 water, 4 volumes of methanol and 1 volume of chloroform were added to 1 volume of protein-21 containing supernatant. The mixture was vortexed vigorously and centrifuged for 20 min at 16,000 x g and 4° C. The protein precipitate was found at the interface between the two phases. 22 The top phase was removed carefully without disturbing the precipitate. Then 400 µl of methanol 23

24	was added and the sample vortexed vigourously before centrifuging the sample in the above-
25	mentioned conditions. The protein precipitate, now at the bottom of the tube, was washed three
26	times with chilled acetone, before briefly drying the pellet and re-suspending it in DTT-free
27	rehydration buffer (7 M urea, 2 M thiourea, 65 mM CHAPS, 0.5 % v/v Triton X-100, 1.04 % v/v
28	Pharmalyte pH 3-10 and traces of bromophenol Blue). The protein solution was then separated in
29	a 2 D gel electrophoresis using a protocol previously published [29] with the following
30	modifications: the equilibrating solution used to prepare the isoelectric focussing IPG gel strip
31	neither contained DTT nor iodoacetamide. 2D gels not intended for zymography were stained
32	with RuBPS Protein Gel Stain and proteins were visualized on a Typhoon laser scanner (GE
33	Healthcare, Freiburg, Germany). 2D gels were performed in duplicates.
34	Zymography to detect lipolytic enzymes
35	After protein separation, the zymography 2 D gels were incubated for 3×10 min in 400 ml
36	Triton X-100 (2.5 $\%$ v/v) to remove interfering SDS from the gels. The gel was then incubated in
37	400 ml phosphate buffer (50 mM, pH 7) followed by incubation of the gel in 400 ml 100 μ M
38	<i>p</i> -methylumbelliferyl butyrate (pMUB) solution in phosphate buffer. pMUB is a fluorogenic
39	substrate for lipolytic enzymes. A lipase or an esterase hydrolyses the substrate to butyric acid
40	and the fluorescent <i>p</i> -methylumbelliferone, which can be detected under UV light. Fluorescing
41	spots were manually excised for subsequent mass spectrometry on a UV table.
42	Mass Spectrometry
43	The excised protein spots were treated twice for 15 min with 400 μl 20 mM ammonium
44	bicarbonate in 30 % acetonitrile. Subsequently protein spots were reduced in 50 μ l 10 mM DTT
45	at 60 °C for 45 min and then alkylated with 50 mM iodoacetamide at 25 °C in the dark. The gel

46 spots were then washed twice for 5 min with 400 μl 20 mM ammonium bicarbonate in 30 %

47	acetonitrile and dried completely in a vacuum centrifuge. The spots were tryptically digested
48	overnight at 37 °C using 6.25 ng/µl trypsin in 20 mM ammonium bicarbonate, 30 % acetonitrile.
49	Trypsin was obtained from Promega, Fitchburg, USA. Peptides were eluted into ultrapure water
50	containing 0.1 % trifluoroacetic acid using an ultrasonic bath for 15 min. Eluates were loaded on
51	a trap column (C ₁₈ , pore size 100 Å, particle diameter 5 μ m, inner diameter 180 μ m, length
52	20 mm, Waters, Eschborn, Germany) and were then eluted using a gradient of acetonitrile with
53	0.1 % formic acid (flow rate 350 nl/min, linear gradient 0.5-5 % in 4 min, 5-60 % in 45 min)
54	from an analytical column at 40 °C (C18, pore size 130 Å, particle diameter 1.7 μ m, inner
55	diameter 75 μ m, length 150 mm) followed by mass spectrometry using a Synapt G2-S
56	instrument (Waters). Spectra were recorded in positive resolution mode over a mass range of
57	50-1800 m/z with 1 s/scan using the MS^E technology with a collision ramp of 14-35 eV. The
58	parameters used for the NanoLockSpray source were as follows: Capillary voltage of 2.2 kV;
59	Sampling cone voltage of 30 V; source temperature of 100 °C; desolvation temperature of
60	150 °C; cone gas flow of 50 L/h and desolvation gas flow of 500 L/h. Leucine enkephaline,
61	serving as lock mass analyte (m/z=556.2771), was fed through the lock spray channel.
62	Data were analyzed using the ProteinLynxGlobalServer 2.5.2 (PLGS; Waters) software. Mass
63	spectra were processed using the parameters as follows: chromatographic peak width set to
64	automatic; MS ToF resolution set to automatic; lock mass window of 0.25 Da; low energy
65	threshold of 50 counts; elevated energy threshold of 15 counts; elution time of 5-45 min;
66	intensity threshold of 500 counts.
67	A metagenomics-derived database was used for protein identification using the parameters as

