Characterization of the Ruler Protein Interaction Interface on the Substrate Specificity Switch Protein in the *Yersinia* Type III Secretion System

Oanh Ho¹, Per Rogne¹, Tomas Edgren², Hans Wolf-Watz², Frédéric H. Login^{2#*} & Magnus

Wolf-Watz^{1*}

¹ Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
² Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
[#] Current address: Department Clinical Medicine, Aarhus University, Aarhus, Denmark

Running title: YscP binding interface on YscU

^{*} To whom correspondence should be addressed: Associate Professor. Magnus Wolf-Watz; Department of Chemistry, building KBC, A3 Linnaeus väg 10, Umeå University, 90187 Umeå, Sweden; email: <u>magnus.wolf-watz@umu.se</u> or; Dr. Frédéric H. Login; Department Clinical Medicine, Bartholins Allé 6, building 1245, Aarhus University, 8000 Aarhus C, Denmark; email: <u>frederic.login@clin.au.dk</u>

KEYWORDS:

Yersinia pseudotuberculosis; Type III secretion system (T3SS); nuclear magnetic resonance (NMR); secretion; gram-negative bacteria; protein conformation; YscU; YscP; YscI

SUPPORTING INFORMATION

Supplemental Figure 1: Similarity of YscP and its homologs. (A) Sequence alignment of the YscP homologues (FliK and PscP) Sequence alignment of YscP homologues. MAFFT sequence alignment (1) of YscP homologues from different T3SS-containing bacteria. The alignment contains YscP from *Yersinia pseudotuberculosis*, YscP* from *Yersinia enterocolitica*, FliK from *Shigella flexneri*, FliK* from *Salmonella typhimurium* and PscP from *Pseudomonas aeruginosa*. The amino acids are numbered according to their positions in YscP from *Yersinia pseudotuberculosis*. Conserved residues are highlighted in red, and similar residues are shown in yellow. (B) The YscP homologues FliK (blue) and PscP (green) have a conserved "ball-and-chain" architecture with a flexible N-terminal segment and a folded C-terminal domain. The structural alignment was created using the DALI server (2) based on the NMR structure of FliK from *Salmonella typhimurium* (PDB code: 2RRL) (3) and the crystal structure of PscP (green) from *Pseudomonas aeruginosa* (PDB code: 5CUK) (4).

