

Supplementary Figure 1: Memory phenotype of peripheral blood γδ T cells populations. A and B. Representative flow cytometry plots and graphs show CD27 and CD45RAT cell memory marker expression on gated populations of CD3⁺ $\alpha\beta^{neg}$ $\gamma\delta$ T cells: V $\delta2^+$, V $\delta2^{neg}$ and V $\delta1^+$ T cells. Flow cytometry plots are from one donor and are representative of the graphed data, n=18.

Diverse Võ1⁺ T cell Repertoire

F

Supplementary Figure 2: Clonotypic focussing in the V δ 1⁺ T cell compartment. A. Comparison of total sequencing reads against the number of unique CDR3s determined for each donor, n=25 (left) and the mean ±SEM of total sequencing reads for each donor grouping (right), focussed (n=13), diverse (n=7) and cord blood (n=5). Data analysed by one-way ANOVA. B. Correlation of V γ 9 frequency in V δ 1⁺ T cells obtained by TCR-repertoire sequencing and flow cytometry for each donor (n=20). C. Grouped V γ chain usage in V δ 1+ TCR repertoire sequencing for each donor, focussed (n=13), diverse (n=7), and cord blood (n=5) donors. Data were analysed by Kruskal-Wallis ANOVA with Dunn's post-test comparisons,

* P<0.05, ** P<0.01 and *** P<0.001. **D.** V γ chain usage by V δ 1⁺ T cells from remaining donors not

shown in Fig. 2. **E** and **F**. Additional data from adult focussed (**E**), and adult diverse and cord (**F**) donor groupings. These show tree maps of CDR3 γ and δ clonotype usage in relation to repertoire size (each CDR3 colour is chosen randomly and does not match between plots) and graphs showing the individual clone frequency (left y-axis) and the accumulated frequency for the first 10 most prevalent clonotypes (right y-axis), for the donors not shown in Fig 2B, E and Fig 3E.

Supplementary Figure 3: $\gamma\delta$ **TCR repertoire analysis of adult V** $\delta2^{neg}$ $\gamma\delta$ **T cells. A.** V γ and V δ chain usage in V $\delta2^{neg}$ TCR repertoire data from 4 individuals. **B.** Tree maps showing CDR3 clonotype usage in the V $\delta2^{neg}$ $\gamma\delta$ subset in relation to repertoire size and graphs show individual clone frequency against accumulated frequency for the top 10 most prevalent clonotypes. Data are representative of 4 individuals. **C.** Accumulated frequency plots for V $\delta3$ and V $\delta8$ clonotypes detected within the V $\delta2^{neg}$ $\gamma\delta$ repertoire (left and middle) and a comparison frequency of the top 10 clones in each of V $\delta1$, V $\delta3$, V $\delta8$ filtered repertoires (right). Data are from 2 different donors.

Supplementary Figure 4: CDR3δ1 diversity in CMV⁺ and CMV^{neg} **donors.** Box plots show mean ±SD of the Shannon-Wiener index of CDR3δ1 diversity in CMV-seronegative (n=10) and CMV-seropositive (n=10) donor TCR repertoires, with differences between groups measured by students t-test, but not significant; p= 0.15.

В

IMGT Junction analysis of well-represented extra-long TRDV1-TRDJ1 CDR3 sequences

Donor	Reads,	Reads,	CDR3 nucleotide sequence: V-Region N-insertions P-insertions TRDD1 TRDD2 TRDD3 I-Region	Length,	N/P
	count	%		nt	nt
6	32	0.048%	TGTGCTCTTGGGGAAC <mark>GGGTCGCGCTCCGGCGGT</mark> CTTCCAAGGAT <mark>TCTGGGGGATACC</mark> ACGGAGGT <mark>ACACCGATAAACTCATCTTT</mark>	87	33
30	88	0.115%	TGTGCTCTTGGGGAATGCCCCCCCCTACTCTTGTCTCAAGCACAACTTGATCTGGGGGATACCCCCCGGGGAATTAGC <mark>TAAACTCATCTTT</mark>	90	45
31	193	0.076%	TGTGCTCTTGGGGAAAGAAGATTCCTAATGGTGGACTTCTTTGGGGGGAAAACTGGGGGGAAAACCGGACGACGATAAACTCATCTTT	90	40
38	185	0.109%	TGTGCTCTTGGGGAACCCCCCCAGAGATTACGC <mark>TGGGGGGATAC</mark> TCAAAGAAGTTCATCCAGAGGGCCCAGGGGGGCTGT <mark>ACACCGATAAACTCATCTTT</mark>	99	52
32	60	0.050%	TGTGCTCTTGGGGAAGTCCCTGCCTGCCTGGCCCGAGGATAAGAGGATGT <mark>TGGGGGA</mark> GACATACTCCCAC <mark>TACACCGATAAACTCATCTTT</mark>	93	45
11	19	0.047%	TGTGCTCTTGGGGAACTAAACTGGCAGATACACCTTCCTACGTGGCGGGGGCCGGGGGGATACGGGCCTTTCGGGTACACCGATAAACTCATCTT	93	37