67 A metagenomics-derived database was used for protein identification using the parameters as
68 follows: peptide tolerance set to automatic; fragment tolerance set to automatic; minimal
69 fragment ion matches per peptide of 2; minimal fragment ion matches per protein of 2; minimal

70	peptide matches per protein of 1; maximum protein mass of 250 kDa; primary digest reagent was
71	trypsin; missed cleavages was set to 2; carbamidomethyl C was set as fixed modifications;
72	deamidation N and Q, oxidation M were set as variable modifications and false positive rate was
73	set at 4 %.
74	The mass spectrometry proteomics data along with the metagenomics-derived database, have
75	been deposited to the ProteomeX change Consortium via the PRIDE partner repository with the
76	dataset identifier PXD005148. Username for review purposes: reviewer00553@ebi.ac.uk
77	Password: WJRenyTK. The deposited data includes the unprocessed MS data, as well as the
78	ProteinLynxGlobalServer output after processing. The output data includes tables in .csv
79	(comma separated values) format for all identified fragment-ions, peptides and proteins,
80	respectively. Furthermore, reports for the data base search (IA_log and IA_workflow) are given.
81	DNA extraction, sequencing, and annotation
82	High quality, unsheared DNA was extracted by combining a bead-beating method with a
83	commercial kit-based extraction. The enriched cell-pellet was initially disrupted using glass beads
84	and 450 µl STES buffer (0.1 % SDS, 0.2 M Tris-HCl pH 7.5, 0.01 M EDTA and 0.5 M NaCl).
85	Upon centrifugation (16,000 x g, 10 min, RT), the cell lysate was transferred into QIAamp® DNA
86	Mini and Blood Mini Kit Filter (QIAGEN GmbH, Hilder, Germany). The DNA was then isolated
87	according to the standard manufacturer's protocol. The acquired DNA (OD260/280=1.9 and an
88	OD260/230=2.0) was sequenced at GATC (Constance, Germany) in 300 bp paired end reads using
89	the MiSeq platform.
90	Reads were trimmed with the program trim_fastq1.pl with a minimum read length after trimming

assembled using SPAdes (v3.1.1) with k-values of 21, 33, 55, 77, 99, and 127 and annotated and

91

4

of 150 nt and the minimum quality for cutoff set to a phred score of 20. The sequence data was

