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Supplementary Figure 1. Coherence signals obtained by CP sequences. Coherence of NV electron spin (blue solid line)
as a function of DD frequency ωDD = π/τCP (with τCP the pulse intervals of CP sequences), under the control of N -pulse CP
sequences at a magnetic field Bz. The CP sequences have durations of ∼ 1 ms using the pulse numbers and magnetic fields
indicated on the figures. The green and yellow dashed lines are the signals of single spins. The arrows indicate the frequencies
ωj/kDD with the lengths proportional to A⊥

j . The signals of resonances at kDD = 15 in (a) and (b) are dominated by the

nuclear spin with a strong A⊥
j . While in (c) and (d), increasing the interactions by using a smaller kDD = 3 also increases the

interference from the spin with a strong A⊥
j , prohibiting the spin addressing on the nuclear spin with a weaker A⊥

j . In (b) and
(d), the number of pulses increases under a stronger magnetic field, compared with the cases in (a) and (c).
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Supplementary Figure 2. Coherence signals obtained by delayed entanglement echoes. Coherence of NV electron
spin (blue solid line) as a function of the frequency ωrf of RF driving at the delay window, which the duration trf ≈ 1 ms and
θrf = π. The pulse number N of CP sequences used to protect the delay window are indicated on the figures, as well as the
magnetic filed Bz. The green and yellow dashed lines are the signals of single spins. Each of the arrow located at the nuclear
precession frequency ωj has a length proportional to A⊥

j . The interaction times τ = 20 µs for (a) and (b), while a shorter
τ = 13 µs for (c) and (d). Dash-dotted lines are the curve cos[4τ(ωrf − ω13C)]. The qubit levels ms = ±1 are used at the
interaction windows.
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Supplementary Figure 3. Illustration of AXY pulse sequences in one period. (a) Symmetric version and its corre-
sponding modulation function shown below. (b) The anti-symmetric counterpart. Each of the shaded areas with a heavier
colour highlights a composite π pulse in the AXY sequences. The dashed lines indicate the sinusoidal signals on-resonant to
the modulation function F (t).
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Supplementary Figure 4. Coherence time of nuclear memories. Squares (dots) are the coherence of nuclear memory
14N (13C) qubit simulated by a Lindblad master equation with the NV electron spin initialized in the state |+ 1〉 for a room-
temperature electron relaxation time T1 = 8 ms (a) and for a low-temperature T1 = 500 ms (b). The 13C spin memory has

the hyperfine components A
‖
m = −2π× 31.26 kHz and A⊥

m = 2π× 29.24 kHz. The solid lines are the results of a qubit under a
classical fluctuating magnetic field.
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Supplementary Figure 5. Population signal of Mims ENDOR. (a) The protocol of Mims ENDOR. The microwave control
shown in the upper panel is the stimulated echo sequence with non-selective microwave π/2 pulses. (b) The signal of Mims

ENDOR when there is only one 13C nuclear spin, with the hyperfine field A
‖
1 = 2π × 19.98 kHz and A⊥

1 = 2π × 7.66 kHz. The
length of RF pulse is 1 ms. (c) The same as (b) but plotted as a function of the time τ under an on-resonant RF π pulse with
the frequency denoted by the vertical line in (b). (d) The signal under the same control parameters as (b), when there is an

additional 13C nuclear spin with distinct hyperfine field A
‖
2 = 2π × 42.8 kHz and A⊥

2 = 2π × 23 kHz. Although the intrinsic
14N is fully polarized to mN = −1, the Mims ENDOR still cannot address nuclear spins because unwanted spin interactions
are not compensated.
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Supplementary Figure 6. Hyperfine-decoupled ENDOR. (a) Hyperfine-decoupled ENDOR. (b) PEANUT ENDOR.
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Supplementary Figure 7. Coherence of NV electron spin in interacting and non-interacting spin baths. (a) Free
evolution of the coherence (blue solid line) of NV electron spin in a spin bath used in Fig. 2 of the main text. (b) Coherence of
NV electron spin with the application of a spin echo pulse at the middle of the evolution time (blue solid line). (c) As in (a),
but with a much stronger magnetic field. (d) As in (b), but with a magnetic field as in (c). In (a)-(d), the circles corresponds
to the case without nuclear-nuclear interactions. Under strong magnetic fields and without nuclear-nuclear interactions, the
NV electron spin can have a much longer coherence time.
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Supplementary Note 1: Hamiltonian of NV centre and nuclear spins