Supplementary Figure 5: CDR361 contain rare, unusually long functional sequences. A. Selected normalised spectratypes from two donors with notable extra-long CDR3 variants, shown with red circles, representative of 6 individuals. **B.** Selected well-represented extra-long TRDV1-TRDJ1 CDR3 sequences, showing actual read count in raw repertoire sequencing, % of total sequencing reads, overall length of CDR3 region (nt) and total N/P nucleotide addition in each sequence.

Α

TRDV2

TRDV1

Color Key

Supplementary Figure 6: TCRy characteristics for Võ1⁺ and Võ2⁺ yõ T cells. A. Normalised Vy gene segment usage in Võ1⁺ and Võ2⁺ yõ TCR repertoires. **B.** 3D representation of typical Vy-Jy gene segment usage in Võ2⁺ (top row; showing 3 representative donors out of 4) and Võ1⁺ (bottom row; showing 3 representative donors out of 20) yõ T cells, calculated per sequencing read (non-normalised). **C.** Length distribution and mean (red line) of the top 10 most prevalent clonotypes in CDR3õ (bottom left) and CDR3 γ (bottom right) from indicated Võ1⁺ T cell donors not shown in Fig 4D. **D.** Jensen-Shannon divergence between non-normalised TCR γ repertoires in Võ1⁺ and Võ2⁺ subsets based on the CDR3 amino acid sequence length, 2D representation of multidimensional clustering (VDJ Tools software).

Donor 3	%	Donor 6	%	Donor 7	%	Donor 41	%	Cord blood 4	%
CALWEVQELGKKIKVF	15.1	CALWETQELGKKIKVF	22.9	CALWEVQELGKKIKVF	13.0	CALWEVQELGKKIKVF	17.7	CALWEVQELGKKIKVF	15.2
CALWEAQELGKKIKVF	8.9	CALWEVRKELGKKIKVF	18.5	CALWEAQELGKKIKVF	10.5	CALWEVRELGKKIKVF	6.3	CALWEQELGKKIKVF	2.7
CATWDGGYYKKLF	5.9	CALWEVQELGKKIKVF	6.6	CALWEVRELGKKIKVF	4.9	CALWEVFELGKKIKVF	5.5	CALWEVRELGKKIKVF	2.4
CALWEVRELGKKIKVF	3.2	CALWEVRELGKKIKVF	3.9	CASPELFYYKKLF	3.8	CALWEAGVLGKKIKVF	3.4	CATWDTTGWFKIF	1.5
CALWEGKQELGKKIKVF	2.1	CALWEVLSPQELGKKIKVF	3.4	CALWEVKELGKKIKVF	2.4	CALWEAQELGKKIKVF	2.4	CALWEAQELGKKIKVF	1.0
CALWEQELGKKIKVF	1.8	CALWEQELGKKIKVF	3.0	CALWQELGKKIKVF	1.8	CALWEVLELGKKIKVF	1.7	CALWEVELGKKIKVF	0.9
CALWTAQELGKKIKVF	1.7	CALWEVQGLGKKIKVF	2.3	CALWEVGELGKKIKVF	1.6	CALWSTELGKKIKVF	1.6	CALWEEELGKKIKVF	0.8
CALWEVHPGVFELGKKIKVF	1.4	CALWEVLELGKKIKVF	2.1	CALWEVLELGKKIKVF	1.4	CALWEVPELGKKIKVF	1.6	CALWEVLELGKKIKVF	0.8
CALWETSWELGKKIKVF	1.4	CALWENPKLGKKIKVF	2.0	CALWEVHELGKKIKVF	1.2	CALWEVHRELGKKIKVF	1.6	CATWDRNYYKKLF	0.8
CALWEEELGKKIKVF	1.4	CALWEVEELGKKIKVF	1.7	CALWEVEELGKKIKVF	1.2	CALWEQELGKKIKVF	1.3	CALWELGKKIKVF	0.8