Α				
YscP	n 10 20 30 40 50 60 70 80 90 100 100 100 MNK <mark>I</mark> TT-PRSPLEPEYQP <mark>I</mark> GKPHHALQ <mark>A</mark> CVD <mark>HEQAL</mark> LHNNKGNCHPKEESLKPVRHDLGKREG <mark>Q</mark> KGDGLRAHA H LA <mark>A</mark> TSQFGRKEVGLKPQHNHQNNHDFNLSP <mark>IAE</mark> GATNRA			
YscP* PscP	MNKITTRSPLEPEYQPUGKLHHDLQIRADHEQALLHNNKGNRHPKEEPRRPVRPHDLGKKEGQKGDGLRAHAHLEATFQPGRKEVGLKPQHNHQNNHDLNLSPIAEGVTNRA MLK <mark>L</mark> NAVDTAPLVSSDTLAP <mark>H</mark> PPLRAQQI <mark>H<mark>EQAL</mark>PAHRPPAPRPFDKGDETTEAAATADA<mark>B</mark>TSTP<mark>LAD</mark></mark>			
FliK FliK*	MIR <mark>L</mark> APLITADVDTTT- <mark>P</mark> EGKASDA-QD <mark>ELTLE</mark> SEALAGE-TTTDKAAPQLLVATDKP-TTKGETLVSVATOKP-TTKGETUS MIT <mark>L</mark> PQLIT <mark>T</mark> DTDMTAGITSGKTTGS <mark>-</mark> ED <mark>ELAL</mark> AGALGAD-GAQGKDARITLADLQAAGGKLSK <mark>B</mark> LL-TQHGE <mark>H</mark> GQ <mark>A</mark> VKIAD			
YscP				
YscP*	HLY QDSRFDDRVES <mark>IINALMPLAPFLKGVTCELGT</mark> SSESPCEPSGHDELFVQQ <mark>S</mark> PIDSVQPVQLNTKPTVQPLNPAADGAEVIVW <mark>S</mark> VGRETPASIAKNQRDSRQKRLAEELPLH- 			
FliK FliK*	AQADLLIPVDETLPVINDEQSTSTPLTTAQIMTLAAVADKNTTKDEKADDLNEDVTASLSALFAMLPGFDNTPKVTDAPSTVLPA			
	.230			
YscP YscP	-QKALPEICPPAVSATPDDHLVARWCATPVTEVA <mark>EKSA</mark> RFPYKATVQSEQLDM <mark>TELADRSQ</mark> H			
PscP FliK	SAPPVDEPPL <mark>V</mark> PVSSHPQIAGR <mark>T</mark> HERP <mark>Q</mark> P <mark>GP</mark> GFPAKTA <mark>AEVA</mark> PTAQASVQA-SPPAPSVQA-SPPAP			
FliK*	DMPSAPQEETHT <mark>I</mark> SFSEHEKGKTEASL <mark>A</mark> RASD <mark>DRAT</mark> GPALT <mark>P</mark> L <mark>WVAA</mark> AA <mark>TS</mark> AKVEVDSPPAPKVEVDSPPAP			
YscP	290			
PscP	-TAGGEGRGEERROPGETDPSAL PDDQAPVPL AMQT - DRLLARLLASSGSRPLPLADLARLLAVGGRIQVASAAESHAARLQVRLPQLAVEVQVLHGHGQLQLE			
FliK*	VTAAASYDIJEnQUQP-NA			
YscP	400410420			
YscP PscP	LIASQEALRILAQGSYDLEELERIARIEPTQLD-QASGDSE <mark>DESRQ</mark> KRHVYEEWEARE			
FliK FliK*	MISPHQHVRAALEAALPVI-TULAESGIULGQSNISGES SGQQQAASQQQQSVTANHEPLAGEDDDTLPVPVSLQGRVTGNSGVDIFA MVSPHSHVRAALEAALPMI-TULAESGIULGQSSISSES <mark>H</mark> AGQQQSSS- <mark>QQQ</mark> SSS-QQHTDAFGAEDDIALAAPASLQAAARGNGAVDIFA			
D				
D				
	2			
m S				
Z YU,				

Supplemental Figure 2: Limited trypsin proteolysis of YscP. (A) SDS-PAGE of YscP fragments produced by trypsin proteolysis. A 22μ M solution of YscP was mixed with trypsin at molar ratios of 1:100, 1:1000 and 1:10000 at 4 °C in 25mM Tris (pH 7.4) containing 150mM NaCl and 2mM DTT. Aliquots were taken at 1, 5, 10 or 20 minutes, and proteolysis was terminated by adding SDS-PAGE loading buffer and heating the samples to 90 °C. The gel fragments cut out for mass spectroscopy are labeled a, b, c and d. (B) LC-MS/MS results for the selected SDS-PAGE bands. The matched peptides are shown in red. (C) Summary of sequence coverage from different bands.

Supplemental Figure 3: Molecular weight of YscP constructs estimated from size exclusion chromatography. Size exclusion chromatogram of YscP (black), YscP³⁴²⁻⁴⁴² (red) and YscP²⁰³⁻⁴⁴² (green) performed on a 26/60 Sepharyl S-100HR column. YscP was eluted as a monomer (elution volume of 110 ml). The other peaks corresponded to protein contaminants from the purification process. YscP³⁴²⁻⁴⁴² and YscP²⁰³⁻⁴⁴² were eluted in the column void volume (95 ml), suggesting that they formed high molecular weight multimers or aggregates.