Under a magnetic field B = Bzẑ along the NV symmetry axis, the Hamiltonian of NV centre electron spin and its
nuclear environment reads (~ = 1)

H = HNV +HnZ +Hhf +Hnn. (1)

Here HNV = DS2
z − γeBzSz is the electron spin Hamiltonian with the spin operator Sz =

∑
ms=±1,0ms|ms〉〈ms|, the

ground state zero field splitting D ≈ 2π × 2.87 GHz, and γe = −2π × 2.8 MHz G−1 the electron spin gyromagnetic
ratio1. The nuclear Zeeman Hamiltonian HnZ = −

∑
j γjB · Ij , where γj is the nuclear gyromagnetic ratio and Ij is

the spin operator for the j-th nuclear spin. The dipole-dipole interactions between nuclear spins are

Hnn =
∑
j>k

µ0

4π

γjγk
|rj,k|3

[
Ij · Ik −

3(Ij · rj,k)(rj,k · Ik)

|rj,k|2

]
, (2)

with µ0 being the vacuum permeability, rj,k = rj − rk the difference between the k-th and j-th nuclear positions.
Typically the electron-nuclear flip-flop terms in the hyperfine interaction Hhf are suppressed by the large energy
mismatch between electron and nuclear spins, giving Hhf = Sz

∑
jAj · Ij under the secular approximation. However,

for strong hyperfine interactions the virtual flips of the electron spin could cause observable effects, an aspect that
we will discuss later (see Supplementary Note 3). For nuclear spins not too close to the NV centre, the hyperfine
interaction takes the dipolar form and the hyperfine field

Aj =
µ0

4π

γeγj
|rj |3

(
ẑ− 3ẑ · rjrj

|rj |2

)
. (3)

The total Hamiltonian under secular approximation is diagonal with respect to the electron spin states |ms〉.
We choose two of the three states as the qubit basis states for the NV electron spin. When we use the manifold of

the electron spin states | ↑e〉 = |+ 1〉 and | ↓e〉 = | − 1〉, we have the Hamiltonian

H = (D − γeBz)σz + σz

∑
j

Aj · Ij −
∑
j

γjB · Ij +Hnn. (4)

where the Pauli operator σz = | ↑e〉〈↑e | − | ↓e〉〈↓e |. In the rotating frame of (D − γeBz)σz, the Hamiltonian Eq. (4)
becomes

H1 = σz

∑
j

Aj · Ij −
∑
j

γjB · Ij +Hnn. (5)

Note that the nuclear Hamiltonian is not shifted by the hyperfine fields, because the average of ms for the used
electron-spin levels vanishes and in the limit of fast electron spin flipping the averaged magnetic field is the external
one B.

On the other hand, when we work in the manifold of the electron spin states | ↑e〉 = |+ 1〉 and | ↓e〉 = |0〉, we have
the Hamiltonian

H 1
2

=
1

2
σz

∑
j

Aj · Ij −
∑
j

(
γjB−

1

2
Aj

)
· Ij +Hnn, (6)

in the rotating frame of (D − γeBz) | ↑e〉〈↑e |.
In summary, we write the Hamiltonian for both qubit-manifolds as

Hη = ησz

∑
j

Aj · Ij +Hn,η +Hnn. (7)

The coupling constant η ≡ (maxms −minms)/2 = 1/2 for the manifold of the electron spin levels ms = 0,+1, while
η = 1 for the levels ms = ±1. The nuclear Hamiltonian describing nuclear precession reads

Hn,η = −
∑
j

(γjB− cηAj) · Ij ≡ −ωjω̂j · Ij , (8)

where the unit vectors ω̂j denote the directions of γjB − cηAj . Here cη is the average of the quantum numbers ms

of the electron spin levels used in the qubit manifold. That is, cη = 0 for the electron qubit manifold ms = ±1, while
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cη = 1/2 for the manifold ms = 0,+1. For the Hamiltonian H1 (ms = ±1 and η = 1), the electron-nuclear coupling
is stronger and the nuclear precession frequencies ωj = γjBz are the bare nuclear Larmor frequencies. While for the
Hamiltonian H 1

2
(ms = 0,+1 and η = 1/2), the electron-nuclear coupling is weaker and the precession frequencies

ωj = |γjB − 1
2Aj | are shifted by the hyperfine field at the positions of the nuclear spins. When the electron spin

is decoupled from the nuclear spins (e.g., by dynamical decoupling as will be discussed in the next section) and the
nuclear-nuclear coupling can be neglected, the nuclear spins precess freely with their frequencies ωj .

