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Supplementary Methods

Building of the medieval trading and pilgrimage network. Several main commercial confederations
were active during Late Middle Ages. One of the most active one was the Silk Road, a trading and
cultural network spanning along the Asian continent and connecting the Far East and the Mediterranean
Sea. In the southern part of Europe there were two trade routes connecting by sea and land Genoa and
Venetia with many other cities in the Mediterranean, Northern Africa, Near East, Asia and central
Europe. In northern Europe the Hanseatic League connected many ports around the Baltic Sea with
cities from North and North-East Europe. Some other minor commercial routes like English Wool
Market, Spanish Wine Market or North-African Slave trades were also present at that time. Besides
these trading routes, Europe also held some important pilgrimage routes, outstanding the Way of St.
James, which connected Santiago de Compostela in Spain with many places in Central and Western
Europe, the Via Francigena, which run from Rome to France, although reached places as far as
Canterbury in England and the North-African Islamic routes that connected muslim cities with La Mecca
in the Arabian Peninsula.

To build the medieval trading and pilgrimage networks, we obtained the medieval routes from
the Old World Trade Routes Project, OWTRAD*. This project provides electronic archives of
geo/chrono-referenced data on terrestrial and maritime trade and pilgrimage and trade routes of
Eurasia and Africa from 4000 BCE to 1800 CE. We selected those files describing the routes during the
Xl and XIIl centuries CE. In total, we found 22 files with information about routes working during the
Black Death period (Supplementary Table S5 online)

Using this information, we built up a network that connected Eurasian and African medieval
cities sharing trading or pilgrimage routes. This network was built by pooling the information from the
22 files. Because the traffic may occurs in both directions, our network was undirected. Some pair of
cities were connected both by trading and pilgrimage routes. However, because information on traffic
density is unavailable for the fourteenth century, the original network was unweighted and all
connections between pair of cities had the same value = 1. Nevertheless, in order to explore whether
trading and pilgrimage activities differed in their effect on plague-mediated mortality, we divided this

overall network into two networks, one including only trading links (trading network, hereafter) and the



other including only pilgrimage connections (pilgrimage network). For this, we followed the

classification of the routes made by the OWTRAD project34.

Global and local transitivity. Network transitivity measures the probability that adjacent nodes in a
network are connected forming clusters (3). Networks exhibiting higher values of transitivity are formed
by highly connected subsets of nodes. Network transitivity is calculated by dividing the number of
closed triples in the graph against the total number oftriples3. To know whether this transitivity was
significant, we first made 100 random networks with the same size and density. In addition, we also
made reshuffled networks with the same size and density as our empirical networks, maintaining the
same degree of each of the nodes but reshuffling randomly the links among them. We did 100
reshuffling per network instance. In both cases we calculated the mean and 95% confidence interval of
the transitivity values for this set of random networks’.

Local transitivity measures the probability that neighboring cities of a focal city are also
connected among them by direct routes. It was calculated by the local clustering coefficient, estimated
as the ratio of the number of pairs of neighbors of a given node that are connected to the number of

pairs of neighbors of that node’:

cc(i)- kﬁi"_)l

where R(i) is the mean number of connections from a neighbour of node i to other neighbors of node J,
and k(i) is the degree of the node i’. These analyses were computed with the R packages igraphagand
tnet™.

Centrality Indices. The importance of a node within a network is quantified by its centralitys’ 18,39,
Centrality indicates how well connected is a given city with the rest of the cities owing to shared routes.
The centrality of the cities in the network was calculated by means of a local (degree) and a global

. 3, 18, 39, 40
(closeness) index

. Each of these metrics captures different and complementary aspects of
centrality.