Supplemental Figure 4: NMR spectra of YscP³⁴²⁻⁴⁴² and YscP²⁰³⁻⁴⁴⁵. (A) ¹H-¹⁵N HSQC spectrum of ¹⁵N labeled YscP³⁴²⁻⁴⁴². (B) ¹H-¹⁵N HSQC spectrum of ¹⁵N labeled YscP²⁰³⁻⁴⁴⁵. The NMR spectra were acquired at a protein concentration of 50 μ M in PBS at 25 °C.

Supplemental Figure 5: Mutation of alanine 335 to asparagine in YscU abolishes YscP binding. (A) Chemical shift perturbations (ppm) between free ¹⁵N-labeled $YscU_C^{A335N}$ and ¹⁵N-labeled $YscU_C^{A335N}$ in complex with YscP were calculated with equation [1] and are plotted against the $YscU_C$ residue number. The threshold used to define significant chemical shift changes is indicated by a red line. The residues with the largest chemical shift perturbations is green while YscP binding residues in wild-type YscU_C are marked as red. (B) The residues with the largest chemical shift perturbations from panel A (I267, L280, D323 and N345) are shown in green on the YscU_C structure. The mutated position, 335, is shown in red.

Supplemental Figure 6: Dissociation kinetics of $YscU_C$ in the absence and presence of YscP. Dissociation kinetics of $YscU_C$ in the absence of YscP (black) and with $YscU_C$: YscP molar ratios of 1:0.5 (red), 1:1 (green), or 1:2 (blue) at pH 7.4 monitored by 1D ¹H NMR-spectroscopy at 37 °C in PBS with 1 mM TCEP. The solid lines represent fits to single exponential decay functions. Raw data were obtained by integration of the methyl resonances of $YscU_C$.

Supplemental Figure 7: YscP binding interferes with auto-cleavage of $YscU_C^{P264A}$ showing by immunoblot analysis of the proportion of full-length $YscU_C^{P264A}$ and $YscU_C^{P264A/A335N}$ in the samples after 0 (blue), 1 (orange), 2 (grey) days' incubation at 37 °C. Each sample generates 2 bands in the western blot (see Fig 6) SDS-PAGE, with the top band corresponding to full-length $YscU_C$ and the bottom band to the fragment $YscU_{CC}$. The relative abundance of the full-length protein ($YscU_C$ variants) was calculated by dividing the full-length protein integration in a given image by that for the total protein. Values shown in the graphs are means \pm the standard deviation of the mean (the experiment was repeated 4 times).

Supplemental Figure 8: Sequential alignment of YscI homologs. MAFFT sequence alignment (1) of YscI (*Yersinia pseudotuberculosis*) and the homologues MxiI (*Shigella flexneri*) and PrgJ (*Salmonella typhimurium*). The amino acids are numbered according to their positions in YscI of *Yersinia pseudotuberculosis*. Conserved residues are highlighted in red and similar residues are shown in yellow. The secondary structure of YscI was predicted using DSSP and PSIPRED (5,6) and is indicated by the letter "h".

Yscl	MPNIE AQADEVI TTLEELGPALPTTDQIMRFDAAMSE TQGLGHELLKEVSDIQKSFKTVKSDLHTKLAVSVDNEND MLMGMSLIRITIQEELIA
Mxil	MNYYYPVNQVD IKASDFQSQIISSLE VVSAKY-DIKMDTDIQVSQIMEMVSNPESLNESS AKLSTTLSNYSIGVSLAG
PrgJ	MSIAT VPENAV- GQAVNIRPMSTDIVSLD RLLQAFSGSAIATAVDKQTITNRIEDPNLVTDHNELAISJEMISDYNLYVSMVS
Yscl Mxil PrgJ	hbbbbbbbbbbbb KTAGRMSQNVETLSKGG TLARKTVSAVETLLKS- TLTRKGVGA <mark>VETL</mark> LRS-