In the rotating frame of nuclear spin precession Hn,η, the interaction Hamiltonian ησz

∑
jAj · Ij becomes2

Hint = ησz

∑
j

[
Ax
j cos(ωjt) + Ay

j sin(ωjt) + Az
j

]
· Ij , (9)

with

Ax
j ≡ Aj −Az

j , (10)

Ay
j ≡ ω̂j ×Aj , (11)

Az
j ≡ Aj · ω̂jω̂j . (12)

The hyperfine components have the strengths |Ax
j | = |A

y
j | = A⊥j and |Az

j | = A
‖
j . The time-dependent terms in Eq. (9)

do not commute with the nuclear precession Hn,η.
Under a strong magnetic field Bz � A⊥j , ω̂j ≈ ẑ. The nuclear spin flips are suppressed, giving

Hint ≈ ησz

∑
j

Az
j · Ij = ησz

∑
j

A
‖
jI

z
j . (13)

If we apply Lee-Goldburg (LG) off-resonance control3, we can achieve similar Hamiltonians4,5

HLG
int ≈ ησz

∑
j

A
‖
j cos γj Ĩ

z
j , (14)

where Ĩz
j = ν̂j · Ij with ν̂j the unit vector denoting the nuclear precession in the frame of LG control. The projection

factor cos γj = ω̂j · ν̂j ≈ 1/
√

3.
The interaction Hamiltonian Eq. (13) commutes with the nuclear precession. Similarly, Eq. (14) commutes with the

nuclear precession around ν̂j in the frame of LG control. Combined with the delay entanglement control described in
the main text, we can keep only terms on the target spins in Hint or HLG

int . The effective electron-nuclear interactions
by delay entanglement control do not broaden the nuclear precession frequencies for addressing.

Supplementary Note 2: Remarks on spin addressing by dynamical decoupling

a. Effective interaction Hamiltonians under dynamical decoupling

Nuclear spins can be addressed by dynamical decoupling (DD)2,4,6–10. The DD pulses flip the NV electron qubit.
After application of n π pulses, σz → F (t)σz with the modulation function F (t) = (−1)n. We consider periodic
sequences with F (t) = F (t+ 2π/ωDD) in this work. The interaction Hamiltonian Eq. (9) becomes

Hint = ηF (t)σz

∑
j

[
Ax
j cos(ωjt) + Ay

j sin(ωjt) + Az
j

]
· Ij . (15)

This instantaneous-pulse control changes the electron-nuclear dynamics7,11,12. To get insight on nuclear spin sensing
by DD pulse sequences, we expand the modulation function in a Fourier series,

F (t) =
∑
k≥1

[f s
k cos(kωDDt) + fa

k sin(kωDDt)],

using that DD pulses have been designed to remove static noise and hence there is no static term in the Fourier series.
For periodic symmetric sequences fa

k = 0. The frequency ωDD characterises the flipping rate of the NV electron
qubit. For example, for the traditional Carr-Purcell (CP) sequence13 and its variations14–16 having a time interval
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τCP between successive π pulses, ωDD = π/τCP, f s
k = 4(kπ)−1 sin(kπ/2), and fa

k = 0. The expansion coefficients can
be tuned by adaptive XY (AXY) sequences2.

A nuclear spin with the precession frequency ωn can be addressed by resonance to the kDD harmonic of the driving
rate, that is, ωn = kDDωDD. With the additional conditions (with j 6= n) |γjBz| � kDD|Aj | and

|ωn − ωj | � |fkDD
A⊥j |, (16)

we have single spin addressing under periodic symmetric sequences Hint ≈ (η/2)f s
kDD

A⊥j σzI
x
j

2. Similar addressing

Hamiltonians (HLG
int ∝ σzĨ

x
j with Ĩx

j a spin operator projected perpendicular to ν̂j) can be achieved under LG

control4,17.
Nuclear spins can also be addressed by continuous DD9. In the rotating frame of a constant microwave driving

Ωeσx/2 with the Rabi frequency Ωe (the frequency of nuclear spin precession in the spin-lock frame), the Pauli
operator of NV electron qubit transforms as σz → σz cos(Ωet) + σy sin(Ωet). The driving rate of the electron spin
is ωDD = Ωe. When Ωe is on-resonance to the nuclear spin precession frequency ωj , that is, Ωe = ωj , we have the
addressing Hamiltonian Hint ≈ (η/2)A⊥j (σzI

x
j + σyI

y
j ) when |γjBz| � |Aj | and |ωn − ωj | � A⊥j for j 6= n.

