
1

2012-12-16106E Early brain development in infants at high risk of autism spectrum disorder

Supplementary Information

Table of Contents

I. Brain Imaging Analysis

Description of pipeline (Pre-processing, Segmentation, Cortical Surface)

II. Machine Learning Analysis

Rationale for non-linear classification

High dimensional feature vector

Prediction pipeline

Non-linear dimensionality reduction

Comparison with other classification methods

III. References

I. BRAIN IMAGING ANALYSIS

Image Processing Pipeline:

Image processing was performed to obtain total brain tissue volumes, regional brain tissue

volumes, and cortical surface measures.

A) Initial preprocessing steps

1. Rigid body co-registration of both T1w and T2w data to a prior atlas template in pediatric

MNI-space generated from 66 one-year old subjects from this study (see Kim et al1 for

more detail).

2. Correction of intensity inhomogeneity via N42

3. Correction of geometric distortions for optimal processing of multi-site longitudinal data3

B) Tissue segmentation

Brain volumes were then obtained using a framework of atlas-moderated expectation-

maximization that performs the following steps (see Kim et al1 or more detail):

1. Co-registration of T2w data to T1w data

2

2. Deformable registration of a prior template and propagation of prior tissue probability

maps for white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) from MNI

space into individual T1w data. The template images are population averages computed

at 6, 12 and 24 months of age4

3. For 12 month old data only: T1w and T2w intensities were locally adapted using a prior

intensity growth map that quantifies the expected change in intensity from 1 to 2 years of

age1

4. Expectation Maximization based tissue segmentation including parametric intensity

inhomogeneity correction1

5. Brain masking was performed using the tissue segmentation as masking. If necessary

manual correction of the brain masks were performed.

 Steps 1-5 were computed using the AutoSeg toolkit

(http://www.nitrc.org/projects/autoseg/).

 ICV was defined as the sum of WM, GM, and CSF.

 Total brain tissue volume (TBV) was defined as the sum of WM and GM.

 Segmentation of 6 month old data did not yield reliable separation of WM and GM, and

thus no individual analysis of either was performed here.

C) Cortical surface measures

Cortical thickness (CT) and surface area (SA) measures for 12 and 24 month data were obtained

via a CIVET workflow5,6 adapted for this age using an age-corrected, automated, anatomical

labeling (AAL) atlas7. CIVET includes shrink-wrap deformable surface evolution of WM, local

Laplacian distance and local SA, mapping to spherical domain, co-registration using cortical

sulcal features and extraction of regional measurements via a deformably co-registered fine-scale

lobar parcellation7. SA was measured at the mid-cortical surface averaged from the computed

white and pial surfaces. Both white and pial surfaces were visually QC’ed with surface cut

overlay on the MRI images.

CIVET was applied as described above to 12 month and 24 month data following tissue

segmentation with AutoSeg (step B).

For 6 month old datasets: As tissue segmentation (step B) for 6 month old subjects did not yield

reliable white vs. gray matter segmentations, cortical surfaces at 6 months were determined

longitudinally, only for subjects with MRI data at both 6 month and 12 month visits. Using

ANTs8 deformable diffeomorphic symmetric registration with normalized cross correlation

(metric radius 2mm, Gaussian smoothing of 3 mm of the deformation map) of joint T1w and

T2w data (both image sources were equally weighted), the pre-processed, brain masked MRI

data of 12 month old subjects was registered to data from the same subject at age 6 months.

This registration was applied to the cortical surfaces of the 12 month subjects to propagate them

into the 6 month old space. Surfaces at 6 months were then visually QC’ed with surface cut

3

overlay on the MRI images. Local SA and CT measures at 6 month were finally extracted from

these propagated surfaces.

Regional measures: Thickness measurements were averaged for all vertices within each of the 78

brain regions in the AAL label atlas7. The surface area measurements were summed over all

vertices of each AAL region for a total regional surface area. These are illustrated below in

Figure 1 (AAL is publically available http://www.bic.mni.mcgill.ca/ServicesSoftware/VisualGuides).

II. MACHINE LEARNING ANALYSIS

1. Rationale for non-linear classification

Children with autism show an abnormal brain growth trajectory that includes a period of early

overgrowth that occurs within the first year of life. In particular, the total size of the brain is up

to 10 percent larger in children with autism than typically developing children9. Thus the brain of

a child with autism will typically show larger morphological differences such as intra-cranial

cortical volume, cortical surface area, and cortical thickness. To estimate these growth

trajectories, or growth patterns, linear models9,10 have been applied, however these are primarily

concerned with changes in total volume and not specific regions in the brain, or how the growth

patterns in specific brain regions may differentiate typically developing children with autism.

Also, as suggested by Giedd,11 linear models may not accurately represent complex (i.e. non-

78 brain regions as defined in the AAL atlas

4

linear) growth patterns in the developing brain. As a result, classification methods that use linear

models to recognize these complex brain growth patterns may not be the most suitable choice.

Recently, deep learning (DL)12-14 has been used to estimate low dimension codes (LDC) that are

capable of encoding latent, non-linear relationships in high dimension data. Unlike linear models

such as PCA, kernel SVM, local linear embedding, and sparse coding, the general concept of

deep learning is to learn highly compact hierarchical feature representations by inferring simple

ones first and then progressively building up more complex ones from the previous level. To

better understand these complex brain growth patterns within the first year of life, DL is a natural

choice because the hierarchical deep architecture is able to infer complex non-linear

relationships, and the trained network can quickly and efficiently compute the low dimension

code for newly created brain growth data.