Supplemental Figure 9: YscP and YscI do not bind to the same binding site on YscU_C. (A) Overlay of ¹H–¹⁵N HSQC spectra of ¹⁵N-labeled YscU_C^{wt} in the absence (blue) and presence (red) of YscI at a protein concentration of 50 μ M in PBS, TCEP 1 mM at 37 °C. (**B**) Overlay of ¹H–¹⁵N HSQC spectra of ¹⁵N-labeled YscU_C^{A335N} in the absence (blue) and presence (red) of YscI at a protein concentration of 50 μ M in PBS, TCEP 1 mM at 37 °C.

SUPPLEMENTAL REFERENCES:

- 1. Katoh, K., Misawa, K., Kuma, K. i., and Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* **30**, 3059-3066
- 2. Holm, L., and Rosenström, P. (2010) Dali server: conservation mapping in 3D. *Nucleic Acids Research* **38**, W545-W549
- 3. Mizuno, S., Amida, H., Kobayashi, N., Aizawa, S.-I., and Tate, S.-i. (2011) The NMR Structure of FliK, the Trigger for the Switch of Substrate Specificity in the Flagellar Type III Secretion Apparatus. *Journal of Molecular Biology* **409**, 558-573
- 4. Bergeron, J. R., Fernandez, L., Wasney, G. A., Vuckovic, M., Reffuveille, F., Hancock, R. E., and Strynadka, N. C. (2016) The Structure of a Type 3 Secretion System (T3SS) Ruler Protein Suggests a Molecular Mechanism for Needle Length Sensing. *The Journal of biological chemistry* **291**, 1676-1691
- 5. Kabsch, W., and Sander, C. (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers* **22**, 2577-2637
- 6. Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices1. *Journal of Molecular Biology* **292**, 195-202

SUPPLEMENTAL TABLE

Strains, plasmids,	or Description ^a	Reference			
<i>E</i> coli strains					
BI 21	IPTG-inducible T7 RNA polymerase	Studier Moffat			
Top 10	Commercial one shot competent cells	Invitrogen			
PI 21 (DE2) pI veS	IPTC inducible T7 PNA polymorase Cm ¹	Studior Moffet			
BL21 (DL3) pLyss	If 10-inducible 17 KivA polyinerase Chi	Studier, Mollat			
Y. pseudotuberculosis					
strains					
YPIII(pIB102)	wild-type, parental strain, Km ^r				
YPIII(pIB75)	<i>ysc</i> U null strain, Km ^r	Levander et al., 2002			
YPIII(pIB69)	<i>ysc</i> P null strain, Km ^r	Levander et al.,			
_		2002			
YPIII ⊿yscP, ⊿yscU	Double $\Delta yscP$, $\Delta yscU$ strain	Edquist et al., 2003			
Plasmids					
pGEX-6P3	Commercial vector with N-term. GST-fusion	GE Healthcare			
	Cb ^r				
pBADmycHis A	Commercial vector for L-ara induced	Invitrogen			
	expression Cb ^r	C			
pET20b(+)	T7-promoter commercial. C-terminal His6 tag Cb ^r	Qiagen			
pETMBP-1a	Commercial vector with N-terminal His tag	GE Healthcare			
pNIC28-Bsa4	Commercial vector with N-terminal His tag	Opher Gileadi			
Constructs					
Hise-MBP-YscP ³⁴²⁻⁴⁴²	$vscP^{342-442}$ in pETMBP-1a	This study			
His-Ysc $P^{203-445}$	$v_{sc}P^{203-445}$ in pNIC28-Bsa4	This study			
YscI-Hise	vscI full length in pET20b(+)	This study			
GST-YscP	vscP full length in pGEX-6P3	This study			
YscU	vscU full length in pBADmycHis A	Frost <i>et al.</i> 2012			
YscU ^{L280N}	$v_{sc}U^{L280N}$ in pBADmycHis A	This study			
YscU ^{E332A}	$vscU^{E332A}$ in pBADmycHis A	This study			
YscU ^{A335N}	$v_{sc}U^{A335N}$ in pBADmycHis A	This study			
YscU ^{E336A}	$v_{sc}L^{E336A}$ in pBADmycHis A	This study			
YscU ^{A268F}	vscU ^{A268F} in pBADmycHis A	This study			
YscU ^{V292T}	$vscU^{V292T}$ in pBADmycHis A	This study			
YscU ^{A268F, A335N}	vscU ^{A268F, A335N} in pBADmycHis A	This study			
YscU ^{V292T, A335N}	$v_{sc}U^{V292T, A335N}$ in pBADmycHis A	This study			
GST-YscUc	vscUc in pGEX-6p-3	Frost et al 2012			
GST-YscUc ^{A335N}	$vscUc^{A335N}$ in pGEX-6p-3	This study			