Degree centrality can be defined as the number of links incident upon a node®. In epidemic

networks, degree centrality appropriately measures short-term vulnerability of nodes to infection



because it indicates the proportion of times that the node is visited by the flow process in the
network®”. Degree centrality is the number of connected nodes to a given node, or number of adjacent

nodes’. It can be formalised as:
N
k(i) = EWU’
J
where w is the weighted adjacency matrix, in which wj; is greater than 0 if the node i is connected to
node j, and the value represents the weight of the edge. This is equal to the definition of degree if the
network is binary, i.e. each edge has a weight of 1.

Closeness is the sum of the graph-distances from one node to all other nodes in the network’.
Closeness defines the flow pathways, which has been shown to be important in infection spreading and
can be interpreted as the expected time until arrival to a given node of something flowing through the
network'> “. It assesses the importance of a node based on its reachability within a network. Closeness
centrality is the inverse sum of shortest distances to all other nodes from a focal node, and describes
how close is a given node from the rest of the nodes in the network. Dijkstra’s41 algorithm finds the path
of least resistance, defined for networks where weights represented costs of transmitting. Newman™
and Brandes® inverted the edge weights to indicate that the weight of an edge between two nodes is

directly proportional to the ease of flow between nodes. According to this idea, the distance between

two nodesiandjis:

d" (i, j) = min de b

Wi, Wi

Using this computation of the distance between two given nodes, weighted closeness centrality is

computed as:

In general, degrees assess the importance of a node based on its reachability within a network. This

measure provides a description of network connectivity based on the individual components. Closeness



defines the flow pathways, which has been shown to be important in infection spreading. Nodes with
high values of these metric act as bridges, connecting one part of a network to another that would
otherwise be sparsely or not connected at all, favouring the spreading of disease across the entire
network’.

Centrality indices were computed with the R packages igraph38 and tnet™.

Calculation of the mortality rate due to the plague. The number of people dying to the plague was
recorded using Benedictowz, Horrox>> and Sistach™. In addition, we systematically searched for extra
information on mortality. For this, we carried out computer searches in Google Scholar and SCOPUS
including the words “Black Death”, “plague”, “mortality”, “survival”, and “death”. We only retrieved the

information referring to the Black Death epidemics. When more than one value was found in a given

city, we retained the most modern one or that having more support by historians.

Calculation of the spatio-temporal correlation in mortality rate. To check the existence of spatial and
temporal dynamics in mortality rates in our network, we obtained the spatial location of each city and
the time of arrival of the plague to each city using the information provided by Biintgen et al.*’ and
Benedictow’.

Spatio-temporal autocorrelation was checked by performing Mantel tests between the across-
cities distances in mortality rate and the spatial and temporal distances. In these analyses, we used the
Euclidean distance in mortality rates. The temporal distance matrix was calculated as the difference
among cities in the year of the plague’s arrival. Geographic distances can be calculated using several
measures. Travelling distances can be a realistic estimate of the distance between two cities but,
unfortunately, there is not accurate information about these measures in the medieval network and
therefore we used geodesic distance between cities as a proxy. The Mantel tests were performed with

the R package vegan45.

Spatially-explicit generalised linear models. The relationship between centrality and mortality rate
during the Black Death pandemic was explored by fitting spatially-explicit generalised linear models. The

dependent variable was mortality rate estimated as the proportion of the population dying due to the



plague in each city. We performed five models, one including as independent variables the local
transitivity values of the cities, and the remaining models including each of the centrality metrics
(degree and closeness), respectively. We repeated these analyses for the three networks considered
here, the overall network, the trade network and the pilgrimage network. To control for the time of
arrival of the epidemics to the cities, we included this variable as covariate in all analyses. All
explanatory variables except time of arrival were log-transformed.

In addition, we generated random networks with the same size (number of nodes) and number
of links than the three studied networks (overall, trade and pilgrimage) using the Erdos-Renyi G(n,m)
model. According to this model, the random network is chosen uniformly at random from a set of
network having n nodes and m links. We then calculated for each city their centrality and transitivity in
these random networks. Using the spatially-explicit generalised linear models, we checked whether the
relationship between the network attributes of the cities and the mortality rate due to the plague
maintain in these random networks.