2. Methods and materials

 2.1 High dimension feature vector

Each child in the training and test populations is represented by a d=315 dimension feature

vector that includes longitudinal cortical surface area (CSA), cortical thickness (CTH), intra-

cranial volume (ICV) real-valued morphological measurements, and one binary sex feature (sex

Male or Female). Specifically, features 1-78 are CSA measurements at 6 months, and features

79-156 are CSA measurements at 12 months. Each measurement corresponds to a brain region

defined in the AAL atlas (i.e. 39 regions in the right hemisphere, and 39 regions in the left

hemisphere as illustrated above). Likewise, features 157-234 are CTH measurements at 6

months, and features 235-312 are CTH measurements at 12 months. Lastly, features 313 and 314

correspond to ICV measurements at 6 and 12 months respectively, and feature 315 is the sex of

the subject (1=Male, 0=Female).

Lastly, because the infant brain develops so quickly within the first year of life, to adjust for

differences in the actual age at acquisition for the 6 month and 12 month visit (i.e. the “6 month’’

image acquisition of a subject does not exactly occurs at 6.0 months, but rather at, e.g., 5.7 or 6.2

months), all morphological measurements in the 315 dimensional feature vector are linearly age-

normalized. Specifically, the 6-month CSA, CTH, and ICV measures are multiplied by Δ6𝑀 =

6 𝑎6𝑀⁄ , where 𝑎6𝑀 is the subject’s actual age at “6 month” image acquisition. And the 12-month

CSA, CTH, and ICV measures are multiplied by Δ12𝑀 = 12 𝑎12𝑀⁄ , where 𝑎12𝑀 is the subject’s

actual age at the “12 month” image acquisition.

2.2 Prediction Pipeline

To better recognize brain overgrowth patterns in autistic children within the first year of life the

proposed prediction pipeline uses the 2-stage design illustrated in Figure 2 to recognize complex

morphological patterns in different brain regions that are likely to differentiate children with

autism from typically developing children. Specifically, our prediction pipeline includes a DL

5

based dimensionality reduction stage followed by a SVM classification stage. In general, the

chosen two-stage design is a very common configuration (low dimension feature representation

stage followed by a classification stage), and has been used in several state-of-the-art pipeline

designs16-20 that only use DL to approximate a new lower dimension feature representations, or

LDC representations in our case, that are then used to train a separate classifier. To ensure the

trained two-stage pipeline had optimal classification performance, a median DL network �̅� is

constructed using only those trained DL networks that resulted in a two-stage pipeline with PPV

and accuracy scores ≥ 90% as measured on the training data only. For more details about how

the median network was constructed see Median Network section.

Figure 2. Proposed Two-stage prediction pipeline that includes a non-linear dimension

reduction step followed by a SVM classification step

In general, the prediction pipeline is applied as follows (assuming that the prediction pipeline has

been trained): First, given a high dimension feature vector 𝑣 not included in the training data set,

the real-valued vector is transformed into a binary feature vector 𝑣 using a trained binary

masking operation, then the low dimensional code (LDC) 𝜙 is estimated using a trained DL

network. Next the diagnosis label 𝑦 for 𝜙 is found using a trained SVM classifier. The technical

details of each stage are outlined below.

The decision to implement a 2-stage prediction pipeline was primarily driven by two different

design considerations: 1) creation of a self-contained non-linear dimensionality reduction

algorithm that did not incorporate a classification mechanism, and 2) a flexible design where

different classification algorithms, such as a support vector machines or distance weighted

discrimination (DWD) classifiers, can be applied with little to no effort.

It is noteworthy that the dimensionality reduction stage in the proposed pipeline could be

reconfigured to become a deep classification network.

Non-Linear Dimensionality Reduction

Given a 𝑛 𝑥 𝑑 training data matrix 𝐴 = {𝒂1, 𝒂1, … , 𝒂𝑖, … 𝒂𝑛} of 𝑛 subjects where row vector

𝒂𝑖 = (𝑎𝑖1, … , 𝑎𝑖𝑑) represents the high dimension feature vector for subject 𝑖, and 𝒚 =

(𝑦1, 𝑦2, … , 𝑦𝑛) is a 𝑛 dimension vector that defines the binary group label for each subject in the

training data set (i.e. the paired diagnosis information for row vector 𝒂𝑖 is 𝑦𝑖, 0=HR-ASD and

1=HR-neg in our study), a binary operation 𝑓: ℝ𝑑 → {0,1}𝑑 is first applied to transform each

6

real-valued measurement 𝒂𝑗𝑑, into a binary one. Specifically, for each column vector 𝒂𝑗, 𝑗 =

1, … , 𝑑 in 𝐴, an average median threshold 𝑚𝑗 = (𝑚𝑗
𝑙0 + 𝑚𝑗

𝑙1)/2 is calculated where 𝑚𝑗
𝑙0 is the

median value of feature 𝑗 and diagnosis label 𝑙0, and 𝑚𝑗
𝑙1 is the median value of feature 𝑗 and

diagnosis label 𝑙1. Values in 𝒂𝑗 that are less than or equal to 𝑚𝑗 are set to 0, and those that are

greater than 𝑚𝑗 are set to 1.

Even though more sophisticated binary operations, such as local binary patterns (LBP), exist

they are typically used in DL networks that attempt to classify gray-level texture patterns

representing local image patches21,22. In our case, our features are not image patches, so the LBP

approach is not appropriate for application. Furthermore, it is very common to perform an

unsupervised training procedure on individual two-layer greedy networks (such as restricted

Boltzman machines and auto-encoders) using visible layer features that are binary and not real-

valued12,19. In fact, there is evidence (suggested by Tijmen Tieleman), that when binary features

are used in the visible layer this may reduce sampling noise that allows for fast learning23. Lastly,

the strategy behind the binary operation chosen for this application is directly related to the

overgrowth hypothesis. More specifically, we are more interested in something that is posed as a

“binary” question. That is, is the value of this feature greater than a median value (possible

overgrowth is true), or less than median value (possible overgrowth is false)? This approach

allows us to train the DL network using simple binary patterns instead of complex real-valued

ones; as a result, the binary operation may allow us to train the DL network faster (i.e. faster

convergence, and as the reported results show, even though we may lose some information when

the binary operation is applied, the prediction performance of the two-stage pipeline speaks for

itself.