Supplementary Figure 7: Public V γ 9 sequences from V δ 2⁺ $\gamma\delta$ T cells. A and B. Analysis of frequency (A) and sequence identity (B) of CDR3 γ sequences from sorted V δ 2⁺ $\gamma\delta$ T cells from four healthy adult donors and one cord blood. C and D. Visual representation of amino acid enrichment at each position of CDR3 γ (C) and CDR3 δ (D) sequences from V δ 2⁺ $\gamma\delta$ T cells. Analysis was confined to the 20 most abundant CDR3 γ of 14 amino acids from each of 4 adult donors, or ten most abundant CDR3 δ 2 sequences using V δ 2-J δ 1 of 13-15 amino acids length.

Supplementary Figure 8: Gating strategy for identifying and sorting T cells. A. Representative flow cytometry plots show the gating strategy used to identify single/live/lymphocytes and CD3⁺ TCR $\alpha\beta^{neg}$ T cells. **B** and **C**. Using the gating strategy in **A**., Vδ1⁺ and Vδ2⁺ (**B**) and Vδ2^{neg} γδ T cells (**C**) were sorted with TCR specific antibodies from CD3⁺ TCR $\alpha\beta^{neg}$ T cells. **D**. CD8⁺ $\alpha\beta$ T cells were identified by gating single/live/lymphocytes and CD3⁺ T cells (as shown in **A**.), selecting TCR Vδ1/Vδ2^{neg} cells and gating CD8⁺ T cells (left). CD27 and CD45RA were used to define memory T cell populations (Naïve, central memory; CM, effector memory; EM and effector memory CD45RA-revertants; EMRA) within CD8⁺ $\alpha\beta$ T cells (right). Flow cytometry plots are representative of 20 donors.

Donor	TCR	Sequencing	Total	Unique	Cell Numbers
	Chain	Reads	CDR3	CDR3	(x 10 ³⁾
3	TRD	247354	215495	936	25
	TRG	489350	420583	657	25
5	TRD	301692	270866	1042	7.6
	TRG	249187	227705	643	7.6
6	TRD	188791	161794	359	7.2
	TRG	294125	284516	289	7.2
7	TRD	164806	140173	2650	25
	TRG	455352	396695	1789	25
11	TRD	193606	175261	936	25
	TRG	227924	208569	372	25
15	TRD	324650	308838	1676	25
	TRG	267362	260771	780	25
20	TRD	395517	371202	2051	25
	TRG	437885	415557	816	25
22	TRD	143487	142436	684	25
	TRG	389641	342630	390	25
26	TRD	359679	349164	7004	25
	TRG	562324	536932	3023	25
27	TRD	481992	457103	5443	25
	TRG	687234	635982	2826	25
28	TRD	110158	102974	2230	25
20	TRG	125384	107150	563	25
29		288125	266648	1985	25
23	TRG	611184	5000-58	1105	25
31		375423	350112	2253	25
01	TRG	660044	645027	1356	25
32		140130	134080	1330	25
52	TRC	463030	134000	028	25
33		366003	355460	2804	25
	TRC	3/1720	308335	1273	25
34		402725	354764	1156	25
	TRG	430176	403286	587	25
35		285454	284410	717	25
	TRC	500028	563321	/ 17	25
36		370710	350/88	10111	25
	TRC	3/6823	300217	33/1	25
37		414550	385585	3763	25
51	TRD	21/117	195311	1522	25
38	TRG	1/78/1	131060	1022	25
		/201/2	305512	5140	25
30	TRC	186273	1706/3	2758	25
		366753	345628	7117	25
11	TPC	538556	47020	804	25
41		655818	636010	1665	25
CR01		122686	10/065	2240	7 1
CBUT	TRD	252078	225747	1662	7.1
CB03		202010	25/017	1602	1.1 11 <i>1</i>
0005	TRD	205021	199294	2085	11.4
CR04		200191	284040	2005	25
0004	TRD	19157/	157254	3467	25
CP05		202495	100204	020	25
0605		203403	226726	920	7
CROS		500000	J20120	1027	
		183212	430032	3/22	5.2
		703213	+/ 1// 1	3433	0.2
21 CD276	TPC	157510	/17079	1010	E
31-002/11		407010 570504	41/9/0 EE0276	1010	5
21 002710		019091	003010	2004	5
31-002/10		04284U	0203/0	230	0.2
20.0025		07001U 426066	000050	304	0.2
29-CD2/11		430800	409059	1425	4
20.00071-		501509	4/005/	3492	4
29-002/10		597053	05024	229	6
	IKU	008010	495834	118	р