All the statistical analyses were performed using the R packages igrapha8 and nime*®.

Simulating the effect of centrality and transitivity on the probability of multiple infections. We
simulated the diffusion of plague throughout our medieval network by using a susceptible-infectious-
susceptible (SIS) epidemic model. This model describes how individuals change from susceptible to

infected. This model is described by two standard sets of differential equations:

dS_ I—AS
ac 9

dI—AS I
dt 9

where S and | refer to the number of susceptible and infectious individuals, respectively, in a population
of size N, g is the rate of recovery from infection, and A is the rate at which susceptible individuals
become infected. Individuals in our simulations were the cities, and the population was the entire set of
cities connected through trading and pilgrimage routes (N = 1311 cities). Because a city can be
repeatedly infected without recovering from the diseases, we simplified the above equations by
considering g = 0. We did this simplification because a city usually contains both infected and

susceptible individuals. If this occurs, the city is considered to be infected although some individuals are



susceptible. Under a scenario of re-infection, susceptible individuals can be infected before the recovery
of the other individuals in the city. Nevertheless, it would be convenient in the future to test the
response of the model to more complex scenarios, like for example, modelling the proportion of the
population that is infected within cities.

According to this model, every individual from the population will be eventually infected. In
addition, in a closed population without birth, death and migration, and mixing at random, all
individuals have the same probability of becoming infected. Under these circumstances, the rate of

infection can be calculated as:

I
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where s the transmission rate (the probability of the disease to infect a susceptible city when
contacting with an infected city), 7 is the effective number of contacts per unit time and I/N is the
proportion of infected contacts. The SIS models, by considering random mixing, assume that each city
has a small and equal chance of contacting with any other city in the population. So, 71 is equal to 1, and

this equation becomes:

1 I
= X —
g N

Our goal was to model how the plague moved among medieval cities following the trading and
pilgrimage network. This means that the assumption of random mixing is not fulfilled. Rather, the
transmission of the diseases is given by the contact network among cities. The probability of a city of
becoming infected depends thus on the number of infected cities contacting with the focal city
multiplied by the transmission rate of the disease. We included this constraint in our modelling
approach by considering as contact network the empirical medieval network depicting trade and
pilgrimage routes.

Using Sl epidemic models, we simulated the spreading of the Black Death along the medieval
network. Because no accurate information exists on the transmission rate of the Black Death, we
repeated the diffusion of the disease in several infectivity scenarios ranging between transmission rate
of 0.05 (very low infectivity rate) to 0.95 (very high infectivity rate). We did 1000 simulations for each
infectivity scenario. The epidemic was started in all simulations from central Asian cities. We obtained

the number of times a given city was infected during each simulation. Afterward, using the same



statistical models explained in the previous section, we tested whether the number of infections was
related to the centrality and transitivity of the cities. The script used to make the simulations is provided

in SI Dataset.
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HUHHHHH B H BB A R HH

HEHHHH T Drawing a spatial network of European trade HEHHHH T

HUHHHHH B BB A AR HH

require(sp); require (maps); require(maptools); require(mapdata); require (scales); require
(igraph); require (tnet)

cities<-read.table ("Data.OWTRAD.cities.txt", header =T, row.names=1)



OWTRAD-=read.csv("Data.OWTRAD.Edgelist.txt", header =TRUE)

OWTRAD =as.matrix(OWTRAD) #igraph needs the edgelist to be in matrix format
g=graph.edgelist(OWTRADI,1:2], directed=FALSE)
E(g)Sweight=as.numeric(OWTRAD[,3])
E(g)Stype.of.route=as.factor(OWTRADI[,4])

#### Ordering g and spatial.city to assign right spatial coordinates

City<-V(g)Sname
City<-data.frame(City)
cities.ordered<-cities[CitySCity, ]

#cities.orderedS$SArrival<-as.factor(cities.orderedSArrival)