When the binary operation completes a new training population �̂� = {�̂�1, �̂�1, … , �̂�𝑛} is created

where each binary high dimension feature vector now describes inter-subject brain region

(cortical surface area and thickness) growth patterns, and inter-subject ICV growth patterns.

Next, the binary high dimension features in �̂� are used to train a deep network that is

implemented using the publically available deep learning Matlab toolbox called DeepLearn

Toolbox*1 In general, the deep network is trained by performing the two sequential steps listed

below.

1. As illustrated in Figure 3(a) below, an unsupervised step is first performed that

sequentially trains individual autoencoders (AE). In particular, an AE is a 2-layer

bipartite graph that has a visible layer (input) and hidden layer (output). Initially, the edge

*1 https://github.com/rasmusbergpalm/DeepLearnToolbox

7

weights (represented by a matrix 𝑊) in the bipartite graph are randomly chosen, and then

iteratively refined12 (including a set of bias values) using data step

𝒉 = 𝜎(𝑊𝒗 + 𝜷𝒅)

followed by a reconstruction step

�̃� = 𝜎(𝑊𝑡𝒉 + 𝜷𝒓)

where vector 𝒗 represents the nodes in the visible layer, vector 𝒉 represents the nodes

hidden layer, vectors 𝜷𝒅 and 𝜷𝒓 represent the bias values for the data and reconstruction

steps, vector �̃� represents the reconstructed nodes in the visible layer, and 𝜎(∙) is the

sigmoid function. In general, the AE convergence criteria is:

o The maximum number of epochs is reached (that is set to 100), or

o The average mean square error (MSE), 𝑀𝑆𝐸𝑒 = 1 𝛿⁄ ∑ (�̃�𝑖
𝑒𝛿

𝑖=1 − �̃�𝑖
𝑒−1)2 for

the last 10 consecutive epoch (i.e., 𝑒 = 1,2 … 10) is less than 0.01, where

�̃�𝑖
𝑒 is the reconstructed visible layer at epoch 𝑒, and �̃�𝑖

𝑒−1is reconstructed

visible layer at epoch 𝑒 − 1.

Figure 3. Deep network training

Figure 4 shows a typical training curve (4a) for each AE in the proposed 4-layer

architecture. When the AE training step terminates and the hidden layer in current AE

becomes the visible layer in the next AE, and the unsupervised process repeats itself for

each AE in the deep network. In general, the goal of the unsupervised step is to

8

approximate edge weight and bias values that increase the likelihood of finding the global

optimum, or at least a very good local minimum, during the supervised step.

Figure 4. Autoencoder and deep network training curves

2. As illustrated in Figure 3(b), the supervised step stacks the initialized AEs (i.e. creating the

deep network) and then adds one additional layer for the supervised training only (i.e.

training label layer) that contains the binary diagnosis label for each binary high dimension

feature vector in the training population. At this point the deep network is treated as a

traditional feed forward neural network that uses back propagation to fine-tune the initial

weight values in each AE (see Figure 4(b) for a typical training curve at this stage). Once

the supervised step completes, the training label layer is removed, and the number of nodes

in last hidden layer represents the final dimension of the output LDC.

Median Network

Since the initial edge weights in unsupervised step are randomly chosen, it is likely that the result

of the training procedure depends on that random initialization. To mitigate this problem the

deep network procedure was performed with 10,000 random initializations resulting in a set of

fine-tuned networks {𝑁1, 𝑁2, … , 𝑁10,000} (all trained with the same training set). Using the edge

weight matrices and bias values in each fine-tuned network in {𝑁1, 𝑁2, … , 𝑁10,000}, an initial

median network is constructed. The median calculation is illustrated in Figure 5 using a simple

two-layer network that only defines three nodes (note: 𝑤_𝑎𝑐 represents the edge weight that

connects node 𝑎 and node 𝑐).

9

Figure 5. Illustration that shows how the edge weights in the LD network were calculated

Once the initial median network is constructed the edge weight and bias values are further

refined by one additional, final supervised training step. That is, the median weights become the

initial weights (i.e. starting weights for back propagation optimization), thus giving us a

potentially more robust starting point for the supervised training step that may lead to a fine-

tuned deep network that is highly reproducible. Finally, the fully trained median deep network

�̅� = {{�̅�1, �̅�1}, {�̅�2, �̅�2}, … , {�̅�𝑘, �̅�𝑘}} is then used to estimate a LDC 𝝓𝑖 for subject �̂�𝑖.

The deep learning parameters momentum and learning rate were set to 0.7 and 1.25 respectively,

and a four-layer architecture [315 100 10 2] was used, where the first layer, or input layer

represented by a binary high dimension feature vector, defines 315 nodes, second hidden layer

defines 100 nodes (approximately 70% feature reduction), the third hidden layer defines 10

nodes (90% feature reduction), and the last layer, or output LDC layer, defines 2 nodes (80%

feature reduction). These parameters were chosen initially as suggested in UTML TR 2010–003,

A Practical Guide to Training Restricted Boltzmann Machines23, Geoffrey Hinton, and then

experimentally refined using only the training data.

SVM Classifier

The LDCs {𝝓𝑖 , 𝑖 = 1, … , 𝑛} generated by the trained deep learning network along with the binary

training labels {𝒚𝑖, 𝑖 = 1, … , 𝑛} are then used to train a two-class SVM classifier that uses a

10

linear kernel. The SVM classifier was implemented using the SVM Matlab toolbox*2 that is

based on well-known LIBSVM library.