translated into an amino-acid sequence library using Prokka (v1.10). SPAdes was invoked using 93 ./spades.py -k 21,33,55,77,99,127 --careful --only-assembler --pe1-12 paired end library.fastg --94 s1 single read library.fastq -o NG7675 spades1. Prokka was invoked using ./prokka --outdir 95 output directory --prefix NG7675 spades1 prokka --metagenome 96 NG7675 spades1 scaffolds.fasta. 97 The resulting database was used for identifying lipases from the 2D zymograms. 98 Sequencing data of the sample was submitted to the European Nucleotide Archive 99 (www.ebi.ac.uk/ena) under project number PRJEB16064 and sample accession numbers 100 ERP017906. 101 Heterologuos expression of metaproteomic lipase ML-005 and enzyme activity assays 102 The protein sequence for lipase ML-005 was re-translated to a codon-optimized gene sequence 103 for expression in E. coli and synthesized (GeneArt, Regensburg, Germany). The gene was then 104 cloned into a pTAC-MAT-Tag-2 (Sigma Aldrich, St. Louis, MO, USA) based expression vector⁴ 105 106 and in the pET22b expression vector with a T7 promoter system and a C-terminal His6-tag for purification. The vectors were transformed into *Escherichia coli* XL1 Blue (pTAC-MAT-Tag-2) 107 108 and BL21 (pET22b) using heat shock transformation. For crude cell extract generation, the XL1 109 Blue cells containing ML-005, Bacillus subtilis LipA, or an empty vector were grown overnight at 37 °C in LB liquid medium with 100 µg/ml ampicillin for selection. Next day, a secondary 110 111 culture (10 ml LB supplemented with ampicillin) was inoculated with the overnight culture to an OD₆₀₀ of 0.05. IPTG (1 mM) was added at OD₆₀₀ of approximately 0.5 and the culture incubated 112 113 for another 2-3 h. The cultures were centrifuged (13,000 x g, 2 min, 4° C) and the acquired cell

pellet was resuspended in Tris-HCl buffer (pH 7). The cell suspension was disrupted through

sonication (amplitude: 80 %, Cycle: 0.5 s, 3 x 1 min) using a Vial Tweeter instrument (Hielscher,

Teltow, Germany). The resulting crude extract was centrifuged (13,000 x g, 20 min, 4 °C) to 116 remove cell debris. The supernatant was used for spectrophotometric lipolytic activity 117 118 determination using pNP-butyrate. The diluted supernatant (2 % v/v in 50 mM Tris-HCl pH 7) was kept at 45 °C. The hydrolysis reaction was initialised by adding 200 µM pNP-ester from a 119 4 mM stock in aqueous solution with 4% ethanol, 1% acetonitrile, and 0.4% Triton X-100. The 120 enzymatic reaction was measured by monitoring the absorbance at 420 nm in a V-650 121 spectrophotometer (Jasco, Tokyo, Japan). These experiments were performed with three 122 biological replicates (Figure S4). For purification of ML-005, E. coli BL-21 was inoculated in 123 LB medium, supplemented with 100 mg/l ampicillin from an overnight culture at an OD600 of 124 0.05. At an OD600 of 0.5, overexpression was induced by 1 mM of IPTG and the cell suspension 125 incubated overnight at 20°C under constant shaking. Cells were harvested by centrifugation (45 126 min at 6,500x g and 4°C.) The resulting pellet was resuspended in approximately 50 ml of Tris-127 HCl-buffer (50mM, pH 7.1). Cell disruption was carried using the Constant Cell Disruption 128 129 System (Constant Systems, Low March, UK) at 1.9 kbar three times. The cell lysate was centrifuged for 60 min at 6,500 g and 4°C to get rid of cell debris. The supernatant containing the 130 131 soluble protein was filtered using 250 ml Filtropur V50 vacuum filters (Sarstedt, Nümbrecht, 132 Germany). An ÄKTApurifier FPLC system (GE Healthcare, Uppsala, Sweden) was used to purify ML-005. A 5 ml HisTrap HP Ni-NTA-column (GE Healthcare, Uppsala, Sweden) was 133 first washed with distilled water and then equilibrated using Buffer A (50 mM sodium 134 phosphate, 300 mM NaCl, pH 8.0). The filtrate was loaded into the column and ML-005 was 135 136 eluted using 10% and 12% of Buffer B (50 mM sodium phosphate, 300 mM NaCl, 500 mM imidazole, pH 8.0). The resulting protein solution was dialyzed overnight at 4°C against 50 mM 137 sodium phosphate buffer (pH 8) using a a Spektra/Por Dialysis Membrane 12-14 kDa 138