# to associate spatial coordinates as vertex attributes
V(g)Slat<-cities.orderedSy
V(g)Slon<-cities.orderedSx

gV <- SpatialPoints(cbind(V(g)Slon, V(g)$lat))
#writePointsShape(gV, fn="vertices")

# Create the SpatialLinesDataFrame object for the edges.

#Needs numeric edgelist in Pajek format

#write.graph(g, file="Data.OWTRAD.Edgelist.num.txt", format="pajek")
OWTRAD.num=read.csv("Data.OWTRAD.Edgelist.num.txt", header =TRUE)

OWTRAD.num =as.matrix(OWTRAD.num) #igraph needs the edgelist to be in matrix format
g.num=graph.edgelist(OWTRAD.num{[,1:2], directed=FALSE)
E(g.num)Sweight=as.numeric(OWTRAD.num[,3])
#E(g.num)Strade=as.factor(OWTRAD.numl[,4])

edges <- get.edgelist(g.num)

edges <- chind(edgeNum=1:nrow(edges), cityl=edges[,1], city2=edges[,2])

## Create SpatialLinesDataFrame object describing edges

gE <- apply(edges, 1, function(i) Lines(Line(cbind(c(V(g)Slon[i["city1"]], V(g)Slonl[i["city2"1]),
c(V(g)Slat[i["city1"]], V(g)Slat[i["city2"]]))), ID=as.character(i["edgeNum"])))

gE <- SpatiallinesDataFrame(SpatialLines(gE), data=data.frame(edgeNum=1:nrow(edges)))

## Write edges to a shapefile
#writeLinesShape(gE, fn="edges")

#Drawing the spatially-explicit network

map (xlim=c(-30, 150), ylim=c(0, 70), col="gray90", fill=TRUE)

box()

map.axes()

map.scale(x=-29, y=2, ratio=FALSE, relwidth=0.2)

lines(gE, col ="blue")

points(gV, pch=21, cex=1+cities.orderedSdegree/3, xlab="longitude", ylab="Iatitude", col=
"black", bg=111)

points(gV, pch=21, cex=1+cities.orderedSPrin1/2, xlab="longitude", ylab="Iatitude", col=

"black", bg=c("gray", "blue", "red", "yellow", "darkviolet", "green", "magenta",
"black")[cities.orderedSArrival])



Hi#HHH#H Drawing different routes with different colours
# Drawing the trade network [type value= 1]

OWTRAD.num=read.csv("Data.OWTRAD.Edgelist.num.txt", header =TRUE) # read the file

OWTRAD.num.trade=OWTRAD.num[OWTRAD.numStype!=2 & OWTRAD.numStype!=3, ]

OWTRAD.num.trade=as.matrix(OWTRAD.num.trade) #igraph needs the edgelist to be in matrix
format

g.num.trade=graph.edgelist(OWTRAD.num.trade[,1:2], directed=FALSE)
E(g.num.trade)Sweight=as.numeric(OWTRAD.num.trade[,3])
E(g.num.trade)Strade=as.factor(OWTRAD.num.trade[,4])

edges.trade <- get.edgelist(g.num.trade)

edges.trade <- cbind(edgeNum=1:nrow(edges.trade), cityl=edges.trade[,1],
city2=edges.trade[,2])

gE.trade <- apply(edges.trade, 1, function(i) Lines(Line(cbind(c(V(g)Slon[i["city1"]],
V(g)Slon(i["city2"]]), c(V(g)Slat[i["city1"]], V(g)Slat[i["city2"]]))),
ID=as.character(i["edgeNum"])))

gE.trade <- SpatialLinesDataFrame(SpatialLines(gE.trade),
data=data.frame(edgeNum=1:nrow(edges.trade)))

writeLinesShape(gE.trade, fn="edges")
# Drawing the pilgrim network [type value= 2]

OWTRAD.num=read.csv("Data.OWTRAD.Edgelist.num.txt", header =TRUE) # read the file