Once the SVM classifier is trained, the clinical outcome of a high dimension feature vector, say

𝒗 = (𝑣1, … , 𝑣𝑑) not in the training data set can be predicted using the sequence of steps outlined

below.

1. Estimate binary high dimension feature vector �̂� = (𝑣1𝑚1, 𝑣2𝑚2, … , 𝑣𝑑𝑚𝑑), where

{𝑚1, 𝑚2, … , 𝑚𝑑} is the learned median threshold values for each feature defined in the high

dimension feature vector.

2. Estimate the LDC 𝝓 = (𝜙1, 𝜙2, … , 𝜙𝜓) for �̂� using the median deep network �̅�, where 𝜓

represents the number of nodes in the last hidden layer.

3. Calculate predicted diagnosis label

𝑦 = ∑ 𝛼𝑖𝜅(𝜹𝑖, 𝝓) + 𝑏

𝜓

𝑖=0

where 𝛼 are the weights, 𝜹 are the support vectors, 𝜅(∙) is the inner product of the two vectors,

and 𝑏 is the bias that define the linear hyper-plane (decision boundary) learned by the SVM

algorithm. The sign of the calculated prediction value (i.e. 𝑦 ≥ 0 or 𝑦 < 0) determines which of

the two diagnosis labels the subject has been assigned.

2.3 Using trained HR-ASD/HR-neg pipeline to predict LR subjects

To further validate the prediction accuracy, we trained an HR-ASD/HR-neg pipeline on all HR

subjects and classified all low risk (LR) subjects (no LR subjects were included in the training

data set). In general, for these subjects the diagnosis label predicted by the HR-ASD/HR-neg

pipeline should be HR-neg.

To be precise, we first describe here the general process of computing SVM based diagnostic

labels from a high dimension feature vector, 𝒗 = (𝑣1, … , 𝑣𝑑) (not in the training data) using the

sequence of steps outlined below.

1. Estimate binary high dimension feature vector �̂� = (𝑣1𝑚1, 𝑣2𝑚2, … , 𝑣𝑑𝑚𝑑), where

{𝑚1, 𝑚2, … , 𝑚𝑑} is the learned median threshold values for each feature defined in the high

dimension feature vector.

2. Estimate the LDC 𝝓 = (𝜙1, 𝜙2, … , 𝜙𝜓) for �̂� using the learned deep network �̅�, where 𝜓

represents the number of nodes in the last hidden layer (𝜓 = 2 in our case).

3. Calculate predicted SVM diagnosis label

*2 http://www.mathworks.com/help/stats/support-vector-machines.html

11

𝑦 = ∑ 𝛼𝑖𝜅(𝜹𝑖, 𝝓) + 𝑏

𝜓

𝑖=0

where 𝛼 are the weights, 𝜹 are the support vectors, 𝜅(∙) is the inner product of the two vectors,

and 𝑏 is the bias that define the linear hyper-plane (decision boundary) learned by the SVM

algorithm. The sign of the calculated prediction value (i.e. 𝑦 ≥ 0 or 𝑦 < 0) determines which of

the two diagnosis labels the subject has been assigned.

Using the learned SVM parameters {𝜶, 𝜹, 𝑏} that describe the linear decision boundary, we can

now assess the strength or weakness of the prediction by the trained classification pipeline via

the distance d to the SVM decision boundary, as schematically illustrated in Figure 6 using an

example 2D SVM decision space.

Figure 6. Example 2D SVM decision boundary that illustrates the procedure to compute a

subject’s distance from the decision boundary.

This distance d is computed using the following two steps:

 Step 1: Take LR LDC 𝝓 = (𝜙1, 𝜙2) and project 𝝓𝑝 = (𝜙1
𝑝, 𝜙2

𝑝) onto into SVM decision

line.

 Step 2: Calculate the Euclidean distance 𝑑(𝝓. 𝝓𝑝) between two points using learned

SVM decision parameters {𝜶, 𝜹, 𝑏}.

In general, the calculated distance can be interpreted as follows:

 A distance close to zero would indicate a weak/unsure classification

 A distance that is highly negative is a strong/safe classification for HR-neg

 A distance that is highly positive is a strong/safe classification for HR-ASD

12

This analysis included 84 LR- subjects. No LR-ASD subjects with both available 6 and 12mo

surface area and cortical thickness data were available. Of the 84 LR subjects, 76 were classified

(correctly) as HR-neg and 8 were classified (incorrectly) as HR-ASD. Some observations:

1. 90% (76/84) LR subjects were correctly classified as HR-neg

2. 10% (8/84) LR subjects were incorrectly classified as HR-ASD

3. 8% (7/84) LR subjects are (incorrectly) considered “safe” HR-ASD (at a distance higher

than 0.15 from the decision boundary)

4. 7% (6/84) LR subjects are close to the decision boundary and thus are not considered

clear decisions by our classification method (at a distance smaller than 0.15)

5. 84.5% (71/84) LR subjects are (correctly) considered safe HR-neg (at a distance higher

than 0.15 from the decision boundary)

6. All of these subjects are not high-risk subjects and the prediction pipeline was purely

trained for separating HR-neg from HR-ASD subjects.

2.4 Prediction pipeline cross-validation classification

The predictive power of the proposed two-stage HR-ASD/HR-neg pipeline is evaluated using a

10-fold cross-validation strategy. In particular, the HR-ASD and HR-neg subjects are first

combined into one data set, and then partitioned into 10 different folds, where each fold contains

high dimension feature vectors of randomly selected HR-ASD and HR-neg subjects.