Supplemental Table S1: Bacterial strains and plasmids used in this study

^{*a*} Km^r: kanamycin resistance; Cb^r: carbenicillin resistance; Cm^r: chloramphenicol

Primer name	Primer sequence (5'- 3')	Restriction sites			
Primers for sub-cloning					
fw_pGEX_yscU _C	cgc <u>ggatcc</u> tactatcaatatattaaggaactta	BamHI			
rv_pGEX_yscU _C	tcc <u>ccggg</u> gttaattagctaccaccactgatgag	SmaI			
fw_pGEX_yscP ²⁰³⁻⁴⁵⁵	tacttccaatccatggaaactccggccagtatag	BsaI			
rv_pGEX_ yscP ²⁰³⁻⁴⁵⁵	tatecacetttactgtca ttettcagecteceactee	BsaI			
fw_pGEX_yscP ³⁴²⁻⁴⁴²	gcttccatgggcgcgaccaggctggc	NcoI			
rw_pGEX_yscP ³⁴²⁻⁴⁴²	atgcggccgctcactgacgtgactcctgttcac	NotI			
fw_pET_yscI	ggaattccatatgccgaacatagaaatagctcagg	NdeI			
fw_pET_yscI	ccgctcgagccccccttcgacaaggtt	XhoI			
Primers for site-directed	d mutagenesis				
fw_pBAD_yscU _{FL}	cat <u>gccatgg</u> tgagcggagaaaagacagag	NcoI			
rv_yscU _{FL} _L280N	gaatgttaccaacggatttggtgtttcccctcgcttg				
fw_yscU _{FL} _L280N	caagcgaggggaaacaccaaatccgttggtaacattc				
rv_pBAD_yscU _{FL}	cggaattcttataacatttcggaatgttgtttc	EcoRI			
rv_yscU _{FL} _E332A	gcacttcagctgtggccgctatttgctcagccgg				
fw_yscU _{FL} _E332A	ccggctgagcaaatagcggccacagctgaagtgc				
rv_yscU _{FL} _A335N	gccatcgtagcacttcatttgtggcctctatttgc				
fw_yscU _{FL} _A335N	gcaaatagaggccacaaatgaagtgctacgatggc				
rv_yscU _{FL} _E336A	ctagccatcgtagcactgcagctgtggcctctatttg				
fw_yscU _{FL} _E336A	caaatagaggccacagctgcagtgctacgatggctag				
rv_yscU _{FL} _A268F	gcttgtaaagaataccaatgaaaatatgggtcggattag				
fw_yscU _{FL} _A268F	ctaatccgacccatattttcattggtattctttacaagc				
rv_yscU _{FL} _V292T	gcgcacagtctgcgtttgggcatcggtatatttgaatg				
fw_yscU _{FL} _V292T	cattcaaatataccgatgcccaaacgcagactgtgcgc				

Supplemental Table S2: Primers used in this study