OWTRAD.num.pilgrim=0OWTRAD.num[OWTRAD.numStype!=1 & OWTRAD.numStype!= 3, ]

OWTRAD.num.pilgrim=as.matrix(OWTRAD.num.pilgrim) #igraph needs the edgelist to be in
matrix format

g.num.pilgrim=graph.edgelist(OWTRAD.num.pilgrim[,1:2], directed=FALSE)
E(g.num.pilgrim)Sweight=as.numeric(OWTRAD.num.pilgrim[,3])
E(g.num.pilgrim)Strade=as.factor(OWTRAD.num.pilgrim[,4])

edges.pilgrim <- get.edgelist(g.num.pilgrim)

edges.pilgrim <- cbind(edgeNum=1:nrow(edges.pilgrim), cityl=edges.pilgrim[,1],
city2=edges.pilgrim[,2])

gE.pilgrim <- apply(edges.pilgrim, 1, function(i) Lines(Line(cbind(c(V(g)Slon[i["city1"]],
V(g)Slon(i["city2"]]), c(V(g)Slat[i["city1"]], V(g)Slat[i["city2"]]))),
ID=as.character(i["edgeNum"])))

gE.pilgrim <- SpatialLinesDataFrame(SpatialLines(gE.pilgrim),
data=data.frame(edgeNum=1:nrow(edges.pilgrim)))

writeLinesShape(gE.pilgrim, fn="edges")
# Drawing the courier network [trade value= 3]

OWTRAD.num=read.csv("Data.OWTRAD.Edgelist.num.txt", header =TRUE) # read the file

OWTRAD.num.courier=OWTRAD.num[OWTRAD.numStype!=1 & OWTRAD.numStype!=2, ]

OWTRAD.num.courier=as.matrix(OWTRAD.num.courier) #igraph needs the edgelist to be in
matrix format

g.num.courier=graph.edgelistftOWTRAD.num.courier[,1:2], directed=FALSE)
E(g.num.courier)Sweight=as.numeric(OWTRAD.num.courier[,3])
E(g.num.courier)Strade=as.factor(OWTRAD.num.courier[,4])

edges.courier <- get.edgelist(g.num.courier)



edges.courier <- chind(edgeNum=1:nrow(edges.courier), cityl=edges.courier[,1],
city2=edges.courier[,2])

gE.courier <- apply(edges.courier, 1, function(i) Lines(Line(cbind(c(V(g)$Slon[i["city1"]],
V(g)Slon[i["city2"]]), c(V(g)Slat[i["city1"]], V(g)Slat[i["city2"]]))),
ID=as.character(i["edgeNum"])))

gE.courier <- SpatialLinesDataFrame(SpatialLines(gE.courier),
data=data.frame(edgeNum=1:nrow(edges.courier)))

writeLinesShape(gE.courier, fn="edges")
map (xlim=c(-20, 130), ylim=c(0, 65), col="grey", fill=TRUE)

#box()

#map.axes()

map.scale(x=-29, y=2, ratio=FALSE, relwidth=0.2)

lines(gE.trade, col ="blue")

lines(gE.pilgrim, col ="white")

lines(gE.courier, col ="blue")

points(gV, pch=21, cex=1+cities.orderedSdegree/8, xlab="longitude", ylab="Iatitude", col=
"blue", bg="blue")

HUHHHHH B R H R
HifgHHH I Modelling diffusion process in medieval networks in R HEHHHH T
HUHHHHH G B R
require(networkdiffusion); require(igraph); require(network); require(nime)

# Generate a contact network using the medieval network
OWTRAD-=read.csv("Data.OWTRAD.Edgelist.noduplicados.txt", header =TRUE) # read the file
OWTRAD=as.matrix(OWTRAD) #igraph needs the edgelist to be in matrix format
g=graph.edgelist(OWTRADI,0:2], directed=FALSE)

