

Supplementary Figure 1: LCMV replicates in MOPC without affecting cell proliferation

a: Quantification of Immunofluorescence of MOPC cells untreated or infected with LCMV (MOI 1) 72 hours after infection (n = 3/group) (related to Fig. 1c). ns, non-significant. **b:** Non-impaired clonogenic survival of MOPC cells after in vitro LCMV WE infection. Representative photograph of long-term colony formation following incubation of MOPC with LCMV WE of indicated MOI.

Ш

Ē

2 4 8 16

1

-∎- hIFN-α4

÷

-0

100

10

100 1000 10000

IFN-I (U/ml)

mIFN-q4

• mIFN-a2

Supplementary Figure 2

Atp6v0b

Pkmyt1

Arcn1 Copb1

Copa

Mat2a

Eif3g Eif3a

чL

Vesicular transport

Translation regulation

GPCR signaling Arhgap 23

32

6

5

3

<3-

LCMV(log₁₀PFU/ml)

B-Myb siRNA 2

a: mRNA expression levels of Ifnar1 and Ifnar2 for the cancer types renal cell cancer (RCC; n=534), hepatocellular cancer (HCC; n=373), colorectal cancer (CRC; n=382), head and neck squamous cell cancer (HNSCC; n=522) and skin cutaneous melanomas (SKCM; n=471). Downloaded from the TCGA database by use of cBioPortal (www.cbioportal.org). Data are shown as mean and minimum-maximum whiskers. b: qRT-PCR of human Ifnar1 and Ifnar2 mRNA expression in Sw480, HeLa, HepG2, FADU cells and controls (murine mRNA, n=5/group). c: Number of viral plaques in Sw480 cell layer (n=6/group, left panel) and HeLa cell layer (n=5/group, right panel), which were treated with different concentrations of human IFN α 4, murine IFN α 4 or murine IFN α 2 and infected with VSV (MOI 0.01) 24 hours earlier. d: qRT-PCR of murine Ifnar1 mRNA in MOPC cells, MC38 cells, B16F10 cells, LoxP-Tag tumors, MT/ret cells and control (human mRNA, n=5/group). e&f: Immunofluorescence of phospho-B-Myb (e, n=3/group) and gRT-PCR of B-Myb (=Mybl2) mRNA (f, n = 9-10/group) in MOPC, MC38 and LoxP-Tag tumors compared to the correlating healthy tissue (oropharyngeal epithelia, colon and liver). Scale bar, 200µm. g: qRT-PCR of viral host factors in MOPC tumors (n=5) and pharynx tissue (n=5). h: Infectious LCMV particles in supernatant of MCF7 cells, which were treated with control siRNA or two separate B-Myb siRNAs and then 24 hours later infected with LCMV (MOI 1) analyzed 24 hours after infection (n = 6/group). Data are shown as mean \pm SEM and analyzed by unpaired Student's t-test. ns, non significant; *p < 0.05; **p < 0.01; ***p < 0.001.

Supplementary Figure 3: Intravenous infection leads to viral replication in metastasis

a: Immunohistochemistry for LCMV-NP in flank and shoulder tumor (day 15) from C57BL/6 mice receiving simultaneously subcutaneously 5 x 10^5 MOPC cells in the flank and shoulder (day -3), treated with or without 2x10⁴ PFU LCMV given into the flank or intravenously on day 0 (n=4-5/group). Scale bar, 200µm. **b:** Serum alanin-aminotransferase (ALT) levels of C57BL/6 (n=3) and adenovirally induced tumor bearing LoxP-TAg mice (11 month old) which were left untreated (n=4) or which were additionally treated with 2 x 10^6 PFU of LCMV-WE (n=5) measured 20 days after infection. Values above line indicate pathological liver disease.

Supplementary Figure 4: Immune cell infiltrates are required for tumor regression Tumor diameter of MOPC-tumor bearing WT and $Map3k14^{aly/aly}$ mice (day -3) treated with (n=8 WT; n=6 $Map3k14^{aly/aly}$) or without (n=7 WT; n=6 $Map3k14^{aly/aly}$) 2x10⁴ PFU LCMV peritumorally on day 0. Data are shown as mean ± SEM and analyzed by unpaired Student's t-test. ns, non significant; ***p < 0.001.

Supplementary Figure 5: Tumor infiltrating Ly6C+ cells are indispensable for antitumoral LCMV therapy

MOPC tumor bearing C57BL/6J mice were treated with $2x10^4$ PFU LCMV peritumorally on day 0. Depletion was performed by i.p. injection of either (a) α Ly6C+G (clone RB6-8C5) 200µg or (b and c) α ly6G (clone 1A8) 500µg starting on d-2 and repeated on d2 and d7. **a&b:** Representative dot blots of peripheral vein blood collected on d4 and stained for monocyte and granulocyte cell markers after preselection of CD11b positive cells. **c:** Tumor diameter in C57BL/6 mice injected with or without α Ly6G (1A8) antibody (n=3-4/group).