Furthermore, the ratio of HR-ASD to HR-neg subjects was maintained across each fold. The

prediction pipeline (including the DL network generation) is fully re-trained in all its steps using

the high dimension feature vector data in 9 of the 10 folds (i.e. a deep network was trained using

9 of the 10 folds) and then tested using the high dimension feature vector data in the remaining

(or left out) fold. This iterative process terminates when each fold has been selected as the test

one. Using the confusion matrix (TP=true positive, FP=false positive, FN=false negative, and

TN=true negative) results in each test fold, the mean and standard error is reported for the

specificity, sensitivity, positive predictive value, negative predictive value, and accuracy

measures, where sensitivity (SEN) = TP/(TP+FN), specificity (SPE) = TN/(FP+TN), positive

predictive value (PPV) = TP/(TP+FP), negative predictive value (NPV) = TN/(TN+FN), and

accuracy (ACC) = (TP+TN)/(TP+FN+FP+TN). Table 3 in the main text shows the results of this

cross-validation using our prediction pipeline.

Comparison with other classification methods

For comparison purposes, using a smaller portion of the dataset (N=133), we compared the

proposed two-stage prediction pipeline approach with 3 other approaches: 1) a traditional DBN

that does not include a separate classification step, 2) two-stage approach that uses a least

squares linear regression algorithm (or sparse learning algorithm, SL) instead of a deep learning

one, and 3) two-stage approach that uses principle component analysis (PCA) for dimensionality

13

reduction. Note: The smaller dataset only includes quality controlled imaging data up to August

2014, and was based purely on the imaging data available at the time of comparison analysis.

Deep classification network

It is noteworthy that the dimensionality reduction and the classification stages in the proposed

pipeline could be combined into one stage creating a traditional deep classification network

(DCN) as shown in Figure 7.

Figure 7. This figure demonstrates how the prediction pipeline is reconfigured to create a deep

classification network. This network does not include a separate classification stage (unlike

shown in Figure 2).

In this approach, the number of nodes in the last layer, i.e. 𝜙1 and 𝜙2 in the example DCN

shown in Figure 2, represent the diagnosis label (such as HR-ASD and HR-neg). Specifically,

after the deep network is trained (see Non-linear dimension reduction section) an unknown

high dimension feature vector is input into the deep network, and if the subject is HR-ASD then

𝜙1 > 𝜙2, otherwise the subject is ASD-neg. In this approach, the binary operation, deep

learning parameters, and four-layer architecture outlined in the non-linear dimension reduction

section was performed, i.e. exactly without any modifications.

Sparse learning and SVM classifier

The elastic net algorithm15 is used to find 𝒙 a sparse weight vector that minimizes

min
𝑥

1

2
‖𝐴𝑥 − 𝑦‖ +

𝜌

2
‖𝑥‖2

2 + 𝜆‖𝑥‖1

where 𝜆‖𝑥‖1is the 𝑙1 regularization (sparsity) term,
𝜌

2
‖𝑥‖2

2 is the 𝑙2 regularization (over-fitting)

term. For this approach no binary operation is performed on matrix A, instead values are

normalized as follows: 𝐴(𝑖, 𝑗) = (𝑎𝑖𝑗 − 𝜇𝑗) 𝜎𝑗⁄ where 𝑎𝑖𝑗 is the feature j for subject i, 𝜇𝑗 is the

mean value for column vector j in matrix A, and 𝜎𝑗 is the standard deviation for column vector j

14

in matrix A. The above equation is optimized using the LeastR function in the Sparse Learning

with Efficient Projections software package*3. After optimization, 𝒙 has weight values in [0 1]

where 0 indicate network nodes that do not contribute to the clinical outcome, and weight values

greater than zero indicate network nodes that do contribute to the clinical outcome. In general, 𝒙

is referred to as the sparse representation of training data set. Lastly, in our approach each

weight value in 𝒙 greater than zero is set to one, therefore the resulting sparse representation is a

binary mask, that is, the network node is turned on (value of 1) or turned off (value of 0). A new

𝑛 𝑥 𝑑 sparse training matrix �̂� = {�̂�1, �̂�1, … , �̂�𝑛} is created, where row vector �̂�𝑖 =

(𝑎𝑖1𝑥1, 𝑎𝑖2𝑥2, … , 𝑎𝑖𝑑𝑥𝑑). Lastly, the row vectors in the newly created sparse training matrix by

the along with the binary training labels {𝒚𝑖, 𝑖 = 1, … , 𝑛} are then used to train a two-class linear

kernel SVM classifier.

The sparse learning parameters 𝜆 and 𝜌 were set to 0.5 and 1.0 respectively. In each fold, the

sparse learning algorithm selected approximately 120 features from 315, which accounts for a

60% feature reduction. For all the reported results, a linear kernel SVM classifier was trained,

and default parameters were used.

PCA and SVM classifier

In order to further compare our results to standard Principal Component Analysis (PCA), we

performed the following analysis:

1. For PCA no binary operation is performed on matrix A, yet normalization is still

necessary. Input values are normalized as follows: 𝐴(𝑖, 𝑗) = (𝑎𝑖𝑗 − 𝜇𝑗) 𝜎𝑗⁄ where 𝑎𝑖𝑗 is

the feature j for subject i, 𝜇𝑗 is the mean value for column vector j in matrix A, and 𝜎𝑗 is

the standard deviation for column vector j in matrix A.

2. Because there are fewer observations than features PCA was computed via singular value

decomposition (as is standard in this case), [U,S,V]=svd(A), is performed on A that in

turn finds a matrix of right singular vectors (U), a matrix of left singular vectors (V), and

the singular value matrix (S).

3. Two different dimension reductions approaches are used: 1) Only include the largest

eigenvalue (i.e. keep λ1 and the remaining singular values are set to zero) and 2) the

relative variance of each eigenvalue is computed and only eigenvalues greater than 1% of

the total variation are kept, and all other eigenvalues are set to zero. For option (2), the

largest 101-109 eigenvalues were selected in the 10-fold analysis.