E(g)Sweight=as.numeric(OWTRAD[,4])

# Loading city datasets with centrality and transitivity values
cities<-read.table ("Data.OWTRAD.cities.2.txt", sep=",", header=TRUE) # We used the small
dataset with few columns

# Model parameters

transmission.rate = ¢(0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95) # M

starting.nodes=c(477,547,676,677,678,679,680,681,682,689,742,766,767,769,770,807,808,81
3,814,909,965,987,988,989,1009,1023,1028,1029,1034,1075,1093,1105,1161,1167,1206,120
7,1234,1235,1278) # The code number of Asian cities

#starting.nodes=c(1:1311)

seed=NULL

for(i in 1:1000){

seed[i]= sample(starting.nodes,1) # Sampling seeds from Asian cities
diffusers = V(g)[seed[i]]

infected =list()

infected[[1]]= diffusers



# Set percolation probability
coins =c(1, 0)
probabilities = c(transmission.rate, 1-transmission.rate )
# toss the coins
toss = function(freq) {
tossing = NULL
for (i in 1:freq ) tossing[i] = sample(coins, 1, rep=TRUE, prob=probabilities)
tossing = sum(tossing)
return (tossing)

}

# Allowing multiple infections

update_diffusers = function(diffusers){
nearest_neighbors = data.frame(table(unlist(neighborhood(g, 1, diffusers))))
keep= unlist(lapply(nearest_neighbors[,2], toss))
new_infected = as.numeric(as.character(nearest_neighbors[,1][keep>=1]))
diffusers = c(diffusers, new_infected)
return(diffusers)

}

# Start the contagion, allowing the disease to infect 6 times the number of nodes in the
contact network to ensure multiple infection

total_time=1

while(length(infected[[total_time]]) < (6*node_number)){
infected[[total_time+1]] = sort(update_diffusers(infected[[total_time]]))
total_time = total_time + 1

}

# Outcomes files- Files with multiple infections
infected[length(infected)]-> final.infected
final.infected <-as.data.frame(final.infected)
names(final.infected)<-paste("nodes")
final.infectedSno_infections<-1
multiple.infection<-aggregate(final.infected$no_infections, by=
list(nodes=final.infectedSnodes), FUN=sum)
names(multiple.infection)[2]<-paste("no_infections")

# Outcome files- Files with city names
v<-get.data.frame(g, what="vertices")
nodes<-1:1311

vSnodes<-nodes
names(v)[1]<-paste("city")

temporal.file<-merge(v, multiple.infection, by="nodes", all=TRUE)
temporal.file[is.na(temporal.file)]<-0

merge(cities, temporal.file, by="city", all=TRUE)->vb
# Testing the effect of centrality and transitivity on re-infection
gauss.mod.degree<-gls(no_infections~log(degree), data= vb)

gauss.mod.degree<-update(mod.degree,corr=corGaus(form="x+y))

gauss.mod.closeness<-gls(no_infections ~log(closeness+1), data= vb)



gauss.mod.closeness<-update(mod.closeness,corr=corGaus(form="~x+y))

gauss.mod.transitivity<-gls(no_infections ~log(transitivity.overall+1), na.action=na.omit, data=
vb)
gauss.mod.transitivity<-update(mod.transitivity,corr=corGaus(form="~x+y))



FIGURES

Figure S1. Degree distribution. It is shown the cumulative distribution of number of links per node (k,

degree).
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Figure S2. Box plot showing the median, the 25%, 75% and 95% values of the clustering coefficients in

the overall network as well as in the trade and pilgrimage networks.
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Figure S3. Box plot showing the median, the 25%, 75% and 95% values of the two indices of centrality in

the overall network.