Data are shown as mean ± SEM and analyzed by unpaired Student's t-test. ns, non-significant.

Supplementary Figure 6: Impact of adaptive immune system and NK cells on LCMV-induced anti-tumoral immunity.

a: Tumor diameter of MOPC-tumor bearing WT and $Tcrab^{-/-}$ mice (day -3) treated with or without $2x10^4$ PFU LCMV peritumorally on day 0 (n=5/group). **b:** Tumor diameter of MOPC-tumor bearing WT and $Jh^{-/-}$ mice (day -3) treated with or without $2x10^4$ PFU LCMV peritumorally on day 0 (n=5/group). **c&d:** Tumor diameter (c) and representative dot blot from peripherial vein blood collected at day 2 and stained for NK cell markers (d) of WT mice which were NK depleted by i.p. injection of 400µl NK1.1 antibody on day -3 and day -1 (n = 4/group).

Data are shown as mean ± SEM and analyzed by unpaired Student's t-test. ns, non-significant.

Supplementary Figure 7: Monocyte recruitment in human cancers correlates with IFN-I induction

a: Heatmap of correlation analyses of 12 immunogenes mRNAs of primary samples from 34 oropharyngeal cancer patients. **b:** Linear regression between *IRF7* and the human monocyte markers *CD14* and *CD16*. **c:** Gene-set enrichment analysis (GSEA) of human IFN-I induced genes by usage of the Browne interferon-related gene-set. IFN-I-induced expression profile and genes ranked by extent of differential expression in TCGA melanoma, hepatocellular carcinoma, renal cancer, head and neck cancer and colorectal cancer dataset. NES, normalized enrichment score; FDR, false discovery rate.

Supplementary Figure 8: Virus-specific memory CD8⁺ T cells prevent LCMV-induced tumor regression

a: Tumor diameter of MOPC-tumor bearing WT or memory $Jh^{-/-}$ mice (pretreated with 200 PFU LCMV i.v. 100 days before tumor inoculation) treated with LCMV 2x10⁴ PFU intravenously on day 0 (n = 5/group). **b:** Tumor diameter and survival from MOPC-tumor transplanted WT and $Rag1^{-/-}$ mice (day - 10) treated with or without 2x10⁴ PFU LCMV intratumorally on day 0 (n = 5/group) **c:** Tumor diameter and survival from MOPC-tumor transplanted with anti-IFNAR1 antibody or isotype control (n = 5/group). Data are shown as mean ± SEM and analyzed by unpaired Student's t-test. Survival is shown in Kaplan-Meier method and analyzed by log-rank test. ns, non-significant; *p < 0.05; **p < 0.01; ***p < 0.001.

Supplementary Figure 9: Anti-tumoral effect of LCMV is independent of host IFNAR expression. Tumor diameter of *lfnar*^{-/-} and C57BL/6 control mice injected with $5x10^5$ MOPC cells (day -3) subcutaneously and either left untreated (left) or treated with $2x10^4$ PFU LCMV peritumorally (right, day 0) (n = 6-7/group). Measurements were performed on the indicated days. ns, non-significant.

Supplementary Figure 10: Reduced vascularisation correlates with arenavirus mediated tumor regression

a: qRT-PCR from tumors of MOPC-tumor bearing WT mice (day -3) treated with or without $2x10^4$ PFU LCMV peritumorally (day 0), analyzed on day 6 (n= 3/group). **b&c:** Immunofluorescence (b, n= 3/group, CD31, red; DAPI, blue) and quantification of microvessel density (MVD) and vessel–vessel distances (c, n = 3/group) from MOPC-tumor bearing C57BL/6 mice (day -3) which were treated with or without $2x10^4$ PFU LCMV peritumorally (day 0) measured on day 6. **d:** Immunohistochemistry (day 6) and quantification (day 9) of hypoxic areas from tumors of MOPC-tumor bearing C57BL/6 mice (day -3) treated with or without $2x10^4$ PFU LCMV peritumorally (day 0) measured on day 0 (n= 3 mice/group). **e:** Immunofluorescence of tumors from MOPC-tumor bearing C57BL/6 (day -3) treated with or without $2x10^4$ PFU LCMV peritumorally on day 0 (n= 3/group). **e:** Immunofluorescence of tumors from MOPC-tumor bearing C57BL/6 (day -3) treated with or without $2x10^4$ PFU LCMV peritumorally on day 0 (n= 3/group). **e:** Immunofluorescence of tumors from MOPC-tumor bearing C57BL/6 (day -3) treated with or without $2x10^4$ PFU LCMV peritumorally on day 0 (n= 3/group, Ki-67 or cleaved caspase 3, red; DAPI, blue). Data are shown as mean ± SEM and analyzed by unpaired Student`s t-test. ns, non-significant; *p < 0.05; **p < 0.01; ***p < 0.001; Scale bar = 200µm.