Lastly, the PCA loads for the reduced set of eigenmodes are computed, and used along with the

binary training labels {𝒚𝑖, 𝑖 = 1, … , 𝑛} to train a two-class linear kernel SVM classifier. For all

*3 http://www.public.asu.edu/~jye02/Software/SLEP

15

the reported results, a linear kernel SVM classifier was trained, and default parameters were

used.

Comparison results

Table 1 in Supplementary Information shows the results of the 10-fold cross-validation of HR-

ASD vs HR-neg using the different methods discussed above. Specifically, DL+SVM is the

proposed prediction pipeline; SL+SVM uses sparse learning (SL) for dimensionality reduction

(i.e. feature selection) instead of DL; a deep classification network (DCN) that does not include a

separate classification stage (see Figure 8), and the two proposed PCA+SVM classifications.

Figure 8. Pipeline prediction pipeline reconfigured to become a deep classification network,

i.e., prediction pipeline that does not include a separate classification stage

The total number of subjects in the data set is 133 (27 HR-ASD subjects and 106 HR-neg

subjects). The data set was partitioned into 10-folds where each fold has 12, 13, or 14 randomly

selected subjects. Furthermore, the ratio of HR-ASD to HR-neg subjects in each fold is kept

constant, or as similar as possible, to control the base rate and maintain the consistency of the

learned decision boundary/space. Lastly, the binary diagnostic training labels used to train the

prediction pipeline (i.e. deep network and SVM classifier) are 0=HR-ASD and 1=HR-neg.

The proposed prediction pipeline outperforms the other classification approaches as can be seen

in Table 1 below.

Table 1. Results of 10-fold cross validation procedure on a reduced dataset (N=133).

Prediction Model AVE STD ERR AVE STD ERR AVE STD ERR AVE STD ERR AVE STD ERR

DL+SVM 82% 3.22% 95% 0.93% 78% 3.87% 94% 0.97% 91% 0.92%

SL+SVM 48% 4.21% 92% 1.42% 77% 4.22% 75% 3.29% 75% 3.16%

DCN 62% 4.46% 90% 0.16% 62% 1.61% 89% 1.47% 83% 1.17%

PCA+SVM (Approach 1) 22% 3.75% 81% 1.20% 30% 4.66% 74% 1.84% 65% 1.87%

PCA+SVM (Approach 2) 19% 3.91% 80% 1.41% 27% 5.02% 72% 1.89% 63% 2.14%

ACCPPV NPV SENS SPEC

16

Key: DL = deep learning, SVM = support vector machine (classifier), SL = sparse learning, DCN = deep classification

network, PCA – principal component analysis, PPV = positive predictive value, NPV = negative predictive value, Sens =

sensitivity, Spec = specificity, ACC = accuracy

2.5 HR-ASD/HR-neg pipeline prediction analysis using random diagnosis labels

Furthermore, we performed permutation based random diagnosis evaluation to check whether

our prediction pipeline results are optimistically biased. We applied the above described 10-fold

cross validation to randomly scrambled diagnosis labels via standard permutation analysis (both

the deep network and the SVM classifier were retrained at every permutation). The random label

scrambling was achieved using the Matlab random permutation (randperm) function.

We employed 1,000 permutations, and the results for each measure (PPV, NPV, Accuracy,

Sensitivity, and Specificity, average values of the 10-fold analysis) is visualized in the histogram

plots shown in Figure 9.

Figure 9. Histogram plots of permutation analysis

As seen in in Figure 9, the range of values over the 1,000 runs for the: 1) PPV measure was

between 5 and 12 percent, 2) the NPV measure was between 40 and 55 percent, 3) the Accuracy

measure was between 15 and 26 percent, 4) the Sensitivity measure was between 20 and 30

percent, and 5) the Specificity measure was between 18 and 26 percent. These results suggest the

reported performance of our HR-ASD/HR-neg pipeline is identifying a pattern of longitudinal

DL+SVM

DCN

PCA+SVM (Approach 1)

PCA+SVM (Approach 2)

SL+SVM

AVE Legend (values reported in Table 5)

µo= 7

µo= 50 µo= 19

µo= 25 µo= 22
µo = the histogram bin that has the highest
count #.

17

surface area, cortical thickness, ICV, and sex features that are expressed in HR-ASD subjects

and that cannot be re-created using random labels, as not a single random permutation reached

comparable classification performance. Furthermore, given the average (AVE) and standard

error (STD ERR) values reported in Table 1 above for each performance measure (PPV, NPV,

SENS, SPEC, ACC), and the 𝑢𝑜 values shown in Figure 9, the resulting performance measure p-

values for our method DL+SVM when test statistic 𝑡𝑜 = 𝐴𝑉𝐸 − 𝑢𝑜 𝑆𝑇𝐷 𝐸𝑅𝑅⁄ is used would

comfortably reject the null hypothesis 𝐻𝑜 at a 0.0001 threshold. This strongly suggests the

DL+SVM classification results are not due to chance.

2.6 Identifying high dimension features that contribute to prediction performance

Identifying which longitudinal CSA, CTH, ICV, and sex features defined in the high dimension

feature vector have the greatest contribution (and the least contribution) to the LDC output by the

fine-tuned DL network is a very challenging problem for deep non-linear dimensionality

reduction approaches. To better understand how the input features are related to those defined in

the LDC the following two approaches are used:

 Approach 1 for our DL dimensionality reduction: Using the weight matrices in the

fully trained DL network �̅� = {�̅�1, �̅�2, … , �̅�𝑘} we work backwards through the median

DL network identifying only those nodes in the previous layer (e.g., 𝑙 − 1) that represent

greater than 50% of the weight contribution layer 𝑙. Figure 10 illustrates this process,

using a simple example 3-layer network.