o
o o
< - o
o
o
o
o o
=2 o
[¢]
[¢]
_
|
0 |
1
Degree
< o
-9
< I
o |
2
|
0 |
S
O
[e0]
9 I
o
Lo |
(0]
© |
|
0 1
@
)
<

closeness



Figure S4. Box plot showing the median, the 25%, 75% and 95% values of the two indices of centrality in

the trade network.
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Figure S5. Box plot showing the median, the 25%, 75% and 95% values of the two indices of centrality in

the pilgrimage network.
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Figure S6. Relationship between the clustering coefficient and the degree (grouping all nodes with same
degree) for both trade and overall networks. (pilmigrame network had too few non-zero clustering

coefficient values).
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Table S1. Summary of the centrality metrics used in this study in each of the three types of networks.
Reshuffled network transitivity were obtained for 100 networks maintaining the same degree
distribution across nodes but reshuffling randomly the links. Random network transitivity were
obtaining for 100 networks under a Erdos-Rényi G(n,m) model and with same size and density than the
observed networks.

Overall network Trading network Pilgrimage Network
Number of routes 2084 1634 451
Number of cities having routes 1311 1013 403
Network density 0.0024 0.0032 0.0056
Network transitivity 0.1053 0.1135 0.0530
Reshuffled network transitivity 0.001 (0.000-0.003) 0.006 (0.002-0.012) 0.000 (0.000-0.000)

Random network transitivity 0.0024 (0.0022-0.0036) 0.0032 (0.0030-0.0034) 0.0060 (0.0051-0.0068)




Table S2. Outcome of the Pearson correlations between degree and closeness for
each type of network (overall, trade and pilgrimage networks). It is also shown the
mean and the 95 % confidence interval of the correlations in null networks made by
reshuffling the links randomly across nodes but maintaining their degree.

Variable 1 r P-value 95% Cl of the Null Networks
Overall network 0.4494 <0.0001 0.4152 -0.4222
Trade Network 0.6414 <0.0001 0.4099 -0.4174

Pilgrimage Network 0.8920 <0.0001 0.3703-0.3871




Table S3. Outcome of the Pearson correlation between closeness centrality and the local clustering
coefficient for each type of network (overall, trade and pilgrimage networks). It is also shown the mean
and the 95 % confidence interval of the correlations in null networks made by reshuffling the links

randomly across nodes but maintaining their degree.

Variable r P-value 95% Cl of the Null
Networks
Overall network 0.1866 <.0001 0.0063-0.0215
Trade network 0.0597 0.6560 0.0000-0.0131
Pilgrimage network -0.0362 0.7871 0.0000-0.0410




Table S4. Main characteristics of medieval cities used in the analysis testing the relationship between network attributes and plague severity.