Supplementary Table 1: Details of raw sequencing data. The table displays each sample's analysed total sequencing reads, total CDR3 assigned, unique CDR3 identified and the number of cells obtained per sample.

germline		TRGV	N/P	TRGJ						
	TRGV2 TRGV3/5 TRGV4	GCC ACC TGG GAC GGG GCC ACC TGG GAC AGG GCC ACC TGG GAT GGG		G AAT TAT TAT AAG AAA CTC T GGG CAA GAG TTG GGC AAA AAA ATC AAG GTA AT ACC ACT GGT TGG TTC AAG ATA	TRGJ1/2 TRGJP TRGJP1					
	TRGV8 TRGV9	GCC ACC TGG GAT AGG GCC TTG TGG GAG GTG		AT AGT AGT GAT TGG ATC AAG ACG	TRGJP2	CDR3	N/P	CMV	EBV	
clone POS4 LES	TRGV8 TRGV4	GCC ACC TGG GAT A GCC ACC TGG GAT GG	ATT	CC ACT GGT TGG TTC AAG ATA T TAT AAG AAA CTC	TRGJP1 TRGJ1/2	length 33 33	nts 0 3	status	status	D75
donor										
29	TRGV2	GCC ACC TGG GAC GG	ATCC	TAT TAT AAG AAA CTC	TRGJ1/2	33	4	,	+	0.25
37	TRGV2	GCC ACC TGG GAC G	CCCTCGGG	TAT TAT AAG AAA CTC	TRGJ1/2	36	8	+	,	13.40
7	TRGV3	GCC ACC TGG GAC AGG	CGACCCAA	T AGT GAT TGG ATC AAG ACG	TRGJP2	42	8	,	+	16.00
28	TRGV3	GCC ACC TGG GAC AGG	ATTT	T TAT AAG AAA CTC	TRGJ1/2	33	5	,	+	1.47
39	TRGV3	GCC ACC TGG GAC AGG	CCTG	AG AAA CTC	TRGJ1/2	27	4	+	+	28.80
27	TRGV4	GCC ACC TGG GAT GGG	CGTGAGGG	T TAT AAG AAA CTC	TRGJ1/2	36	8	+	+	11.73
9	TRGV5	GCC ACC TGG	TCCTGGTAGG	G AAA CTC	TRGJ1/2	27	1	+	+	2.30
31	TRGV5	GCC ACC TGG G	TAC	AT AAG AAA CTC	TRGJ1/2	24	£	+	,	0.12
£	TRGV9	GCC TTG TGG G	GAAACCT	T TAT TAT AAG AAA CTC	TRGJ1/2	33	7	+	+	1.23
5	TRGV9	GCC TTG TGG GAG	CGGGG	G TTG GGC AAA AAA ATC AAG GTA	TRGJP	39	5	+	+	3.79
11	TRGV9	GCC TTG T	CTCAGCGGTCC	AAT TAT TAT AAG AAA CTC	TRGJ1/2	36	11	,	+	8.24
15	TRGV9	GCC TTG TGG	AGCCACCC	T TAT TAT AAG AAA CTC	TRGJ1/2	33	8	+	+	2.78
22	TRGV9	GCC TTG TGG GAG GTG	9000000	AT TAT AAG AAA CTC	TRGJ1/2	36	7	,	+	0.14
32	TRGV9	GCC TTG TGG GAG GTG		TAT TAT AAG AAA CTC	TRGJ1/2	30	0	,	+	0.07
33	TRGV9	GCC TTG TGG GAG GTG	CAA	ACT GGT TGG TTC AAG ATA	TRGJP1	36	e		+	1.87
34	TRGV9	GCC TTG TGG GAG G	ACTCG	TAT TAT AAG AAA CTC	TRGJ1/2	33	5	+	+	0.30
35	TRGV9	GCC TTG TGG GAG GTG C	CATATTGGA TC	G AAT TAT TAT AAG AAA CTC	TRGJ1/2	45	11	+	+	0.11
36	TRGV9	GCC TTG T	CCCCTTC	T AAG AAA CTC	TRGJ1/2	24	7		,	27.21
38	TRGV9	GCC TTG TGG GAG G	ט	G AAT TAT TAT AAG AAA CTC	TRGJ1/2	33	-	,	+	25.51
41	TRGV9	GCC TTG TGG GA		T TAT TAT AAG AAA CTC	TRGJ1/2	27	0		,	9.18
					ODETOVE	33 15	8 2			
					rande	24-45	0-11			
					- AL	6	-			
upplement	ary Ta	ble 2: Prevalent C	DR3V se	equences are private. The most pre	evalent	TCRV	clon	otype	sequ	ence from