 Approach 2 for the linear sparse learning approach: As shown in Table 1 above,

since the sparse learning approach outperformed the PCA approach, we investigated also

the features that were selected in that sparse learning. For this purpose we used an elastic

net regularization, i.e. min
𝑥

1

2
‖𝐴𝑥 − 𝑦‖ +

𝜌

2
‖𝑥‖2

2 + 𝜆‖𝑥‖1, the diagnosis labels y, and the

trained two-stage sparse learning pipeline as follows:

o Sequentially adjust the 𝜆 parameter defined in the 𝑙1regularization (sparsity) term

between the values of 0.1 and 1.0 at increments of 0.1. For each increment, the

learned sparse representation was applied to each high dimension feature vector in

the test data set, and then the diagnosis labels for each sparse high dimension

feature vector is predicted using trained two-stage pipeline and the PPV, NPV,

and accuracy scores were stored.

o The 𝜆 parameter that produced the highest PPV, NPV, and accuracy scores was

then retrieved along with the learned sparse representation. In general, the

selected features in the retrieved sparse representation provide insight about

which high dimension longitudinal features contribute most to prediction

performance.

18

Figure 10. Example procedure illustrating the identification of nodes that contribute most to the

prediction performance.

The results in Table 2 below show the top 40 features found by Approach 1 (non-linear deep

learning), and the results in Table 3 below show the top 40 features found by Approach 2 (linear

sparse learning).

19

Table 2. Top 40 features contributing to the DL dimensionality reduction

Measure Month Region Description

1 CSA 6 24 Right Superior frontal gyrus: medial

2 CSA 6 58 Right Postcentral gyrus

3 CSA 6 23 Left Superior frontal gyrus: medial

4 CSA 6 57 Left Postcentral gyrus

5 ICV 6 N/A N/A

6 CSA 6 61 Left Inferior parietal: but supramarginal and angular gyri

7 CSA 12 26 Right Superior frontal gyrus: medial orbital

8 CSA 12 55 Left Fusiform gyrus

9 CSA 12 10 Right Middle frontal gyrus orbital part

10 CSA 6 62 Right Inferior parietal: but supramarginal and angular gyri

11 CSA 12 47 Left lingual gyrus

12 CSA 12 21 Left Olfactory Cortex

13 CTH 12 67 Left Precuneus

14 CSA 12 89 Left Inferior temporal gyrus

15 ICV 12 N/A N/A

16 CTH 6 36 Right Posterior cingulate gyrus

17 CSA 12 14 Right Inferior frontal gyrus: triangular part

18 CTH 6 23 Left Superior frontal gyrus: medial

19 CTH 12 90 Right Inferior temporal gyrus

20 CSA 12 33 Left Median cingulate and paracingulate gyri

21 CSA 12 61 Left Inferior parietal: but supramarginal and angular gyri

22 CSA 12 6 Right Superior frontal gyrus: orbital part

23 GA 12 18 Right Rolandic operculum

24 GA 12 22 Right Olfactory Cortex

25 GA 12 68 Right Precuneus

26 CTH 6 11 Left Inferior frontal gyrus: opercular part

27 GA 12 84 Right Temporal pole: superior temporal gyrus

28 CSA 12 90 Right Inferior temporal gyrus

29 CTH 6 79 Left Heschl gyrus

30 CSA 12 27 Left Gyrus Rectus

31 CTH 6 80 Right Heschl gyrus

32 CSA 6 47 Left Lingual gyrus

33 CSA 6 34 Right Median cingulate and paracingulate gyri

34 CSA 12 25 Left Superior frontal gyrus: medial orbital

35 CSA 6 55 Left Fusiform gyrus

36 CTH 12 39 Left Parahippocampal gyrus

37 CTH 12 65 Left Angular gyrus

38 CTH 6 35 Left Posterior cingulate gyrus

39 CSA 12 34 Right Median cingulate and paracingulate gyri

40 CTH 12 81 Left Superior temporal gyrus

20

Table 3. Top 40 features contributing to the linear sparse learning classification