- 139 (Spectrumlabs, Rancho Dominguez, USA). Substrate specificity against *para*-nitrophenyl (pNP)
- 140 esters was performed as described above, the hydrolysis reaction was initialised by adding
- 141 50 μ M of the corresponding pNP ester to a 38.3 nM protein solution in 50 mM sodium phosphate
- buffer (pH 8). The enzymatic reaction was measured over approximately 8 min by monitoring
- 143 the absorbance at 405 nm in a V-650 spectrophotometer (Jasco, Tokyo, Japan). The activity was
- calculated from the initial slope of the absorbance. The activity against pNP-butyrate
- 145 $(14.1 \text{ U} \cdot \text{mg}^{-1})$ was set to 100%.
- 146

147 Supplementary Figures

148 **Figure S1**

150

149

Figure S1: Alignment of nine uncharacterized proteins annotated from the metagenome of our sample. These proteins are homologous to a group of thioesterases from *Pseudomonas* species and MS-based peptide identifications derived from spots ML-002, ML-003, ML-007, ML-008 ML-010 and ML-014 are consistent with this protein group, but cannot discriminate between the individual entries. Alignment visualized using Jalview 2 [30].

Figure S2: Optimization of protein and DNA extraction protocols. *denotes that the parameter 159 was deemed as the best for our specific sample and was then implemented in the next 160 161 optimization step. (A) Cell disruption was carried out by physical methods: Sonication (3 x 30 s; amplitude 80; cycle 0.5) and heat (95°C; 5 min); as well as with detergents: SDS (5% v/v, 15 162 min), tween 80 (1.5% v/v, 40 min incubation) and dodecyl maltoside (see Materials and 163 Methods). Dodecyl maltoside vielded the highest amount of proteins. (B) To enhance cell lyses, 164 bead beating was employed. Different diameters of beads were tested to evaluate their efficacy in 165 supporting cell lysis. 0.5 mm glass beads yielded the most protein bands and reduced smearing. 166 (C) Protein precipitation methods to remove impurities that lead to band smearing on an SDS 167 PAGE gel were tested. Acetone was initially chosen as the protein precipitation method of 168 169 choice as it resulted in higher protein recovery than a trichloroacetic acid (TCA) and an acetone 170 + TCA hybrid method. (**D**) However, acetone precipitation resulted in horizontal smearing in 2D PAGE gels. Methanol-chloroform precipitation was finally chosen as alternative to acetone 171 172 precipitation as it led to higher purity and recovery and better focusing of protein spots. (E) To extract unsheared DNA from the environmental sample, we evaluated several DNA extraction 173 174 methods. In the CTAB method cetrimonium bromide, a surfactant, was used for cell disruption, 175 followed by isopropanol precipitation of DNA. In the chloroform/isoamylalcohol method, DNA was extracted using lysozyme (2mg), SDS (10% v/v) and chloroform/isoamylalkohol (24:1). 176 DNA was then precipitated using ethanol. DNA was also extracted using a bead-beating method. 177 178 0.5 mm glass beads were used in the presence of 0.1% SDS and subsequent phenol/chloroform 179 extraction. DNA was then precipitated using ethanol. Only the DNA acquired through bead beating method was unsheared. To increase the quality, DNA was further purified by using the 180

- 181 QIAamp® DNA Mini and Blood Mini Kit. This additional step provided unsheared, pure DNA
- 182 (OD260/280 = 1.9 and an OD260/230 = 2.0) with sufficient quality for sequencing.

- 184 **Figure S3:** Technical replicates of zymograms from 2D gels from the protein extract of our
- 185 environmental sample. Protein extract was separated and in-gel activity assay was performed in
- 186 independent experiments on different days.

Figure S4: Biological replicates of the *para*-nitrophenyl butyrate hydrolysis assays with crude
extract from *E. coli* expressing the novel esterase ML-005, Lipase A (LipA) from *B. subtilis* as
positive control, or containing empty vector as negative control.

192 **Table S1:**

193 List of identified proteins from 2D gels according to PLGS software. Multiple proteins were identified most likely

194 due to the presence of multiple proteins at the site of activity-based excision of protein spots. Identified proteins that

195 were considered potential lipolytic enzymes are highlighted in bold. Molecular weight (Da) and pI are predicted.