Spatial location

overall network

trading Network

pilgrimage network

City long lat degree closen. degree closen. degree closen. Mortality Arrival
Aix 5.260 43.310 2 0.0000821 2 0.0000640 0 0.0000000 45.0 1347
Ajaccio 8.440  41.550 3 0.0000951 3 0.0000698 0 0.0000000 75.0 1347
Arras 2.783  50.283 2 0.0000611 1 0.0000535 1 0.0000062 40.0 1349
Avignon 4817  43.950 7 0.0000889 6 0.0000672 1 0.0000081 72.0 1348
Barcelona 2.183  41.383 10 0.0000801 10 0.0000625 0 0.0000000 74.0 1348
Beziers 3.130 43.200 2 0.0000745 2 0.0000598 0 0.0000000 72.0 1348
Bologna 11.333  44.483 8 0.0000980 5 0.0000723 3 0.0000092 45.0 1348
Bremen 8.800  53.083 6 0.0000765 5 0.0000618 1 0.0000070 60.0 1350
Bristol -2.583  51.450 1 0.0000546 0 0.0000000 1 0.0000081 44.5 1348
Cagliari 9.117  39.217 1 0.0000709 1 0.0000585 0 0.0000000 50.0 1347
Cairo 31.250 30.050 5 0.0000769 3 0.0000622 2 0.0000083 57.1 1348
Calais 1.510 50.570 2 0.0000670 0.0000569 0 0.0000000 60.0 1348
Constantinople 28.967  41.017 14 0.0001008 14 0.0000761 0 0.0000000 50.0 1347
Cornwall -4.090 50.300 1 0.0000590 1 0.0000516 0 0.0000000 21.0 1349
Dublin -6.150  53.200 1 0.0000725 1 0.0000588 0 0.0000000 56.0 1348
Dubrovnik 18.089  42.651 9 0.0000906 9 0.0000692 0 0.0000000 50.0 1350
Durham -1.567  54.767 1 0.0000669 1 0.0000569 0 0.0000000 50.0 1349
Erfurt 11.033  50.983 9 0.0000912 5 0.0000688 4 0.0000070 57.0 1350
Estella -2.033  42.667 4 0.0000618 0 0.0000000 4 0.0000081 63.0 1348
Exeter 3.320 50.430 1 0.0000635 1 0.0000546 0 0.0000000 51.5 1349
Florence 11.250  43.767 6 0.0000892 4 0.0000681 2 0.0000092 65.0 1348
Genoa 8.950 44.417 7 0.0000985 7 0.0000713 0 0.0000000 52.0 1348
Gy 5.340 47.270 2 0.0000590 2 0.0000010 0 0.0000000 413 1348
Hamburg 10.000  53.550 5 0.0000765 5 0.0000619 0 0.0000000 67.0 1349
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Table S5. List of files used in the network analyses. All files were obtained from the Old World Trade

Routes Project -OWTRAD- webpage (http://www.ciolek.com/owtrad.html).

Files used in the network analyses

Old World Trade Routes (OWTRAD)- The Silk Road from the Adriatic to the Pacific 1200-1400 CE

Old World Trade Routes (OWTRAD)- Chief trade routes in Europe, Levant and North Africa 1300-1500 CE

Old World Trade Routes (OWTRAD)- North African pilgrimage routes 1300-1900 CE

Old World Trade Routes (OWTRAD)- Main trade routes in the Holy Roman Empire and nearby countries, c. 1500 CE
Old World Trade Routes (OWTRAD)- Courier routes connecting banking places in Western Europe 1370-1430 CE
Old World Trade Routes (OWTRAD)- Venetian galley-operated trade routes 1400-1530 CE

Old World Trade Routes (OWTRAD)- Trade routes in SE Poland and Ukraine 1200-1700 CE

Old World Trade Routes (OWTRAD)- Major trade roads in Poland and adjacent border regions 1200-1450 CE
Old World Trade Routes (OWTRAD)- Major trade roads in Poland and adjacent border regions in 1370 CE

Old World Trade Routes (OWTRAD)- Major major roads in Poland and adjacent regions c. 1150 CE

Old World Trade Routes (OWTRAD)- South German trade routes before 1500 CE

Old World Trade Routes (OWTRAD)- Central European pilgrimage routes to Rome c. 1500 CE

Old World Trade Routes (OWTRAD)- Woollen cloth trade routes in North-Western Europe 1100-1500 CE

Old World Trade Routes (OWTRAD)- Spanish pilgrimage routes 900-2000 CE

Old World Trade Routes (OWTRAD)- NW African trade routes 500-1900 CE

Old World Trade Routes (OWTRAD)- Moroccan and Trans-Saharan trade routes 200-1930 CE

Old World Trade Routes (OWTRAD)- Silk Road routes 1-1400 CE

Old World Trade Routes (OWTRAD)- Trade routes in the Ottoman Empire 1300-1600 CE

Old World Trade Routes (OWTRAD)- The Anatolian Silk Road 1200-1400 CE

Old World Trade Routes (OWTRAD)- Islamic trade and pilgrimage routes 1300-1600 CE

Old World Trade Routes (OWTRAD)- Silk Road routes between the Mediterranean, Iran and China 200 BCE-1400 CE

Old World Trade Routes (OWTRAD)- French pilgrimage routes 1000-1500 CE.