each adult donor is shown. Vy and Jy gene segments used are indicated, and N and P nucleotides are shown in red and blue, respectively. The CDR3y length, number of N/P nucleotides, CMV/EBV status, and TCRy diversity (D75) of each donor is shown. S

	D75	1.32 3.88	3.14	9.86	5.12	0.12	4.02	5.12	1.33	0.38	0.82	3.25	0.41	0.11	24.6	11.6	17	24.2	14.5			
ERV	status	+ +	+	+ +	+	+	+	+	+		+	+	+	+	,	,	+	+	,			
	status	+ +	+		+		+		,	+		,	+	+		+		+	,			
0/N	nts 0 14	16 11	17	16	19	20	10	23	12	13	14	5	14	14	5	19	25	19	20	15.5	5-25nt	1107 0
	length 33 48	60 42	57	57 45	45	60	42	60	54	57	51	33	57	45	27	51	69	60	60	516	+u09-2C	11/0 /7
IRDJ AC ACC GAT AAA CTC ATC TRJD1 CT TTG ACA GCA CAA CTC TTC TRJD2	GAT AAA CTC ATC TRJD1 CC GAT AAA CTC ATC TRJD1	ACC GAT AAA CTC ATC TRJD1 A CTC ATC TRJD1	AC ACC GAT AAA CTC ATC TRJD1	al all date of the art of the true of the	C ACC GAT AAA CTC ATC TRJD1	AC ACC GAT AAA CTC ATC TRJD1	ACC GAT AAA CTC ATC TRJD1	C GAT AAA CTC ATC TRJD1	GAT AAA CTC ATC TRJD1	CT TTG ACA GCA CAA CTC TTC TRJD2	CC GAT AAA CTC ATC TRJD1	CTC ATC TRJD1	C ACC GAT AAA CTC ATC TRJD1	C GAT AAA CTC ATC TRJD1	AA CTC ATC TRJD1	T AAA CTC ATC TRJD1	AC ACC GAT AAA CTC ATC TRJD1	C ACC GAT AAA CTC ATC TRJD1	AC ACC GAT AAA CTC ATC TRJD1	enerene		101 C
d/N	TACAGGGT	TAGGGGGA AGCC	CCAGTACTTCATA	GAAGGGGIGIGI TCAAG	CGCTGCCTGT	CCACC	U U	CTCAG		GATCTCC	TTCG	TCGAG		CCCA		TTCAGG	TGGCGCATCGTCCCCAACTC GT	ACCCCCG	AAACGT			
TRDD3 ACTGGGGGGATACG	GGGGGAT GGGGGATA	ACTGGGGGGATAC ACTGGGGGGATAC	CTGGGGGGATACG	ALACG		ACTGGG	TGGGGGGATACG	ACTGGGGG	ACTGGGGGGATACG	ACT GGGGG	ACTGGG	CTGGGGGGAT	GGGATACG	TGGGG		GGGGGGATA	ACTGGGGGGATAC	CTGGGGGGATAC	ACTGGG			
N/P	ЧЦ	CTCATC GT	I	5	ט	GATGGAG		GTT	ATACCGTT GT	CCGT	TAC		GA			AAGGGTC			ACT			
TRDD2 CCTTCCTAC	CCTA	CTAC		CLICC	CCTAC	TTCCTA		CCTAC	TTCC	TCCT	CCTTCCTA		TTCCTAC			CCTTC	TTCC		CCTTCCTA			
N/P TRDD1 GAAATAGT	Ţ	GTGCGAT	CCTC	CGG TAAAACGGGGGT	CCAACCCC	CGCAGATT	ATCTCACT	CACCCGGCCTCCGAG	AT	Α	TTGCC GG		AGGCGGATCGCA	CCGGAGGCCT	CGGAG	ACTCCC	TCTA	GGTCATCGGACC	AACCCGGGGAGA			
TRDV TRDV1 GCT CTT GGG GAA CT \\\29/DV5 GCA GCA AGC G	TRDV1 GCT CTT GGG GAA CT TRDV5 GCA GCA AGC	TRDV1 GCT CTT GGG GAA C TRDV1 GCT CTT GGG GAA	TRDV1 GCT CTT GGG GA	TRDVI GCT CTT GGG G	TRDV1 GCT CT	TRDV1 GCT CTT GGG GA	TRDV1 GCT CTT	TRDV1 GCT CTT GGG GA	TRDV1 GCT CTT GGG GAA C	TRDV1 GCT CTT GGG GAA C	TRDV1 GCT CTT GGG	TRDV1 GCT CTT GGG GAA C	TRDV1 GCT CTT GGG GAA	TRDV1 GCT CTT GGG GAA C	TRDV1 GCT CTT GGG GAA CT	TRDV1 GCT CTT GGG	TRDV1 GCT CTT GGG GA	TRDV1 GCT CTT GGG GAA CT	TRDV1 GCT CTT GGG			
germline TRA	clone POS4 LES	donor 3 5	9	- 1	15	22	27	28	29	31	32	33	34	35	36	37	38	39	41			