b. Dynamics under the control of Carr-Purcell sequence

We analyse the system dynamics from another picture of conditional spin rotation, following the procedure in ref.
7. From this picture, we derive the effective nuclear precession frequencies as given above. To provide the result for
using ms = ±1 as the NV electron qubit, we consider a generic model of an NV qubit coupled to a single nuclear spin
as H = | ↑〉〈↑ | ⊗H↑ + | ↓〉〈↓ | ⊗H↓, with the conditional nuclear Hamiltonian

H↑(↓) = ω↑(↓)
(
cosϑ↑(↓)Iz + sinϑ↑(↓)Ix

)
, (17)

where ω↑(↓) denotes the nuclear precession frequency if the electron spin is at the state | ↑ (↓)〉 and ϑ↑(↓) the
corresponding angle of spin alignment. Under the control of an N -pulse CP sequence with the pulse interval τCP, the

conditional evolutions U↑(↓) = V
N/2
↑(↓) with V↑(↓) = exp(−iH↑(↓)τCP/2) exp(−iH↓(↑)τCP) exp(−iH↑(↓)τCP/2). Similar

to ref. 7, one can write the unitary evolution as the overall evolution V↑(↓) = exp(−iϕI · n̂↑(↓)) and the coherence is

L = 1− (1− n̂↑ · n̂↓) sin2(Nϕ/2). From the above definitions, we obtain

cosϕ = cosα↑ cosα↓ − cos(ϑ↑ − ϑ↓) sinα↑ sinα↓, (18)

1− n̂↑ · n̂↓ =
4 sin2(α↑/2) sin2(α↓/2) sin2(ϑ↑ − ϑ↓)

1 + cosϕ
, (19)

with α↑(↓) = ω↑(↓)τCP/2. When 1− n̂↑ · n̂↓ = 2 the coherence is maximally modulated by the evolution angle ϕ of the
nuclear spin, giving the resonant condition

cos(ϑ↑ − ϑ↓) tan(α↑/2) tan(α↓/2) = 1. (20)

We consider the resonance at strong magnetic field that γjBz � A⊥j , which gives the approximation cos(ϑ↑−ϑ↓) ≈ 1.
Therefore the resonant condition is simplified to tan(α↑/2) ≈ 1/ tan(α↓/2), which has the solutions ω̄ ≡ (ω↑+ω↓)/2 ≈
(2k+ 1)π/τCP with k being integer numbers. Here (2k+ 1)π/τCP are the characteristic frequencies of the NV electron
qubit under the control of CP sequence, and ω̄ is interpreted as the effective precession frequency of the nuclear spin.

For the case of using the NV qubit states ms = 1 and ms = 0, the effective precession frequency ω̄ = γjBz − 1
2A
‖
j .

For the case of the NV qubit states ms = ±1, ω̄ = γjBz, which is not shifted by the hyperfine field.

c. Shortcomings of spin addressing by dynamical decoupling

The addressing by DD has a number of shortcomings that we are going to discuss in the following.
First, the interaction Hamiltonians achieved by DD do not commute with the nuclear precession. As a consequence,

electron-nuclear interactions broaden the nuclear precession frequencies for addressing [see Supplementary Figs. 1 (c)
and (d)]. We need the condition in Eq. (16) for individual spin addressing. Reducing the effective interaction strengths
between NV electron and nuclear spins improves a lot the spectral resonance by using higher harmonics kDD > 1, by
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alternating the phase of Rabi driving10, or by using composite π pulses2,4,18,19. But the reduced coupling also makes
nuclear spins that are not strongly coupled hard to detect and control [see Supplementary Figs. 1 (a) and (b)].

Second, because resonances can occur at different harmonics frequencies kωDD, resonance lines from different
harmonic branches can have overlaps and make critical ambiguities in detection and addressing2,7,20. The spurious
resonances caused by realistic pulse width further complicate the situation, even making false identification of different
nuclear species (e.g., 13C and 1H)20.