Measure Month Region Description

1 CSA 6 24 Right Superior frontal gyrus: medial

2 CSA 6 23 Left Superior frontal gyrus: medial

3 CSA 6 58 Right Postcentral .gyfus

4 CSA 6 57 Left Posteentral gyrus

5 CSA 6 61 Left Inferior parietal: but supramarginal and angular gyri

6 CSA 6 62 Right Inferior parietal; but supramarginal and angular gyri

7 CTH 6 27 Left Gyrus Rectus

8 CSA 6 34 Right Median cingulate and paracingulate gyri

9 ICV 6 N/A N/A

10 CSA 6 55 Left Fusiform gyrus

11 CSA 6 59 Left Superior parietal gyrus

12 CSA 6 47 Left Lingual gyrus

13 CTH 6 83 Left Temporal pole: superior temporal gyrus

14 CSA 6 40 Right Parahippocampal gyrus

15 CSA 12 56 Right Fusiform gyrus

16 CTH 6 43 Left Calcarine fissure and surrounding cortex

17 CTH 6 34 Right Median cingulate and paracingulate gyri

18 CSA 12 34 Right Median cingulate and paracingulate gyri

19 CSA 6 49 Left Superior occipital gyrus

20 CTH 6 82 Right Superior temporal gyrus

21 CSA 6 4 Right Superior frontal gyrus; dorsolateral

22 CTH 6 51 Left Middle occipital gyrus

23 CTH 6 84 Right temporal pole: superior temporal gyrus

-24 CSA 6 89 Left Inferior temporal gyrus

25 CSA 6 48 Right Lingual gyrus

26 ICV 12 N/A N/A

27 CSA 6 68 Right Precuneus

28 CSA 12 68 Right Precuneus

29 CSA 6 28 Right Gyrus Rectus

30 CSA 6 39 Left Parahippocampal gyrus

31 CTH 6 56 Right fusiform gyrus

32 CTH 6 86. Right Middle temporal gyrus

33 CTH 6 39 Left Parahippocampal gyrus

34 CTH 6 90 Right Inferior temporal gyrus

35 CTH 6 6 Right Superior frontal gyrus: orbital part

36 CSA 6 1 Left Precentral gyrus

37 CTH 6 80 Right Heschl gyrus

38 CTH 6 22 Right Olfactory cortex

39 CSA 12 18 Right Rolandic operculum

40 CSA 6 83 Left Temporal pole: superior temporal gyrus

21

Comparing these results from the linear sparse learning classification (Extended Data Figure 2)

to the cortical regions showing significant expansion in surface from 6 to 12 months in HR-ASD

(see Main Text Figure 3), the left inferior temporal gyrus is observed in the contribution analysis

as well as in the significant expansion map. In contrast, the cuneus and middle occipital gyrus

regions observed in the significant surface area expansion map are not part of the top 40

contributing features in the DL dimensionality reduction. As mentioned above, identifying the

most relevant features in as DL dimensionality reduction is difficult. Any current method to

deduce such most contributing features will only partially capture the nature of the DL

dimensionality reduction. Thus the absence of the cuneus and middle occipital gyrus features

from this particular contribution analysis does not consequently mean that those features are not

relevant for the DL dimensionality reduction.

References

1. Kim, S. H., et al. Adaptive prior probability and spatial temporal intensity change

estimation for segmentation of the one-year-old human brain. J Neurosci Methods. 212(1),

43–55 (2013).

2. Tustison, N. J., et al. N4ITK: improved N3 bias correction. IEEE Transactions on Medical

Imaging. 29(6), 1310–1320 (2010).

3. Fonov, V., et al. Improved precision in the measurement of longitudinal global and regional

volumetric changes via a novel MRI gradient distortion characterization and correction

technique. Computer Vision - Accv 2006, Pt I, 6326, 324–333. (2010).

4. Fonov, V., et al. Unbiased average age-appropriate atlases for pediatric studies.

NeuroImage. 54(1), 313–327 (2011).

5. Shaw, P. et al. Development of cortical surface area and gyrification in attention-

deficit/hyperactivity disorder. Biol Psychiatry. 72(3), 191-197 (2012).

6. Shaw, P. et al. Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci.

28(14), 3586-94 (2008).

7. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a

macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage.

15(1), 273-289 (2002).

8. Avants, B. B., et al. A reproducible evaluation of ANTs similarity metric performance in

brain image registration. NeuroImage. 54(3), 2033–2044. (2011).

9. Hazlett, H.C, et al. Early brain overgrowth in autism associated with an increase in cortical

surface area before age 2 years. Arch Gen Psychiatry. 68(5): 467-76 (2011).

10. Fishbaugh, J., Durrleman, S., Piven, J., Gerig, G. A framework for longitudinal data

analysis via shape regression. Proc. SPIE 8314, Medical Imaging 2012: Image Processing.

22

11. Giedd, J.N., et al. Brain development during childhood and adolescence: a longitudinal

MRI study. Nature Neuroscience. 2: 861-863 (1999).

12. Hinton, G.E., Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural

Networks. Science. 313 (5786): 504-507 (2006).

13. Hoo-Chang Shin, M. R. Orton, D. J. Collins, S. J. Doran, M. O. Leach, "Stacked

Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot

Study Using 4D Patient Data," IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1930-1943 (2013).

14. Dan C. Ciresan, Alessandro Giusti, Luca M. Gambardella, Jurgen Schmidhuber, "Mitosis

Detection in Breast Cancer Histology Images with Deep Neural Networks", MICCAI 2013,

Nagoya, Japan.

15. Zou, H., & Hastie, T. Regularization and variable selection via the elastic net. J of the

Royal Statistical Society. Series B, Statistical Methodology. 67(2), 301–320. (2005).

16. Li, Train, Thung, Ji, Shen, Li, “Robust deep learning for improved classification of

AD/MCI patients”, Machine Learning in Medical Imaging (MLMI) Workshop, Lecture

Notes in Computer Science, Vol 8679, pp 240-247, 2014.

17. Suk, Shen, “Deep learning-based feature representation for AD/MCI classification” ,

Medical Image Computing and Computer Assisted Intervention (MICCAI), Lecture Notes

in Computer Science, Vol 8150, pp 583-590, 2013.

18. Lee, Lagman, Pham, Ng, “Supervised feature learning for audio classification using

convolutional deep belief networks”, Advances in neural information processing systems

(NIPS), 2009.

19. Lee, Gross, Ranganath, Ng, “Convolutional deep belief networks for scalable unsupervised

learning of hierarchical representations”, 26th Annual International conference on Machine

Learning (ICML), pp 609-616, 2009.

20. Hao, Raiko, llin, Karhunen, “Gated Boltzmann Machine in Texture Modeling”,

International Conference on Artificial Neural Networks and Machine Learning, (ICANN),

Lecture Notes in Computer Science, Vol 7553, pp 124-131, 2012.

21. Huang, Lee, Learned-Miller, “Learning hierarchical representations for face verification

with convolutional deep belief networks”, IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 2518-2525, 2012.

22. Gan, Li, Zhai, Liu, “Deep self-taught learning for facial beauty prediction”,

Neurocomputing, Vol. 144, pp. 295-303, 2014.

23. Hinton, G., “A Practical Guide to Training Restricted Boltzmann Machines”, UTML TR

2010–003.