sequence from each adult donor. Sequences were analysed using IMGT Junction Analysis, which identified V, D, and J gene segments used, and highlighted N (red) and P (blue) nucleotides. The CDR301 length, number of N/P nucleotides, CMV/EBV status of each donor, and TCR0 diversity (D75) is shown. Supplementary Table 3: Prevalent CDR301 sequences are complex and private. The most prevalent TCR01 clonotype

germline	TRGV		CDR3γ	TRGJ				
-				NYYKKLF	TRGJ1/2			
	TRGV2-8	CATWDG		GQELGKKIKVF	TRGJP*01			
	TRGV9	CALWEV		TTGWFKIF	TRGJP1*01			
				SSDWIKTF	TRGJP2*01			
						CDR3	CMV	EBV
clone						length(aa)	status	status
POS4	TRGV8	CATWD		TTGWFKIF	TRGJP1*01	11	+	?
LES	TRGV4	CATWDG	F	YYKKLF	TRGJ1/2	11	+	?
donor								
29	TRGV2	CATWDG	S	YYKKLF	TRGJ1/2	11	-	+
37	TRGV2	CATWD	ALG	YYKKLF	TRGJ1/2	12	+	-
7	TRGV3	CATWD	RRPN	SDWIKTF	TRGJP2*01	14	-	+
28	TRGV3	CATWD	RIF	YKKLF	TRGJ1/2	11	-	+
39	TRGV3	CATWD	RPE	KLF	TRGJ1/2	9	+	+
27	TRGV4	CATWDG	REG	YKKLF	TRGJ1/2	12	+	+
6	TRGV5	CATW	FLVG	KLF	TRGJ1/2	9	+	+
31	TRGV5	CATW	VH	KKLF	TRGJ1/2	8	+	-
3	TRGV9	CALW	GNL	YYKKLF	TRGJ1/2	11	+	+
5	TRGV9	CALWE	RG	LGKKIKVF	TRGJP*01	13	+	+
11	TRGV9	CAL	SQRS	NYYKKLF	TRGJ1/2	12	-	+
15	TRGV9	CALW	SHP	YYKKLF	TRGJ1/2	11	+	+
22	TRGV9	CALWEV	AGH	YKKLF	TRGJ1/2	12	-	+
32	TRGV9	CALWEV		YYKKLF	TRGJ1/2	10	-	+
33	TRGV9	CALWEV	Q	TGWFKIF	TRGJP1*01	12	-	+
34	TRGV9	CALWE	DS	YYKKLF	TRGJ1/2	11	+	+
35	TRGV9	CALWEV	HIGS	NYYKKLF	TRGJ1/2	15	+	+
36	TRGV9	CAL	SPS	KKLF	TRGJ1/2	8	-	-
38	TRGV9	CALWE	GNL	NYYKKLF	TRGJ1/2	11	-	+
41	TRGV9	CALW	D	YYKKLF	TRGJ1/2	9	-	-
					average (aa)	11.05		
					range	8-15aa		