Third, the achievable rate ωDD of DD sets an upper limit on the external magnetic field for spin addressing. A
strong magnetic field is the requirement in detecting the chemical shift of nuclear spins21 and in decoupling of the
nuclear dipole-dipole interactions by RF control3–5. In addition, the NV electron coherence can be protected easier
under strong magnetic fields22. However, nuclear spin precession frequencies ωj at strong magnetic fields can be
significantly larger than the achievable rate ωDD of DD control. For example, the pulse number 35684 required in
Supplementary Fig. 1 (d) could be too many in experiments. Using resonance branches with large kDD can reduce the
required control rate ωDD, but it also reduces electron-nuclear coupling and narrows spectral bandwidths. As shown
in Supplementary Fig. 1 (b) the coupling is too weak to detect the nuclear spin with a weak A⊥j and the bandwidth

is about ∼ ω13C/kDD for 13C spins.
The delayed entanglement echo technique does not suffer from the above shortcomings (compare Supplementary

Fig. 2 with Supplementary Fig. 1), and provide some additional advantages. First, it does not require both hyperfine

components A
‖
j and A⊥j to be strong. Second, both the electron-nuclear coupling strengths before and after the delay

window are not reduced, giving better sensitivity. In addition, we can use the levels ms = ±1 to double the interaction
strength (changing η = 1/2 to η = 1), since the nuclear spins are addressed by the control in the delay window. In
contrast, η = 1/2 is necessary during the whole protocol of spin addressing by standard DD, for the purpose that
homonuclear spins feeling different hyperfine fields have different precession frequencies. Third, our technique allows
to simultaneously address more than one nuclear spin by applying RF driving fields at the frequencies of those spins
during a delay window.

Supplementary Note 3: Storage of electron states to a memory qubit

Here we present more details on storing the electron qubit states to a nuclear spin memory. During the swap operations,
the NV electron qubit is working in the ms = 0, +1 manifold. Storage of electron spin state can be realised by SWAP
gates. A SWAP gate

SWAP =
∑

ms,mn=0,1

|msmn〉〈mnms| (21)

swap the electron qubit states ms and memory qubit states mn. In the case that relaxations of the electron and
nuclear memory qubit can be neglected during the delay window, we can also use iSWAP gate

iSWAP =
∑

ms,mn=0,1

ei(ms+mn)2π/2|msmn〉〈mnms|, (22)

which introduces a phase factor i when ms 6= mn. Without relaxations of the electron and nuclear memory qubit, the
whole system including the environment and the memory qubit has the evolution during the delay window

Udelay =
∑

ms,mn=0,1

|msmn〉〈msmn| ⊗ Ums,mn , (23)

where Ums,mn are unitary evolution operators of the environment part. The effect of the iSWAP gates,

iSWAP†UdelayiSWAP =
∑

ms,mn=0,1

|mnms〉〈mnms| ⊗ Ums,mn , (24)

is the same as using SWAP gates.
We use protected swap gates to suppress decoherence of the NV electron spin and unwanted electron-nuclear inter-

actions during gate implementation. Using nuclear spin addressing by DD2,4,11,23 or the delayed entanglement echo
presented in the main text, we implement the elementary decoherence-protected two qubit gates uzα = exp

(
iπ4σzIα

)
with α = x, y, z as well as single qubit gates for nuclear spins. Combining the gate uzα with electron spin rotations,
we achieve the gate uαα = exp

(
iπ4σαIα

)
[e.g., uyy = exp

(
iπ4σx

)
uzy exp

(
−iπ4σx

)
]. A swap gate is constructed by

uzzuyyuxx, where the three gates uαα commute, while uyyuxx gives rise to the iSWAP gate.
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a. Storage to the intrinsic nitrogen spin

Here we describe the details of implementation of SWAP gates between the electron qubit and the intrinsic nitrogen
spin qubit. For simplicity, we consider 14N, which has 99.636% natural abundance and a spin I = 1. The Hamiltonian
for the NV electron and the intrinsic nitrogen spins is

HNV = DS2
z − γeBzSz + PI2

z − γNBzIz +A‖SzIz +A⊥(SxIx + SyIy), (25)

where γN = 2π × 0.308 kHz G−1. We adopt the parameters for 14N in NV centres A⊥ = −2π × 2.62 MHz, A‖ =
−2π × 2.162 MHz, and P = −2π × 4.945 MHz24. The flip-flop between electron and nuclear spins are suppressed by
the large energy mismatch. We have