Antibody	Manufacturer	Catalogue number
Anti-B MyB (phospho T487)	Origene	TA301225
Anti-CD90.2	eBiosciences	11-0903
Anti-CD4	BD Pharmingen	17-0042
Anti-CD8	eBiosciences	553035
Anti-CD45R (B220)	BD Pharmingen	17-0452
Anti-Ly6C	eBiosciences	17-5932
Anti-Ly6G	eBiosciences	11-5931
Anti-CD115	eBiosciences	12-1152
Anti-CD11b	eBiosciences	47-0112
Anti-CD11c	eBiosciences	11-0114
Anti-mPDCA	Miltenyi	130-091-964
Anti-CD31	eBiosciences	11-0311-81
Anti-Ki-67	Thermo Scientific	RM-9106-S
Anti-Cleaved Caspase-3 (Asp175)	Cell signalling	#9579
Anti-CD274 (PD-L1, B7-H1)	eBioscience	12-5982
Anti-CD279 (PD-1)	eBioscience	11-9981
Anti-CD127 (IL-7Ra)	eBioscience	17-1271
Anti- CD25 (IL-2Ra)	eBioscience	12-0251
Anti-NK1.1	eBioscience	12-5941
Anti-CD3	eBioscience	11-0031

Supplementary Table 1: List of antibodies used for immunofluorescence. All antibodies listed were used in 1:100 dilutions to their original concentration for flow-cytometry and/or for immunohistochemistry.

Primer	number
Eukaryotic 18S RNA	#4333760T
GAPDH	Mm03302249_g1
Tipin	Mm00600456_m1
Atp6ap2	Mm00510396_m1
Atp6v0b	Mm01193846_g1
Pkmyt1	Mm01309244_m1
Arcn	Mm00524375_m1
Copb1	Mm00446330_m1
Сора	Mm00550231_m1
Mat2a	Mm00728688_s1
Eif3g	Mm00469383_m1
Eif3a	Mm00468721_m1
Arhgap23	Mm01722379_m1
MYBL2	Mm00485340_m1
lfnar1	Mm00439544_m1
lfnar2	Mm00494916_m1
TGFß	Mm01178820_m1
MMP14	Mm00485054_m1
MMP2	Mm00439498_m1
MMP9	Mm00442991_m1
PDGFß	Mm00440677_m1
VEGFA	Mm00437306_m1
VEGFB	Mm00442102_m1
VEGFC	Mm00437310_m1
VEGFD (Figf)	Mm01131929_m1
FGFR1	Mm00438930_m1
FGFR2	Mm01269930_m1
FGFR3	Mm00433294_m1
EGF	Mm00438696_m1
ANGPT1	Mm00456503_m1
SELL	Mm00441291_m1
CCL5	Mm01302427_m1
CXCL3	Mm01701838_m1
Csf3	Mm00438334_m1
CXCL15	Mm00441263_m1
CXCL1	Mm04207460_m1

Supplementary Table 2: List of murine Primers for Taqman qPCR List of commercially available TaqMan® Gene Expression Assays from Life technologies used for detection of murine gene expression via qPCR.

Primer	number
Gapdh	QT01658692
IFNα4	QT01774353
IFNß	QT00249662
IRF7	QT00245266
OAS1	QT01056048
ISG15	QT02274335
Ly6C	QT00247604
CCR2	QT02276813
CCL2	QT00167832

Supplementary Table 3: List of murine Primers for SYBR Green-based qPCR List of commercially available QuantiTect Primer Assays used for detection of murine gene expression via qPCR.

Primer	number
Eukaryotic 18S RNA	#4333760T
IFNAR1	Hs01066116_m1
IFNAR2	Hs01022059_m1
CCR2	Hs00704702_s1
ITGAM	Hs00167304_m1
SELP	Hs00927900_m1
CXCL9	Hs00171065_m1
MMP9	Hs00957562_m1
CD14	Hs02621496_s1
CD16	Hs04334165_m1
IRF7	Hs01014809_g1
IFNB1	Hs01077958_s1
OAS1	Hs00973635_m1
USP18	Hs00276441_m1
PRKRA	Hs00269379_m1

Supplementary Table 4: List of human Primers for Taqman qPCR List of commercially available TaqMan® Gene Expression Assays from Life technologies used for detection of human gene expression via qPCR.

Supplementary Table 5

Primer	Sequence
LCMV WE NP Forward	5'- CAA AGT ATT CAC ACG GCA TGG A
LCMV WE NP Reverse	5'- TGG GAG AGC ACC TAT AAC TGA TGA

Supplementary Table 5: LCMV-NP Primer Sequences