196 Peptides: number of peptides identified. ML-001 to ML-014 represent the 14 lipolytic spots excised from

197 zymography gels. LS-001 is a landmark spot excised from RuBPS stained gels. Spots were tryptically digested and

analyzed via mass spectrometry. The full dataset including peptide sequences and raw data is available via

199 ProteomeXchange with identifier PXD005148 [26].

200

ID	Database ID	Description	mW (Da)	pI (pH)	Peptides
LS-001	PROKKA_92879	Major outer membrane protein P.IB precursor	39796	4.8	99
ML-001	PROKKA_100300	Chaperone protein DnaK	68374	4.7	24
	PROKKA_92465	Chaperone protein DnaK	68358	4.7	25
	PROKKA_22662	Chaperone protein DnaK	37702	4.6	14
	PROKKA_138643	Chaperone protein DnaK	69042	4.6	20
	PROKKA_72460	Chaperone protein DnaK	24543	4.6	11
	PROKKA_138668	Chaperone protein DnaK	24943	4.6	13
	PROKKA_150754	Chaperone protein DnaK	59912	4.6	20
	PROKKA_143530	Chaperone protein DnaK	68343	4.6	22
	PROKKA_139251	Chaperone protein DnaK	68632	4.7	20
ML-002	PROKKA_41331	A-type flagellin	57137	4.5	17
	PROKKA_70441	Hypothetical protein	13678	6.6	4
	PROKKA_02512	Putative acyl-CoA thioester hydrolase	15058	7.3	1
	PROKKA_90774	Methionine synthase	23142	4.8	4

201

ID	Database ID	Description	mW (Da)	pI (pH)	Peptides
ML-003	PROKKA_67835	Superoxide dismutase [Fe]	22892	5.5	13
	PROKKA_00382	Isocitrate dehydrogenase [NADP]	45583	5.2	9
	PROKKA_127235	Isocitrate dehydrogenase [NADP]	45572	5.1	9
	PROKKA_80567	Thioesterase superfamily protein	12138	5.2	4
	PROKKA_38202	Isocitrate dehydrogenase [NADP]	45493	5.3	11
	PROKKA_161078	Isocitrate dehydrogenase [NADP]	45686	5.5	7
	PROKKA_35975	Nucleoside diphosphate kinase	15438	5.4	8
	PROKKA_21910	Ribosome-recycling factor	20640	5.5	8
	PROKKA_18267	50S ribosomal protein L28^APROKKA_135858 50S ribosomal protein L28	8973	12.1	3
	PROKKA_92879	Major outer membrane protein P.IB precursor	39796	4.8	14
	PROKKA_30155	Alpha-ketoglutarate-dependent taurine dioxygenase	12167	5.3	1

ID	Database ID	Description	mW (Da)	pI (pH)	Peptides
ML-004	PROKKA_118556	Superoxide dismutase [Fe]	21960	5.3	4
	PROKKA_48537	Superoxide dismutase [Fe]	21976	5.7	3
	PROKKA_48865	hypothetical protein	8980	5.8	4
	PROKKA_112895	Phage portal protein	37687	5.5	1
	PROKKA_78659	hypothetical protein	152376	5.4	11
	PROKKA_52769	LPS-assembly lipoprotein	22131	8.5	15
ML-005	PROKKA_119255	Superoxide dismutase [Fe]	21990	5.5	14
	PROKKA_123218	Superoxide dismutase [Fe]	21988	5.5	16
	PROKKA_54206	Superoxide dismutase [Fe]	22031	5.5	10
	PROKKA_136888	Superoxide dismutase [Fe]	21950	5.5	10
	PROKKA_47441	Putative hydrolase YdeN	24540	5.7	9
	PROKKA_120225	Hypothetical protein	15133	6.6	4
	PROKKA_92879	Major outer membrane protein P.IB precursor	39796	4.8	15
	PROKKA_52696	Hypothetical protein	13173	9.6	2
	PROKKA_102188	Outer membrane protein A precursor	17906	4	3
	PROKKA_120445	Peptidase inhibitor I78 family protein	9730	4.5	1
	PROKKA_61135	Hypothetical protein	9338	9.6	2