Supplementary Table 4: Prevalent CDR3y sequences are private. The most prevalent TCRy clonotype sequence from each adult donor. Sequences were analysed using IMGT Junction Analysis, which identified V, D, and J gene segments used. The CDR3y length, and CMV/EBV status of each donor is shown.

germline		TRDV	CDR3δ	TRDJ				
				TDKLIF	TRDJ1			
	TRDV1	CALGE		LTAQLFF	TRDJ2			
	TRDV5	CAAS		SWDTRQMFF	TRDJ3			
				RPLIF	TRDJ4			
						CDR3	CMV	EBV
clone						length(aa)	status	status
POS4	TRDV1	CALGE	LGD	DKLIF	TRJD1	11	+	?
LES	TRDV5	CAAS	SPIRGYTGS	DKLIF	TRJD1	16	+	?
donor								
3	TRDV1	CALGE	PTSSYWGILGG	TDKLIF	TRJD1	20	+	+
5	TRDV1	CALGE	VRYWGIQP	LIF	TRJD1	14	+	+
6	TRDV1	CALG	DLLGDTPVLHN	TDKLIF	TRJD1	19	+	+
7	TRDV1	CALG	DGLPYTEGVLY	TDKLIF	TRJD1	19	-	+
11	TRDV1	CALG	VKRGLGDTQE	LIF	TRJD1	15	-	+
15	TRDV1	CAL	QPPYALPV	TDKLIF	TRJD1	15	+	+
22	TRDV1	CALG	DADFPRWRLGHH	TDKLIF	TRJD1	20	-	+
27	TRDV1	CAL	ISLGGYA	TDKLIF	TRJD1	14	+	+
28	TRDV1	CALG	DTRPPSLRYWGLS	DKLIF	TRJD1	20	-	+
29	TRDV1	CALGE	HFHTVVLGD	TDKLIF	TRJD1	18	-	+
31	TRDV1	CALGE	HPPYWGDLP	LTAQLFF	TRJD2	19	+	-
32	TRDV1	CALG	LPAFLYTGFA	DKLIF	TRJD1	17	-	+
33	TRDV1	CALGE	PGGFE	LIF	TRJD1	11	-	+
34	TRDV1	CALGE	RRIAFLRGIR	TDKLIF	TRJD1	19	+	+
35	TRDV1	CALGE	PGGLGAH	DKLIF	TRJD1	15	+	+
36	TRDV1	CALGE	LGE	LIF	TRJD1	9	-	-
37	TRDV1	CALG	TPPSRVGGYSG	KLIF	TRJD1	17	+	-
38	TRDV1	CALG	DLFHWGILAHRPNSY	TDKLIF	TRJD1	23	-	+
39	TRDV1	CALGE	LVIGPWGIHPR	TDKLIF	TRJD1	20	+	+
41	TRDV1	CALG	NPGDLPNYWETY	TDKLIF	TRJD1	20	-	-
					average	17.2		
					range	9-23aa		

Supplementary Table 5: Prevalent CDR3δ1 sequences are complex and private. The most prevalent TCRδ1 clonotype sequence from each adult donor. Sequences were analysed using IMGT Junction Analysis, which identified V, D, and J gene segments used. The CDR3δ1 length (amino acids), and CMV/EBV status of each donor is shown