ID	Database ID	Description	mW (Da)	pI (pH)	Peptides
ML-006	PROKKA_00170	Outer membrane protein W precursor	24683	5.8	10
	PROKKA_92879	Major outer membrane protein P.IB precursor	39796	4.8	25
	PROKKA_126912	Outer membrane efflux protein	10568	9.8	3
	PROKKA_67835	Superoxide dismutase [Fe]	22892	5.5	6
ML-007	PROKKA_02512	Putative acyl-CoA thioester hydrolase	15058	7.3	5
	PROKKA_56214	Peptidyl-prolyl cis-trans isomerase cyp18	21701	6.3	7
ML-008	PROKKA_92879	Major outer membrane protein P.IB precursor	39796	4.8	16
	PROKKA_12580	Peptidoglycan-associated lipoprotein precursor	18472	6.5	9
	PROKKA_02512	putative acyl-CoA thioester hydrolase	15058	7.3	4
	PROKKA_62359	bifunctional enoyl-CoA hydratase/phosphate acetyltransferase	15132	7.2	2
	PROKKA_134130	hypothetical protein	8378	8.3	2
	PROKKA_90774	Methionine synthase	23142	4.8	2

208

ID	Database ID	Description	mW (Da)	pI (pH)	Peptides
ML-009	PROKKA_112699	Outer membrane protein W precursor	24708	5.9	6
	PROKKA_70441	hypothetical protein	13678	6.6	4
	PROKKA_77573	hypothetical protein	21589	10.5	3
	PROKKA_21264	Maf-like protein YceF	9493	4.7	2
	PROKKA_130292	Esterase TesA precursor	21383	5.6	5
	PROKKA_138839	ADP-ribose pyrophosphatase	23131	4.9	2
	PROKKA_90774	Methionine synthase	23142	4.8	4
ML-010	PROKKA_05026	hypothetical protein	8805	8.8	5
	PROKKA_80567	Thioesterase superfamily protein	12138	5.2	4
	PROKKA_40999	Esterase TesA precursor	21348	5.2	7
	PROKKA_90774	Methionine synthase	23142	4.8	2
	PROKKA_143609	Methyl-accepting chemotaxis protein McpS	58423	4.7	7
	PROKKA_138839	ADP-ribose pyrophosphatase	23131	4.9	2
	PROKKA_13373	Hypothetical protein	20831	9.7	7
ML-011	none				
ML-012	PROKKA_139397	Hypothetical protein	6677	5.5	1
	PROKKA_51656	Ribosomal protein S6 modification protein	6035	7.9	3
	PROKKA_96934	Peptidoglycan-associated lipoprotein precursor	19946	7.4	8
	PROKKA_137937	Hypothetical protein	23547	5.6	6

ID	Database ID	Description	mW (Da)	pI (pH)	Peptides
ML-013	PROKKA_145948	Alkyl hydroperoxide reductase subunit C	13265	5.3	2
	PROKKA_13373	hypothetical protein	20831	9.7	6
	PROKKA_121960	Outer membrane protein P6 precursor	17810	5	7
	PROKKA_31930	Alkyl hydroperoxide reductase subunit C	20759	4.8	4
	PROKKA_05026	Hypothetical protein	8805	8.8	1
ML-014	PROKKA_121960	Outer membrane protein P6 precursor	17810	5	6
	PROKKA_39260	Outer membrane protein P6 precursor^APROKKA_138904 Outer membrane protein P6 precursor^APROKKA_152373 Outer membrane protein P6 precursor	17707	5	6
	PROKKA_13373	Hypothetical protein	20831	9.7	5
	PROKKA_52867	Hypothetical protein^APROKKA_80758 hypothetical protein	20674	9.7	4
	PROKKA_12101	Putative acyl-CoA thioester hydrolase	15226	6.4	3