HNV ≈ DS2
z − γeBzSz + PI2

z − γNBzIz +A‖SzIz +
∑

ms=0,±1

|ms〉〈ms|hms , (26)

where the nitrogen operators

h+1 =
(A⊥)2

D − γeBz
(|0N〉〈0N|+ | − 1N〉〈−1N|), (27)

h0 =
(A⊥)2

−D + γeBz
|+ 1N〉〈+1N|+

[
(A⊥)2

−D + γeBz
− (A⊥)2

D + γeBz

]
|0N〉〈0N| −

(A⊥)2

D + γeBz
| − 1N〉〈−1N|, (28)

h−1 =
(A⊥)2

D + γeBz
(|0N〉〈0N|+ |+ 1N〉〈+1N|), (29)

describe the energy shifts caused by virtual spin flip-flop processes.
We use the electron-nitrogen coupling to implement the entangled gate uzz = exp(iπ4σzσN,z) in a short duration

of 0.23 µs, where σN,z is the Pauli operator of the nitrogen qubit. The iSWAP gate iSWAP = uyyuxx, where
uxx = PyuzzP

†
y and uyy = PxuzzP

†
x . Here Pα denotes decoherence-protected single-qubit π/2 gates23 on both nuclear

and electron spins at the α direction. The SWAP gate can be realized by SWAP = e−iπ/4uzziSWAP.
We simulate the SWAP gate using the protocol and achieve a gate fidelity of F = 0.987 (defined by F =
|Tr(GUg)|/Tr(GG†) with G the evolution of ideal SWAP gate and Ug the actual implementation17) by taking into
account the energy shifts on the electron and nitrogen qubits. The microwave π pulses for the SWAP gate have pulse
duration of 12.5 ns, and the field strength for RF π/2 pulses is 15.53 G. The magnetic field Bz = 0.467 T and the
LG decoupling are the same as those used in Fig. 3b in the main text. In the simulation, we adopt the Hamiltonian
Eq. (25) and the electron and nuclear spins feel all the control fields irrespective to their frequencies. Because of the
high gate fidelity, we use the nitrogen spin levels mN = 0,+1 to store the NV electron qubit by ideal swap gates in
producing the figures in the main text that use the nitrogen spin as quantum memory.

After the swap operation, the NV electron spin is polarized to the state | + 1〉 for the delay window. During this
storage, we take into account the energy shifts on the nitrogen memory. The energy shifts can also be removed by
applying DD (e.g., a Hahn echo) on the nitrogen spin.

b. Storage to carbon-13 memory qubits

We can use AXY sequences2 to implement uαα gates and swap the NV electron states to a 13C memory. Compared
to traditional sequences, AXY exhibits especially good spin addressability, strong robustness against detuning and
amplitude errors, and the ability to continuously tune the effective interactions between NV electron and nuclear spins2.
Using a symmetric version of AXY sequence (see Supplementary Fig. 3 (a)), we have the interaction Hamiltonian
Hx

int ≈ 1
4f

s
kDD

A⊥j σzI
x
j

2. Similarly, for anti-symmetric sequences (see Supplementary Fig. 3 (b)), we have Hy
int ≈

1
4f

a
kDD

A⊥j σzI
y
j . We tune f s

kDD
= fa

kDD
= fkDD

and use a time tg = 2π/(fkDD
A⊥j ) to implement the operation

iSWAP =Xπ/2 exp(−iHy
inttg)X†π/2Y

†
π/2 exp(−iHx

inttg)Yπ/2, (30)

where Xπ/2 and Yπ/2 are NV electron π/2 gates around the directions x̂ and ŷ, respectively. The inverse gate iSWAP†

can be implemented by the interchanges Xπ/2 ↔ X†π/2 and Yπ/2 ↔ Y †π/2.
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Another way to implement the swap gate is by using continuous DD (i.e., using spin-locking field). For the
addressed nuclear spin with a distinct precession frequency, we have the effective interaction Hamiltonian Hint ≈
1
2ηA

⊥
j (σzI

x
j + σyI

y
j ) under continuous Rabi driving (see Supplementary Note 2). An iSWAP gate corresponds to the

sequence exp
(
−iπ4σy

)
exp (−iHinttg) exp

(
iπ4σy

)
.

In producing the figures in the main text with a 13C memory, we explicitly implement the swap gate operations by
ideal microwave control.

c. Coherence time of nuclear memory

A flip of the electron spin changes the magnetic field at the nuclear memory by an amount of the change of the

hyperfine field (A
‖
m). As a consequence the nuclear memory dephases in a time ∼ 1/A

‖
m after an unpredictable flip of

the electron spin. It is expected to have one flip of the electron spin in the electron spin relaxation time T1. Therefore

the nuclear memory sufficiently loses its phase coherence after a time ∼ T1 + 1/A
‖
m or ∼ T1 if T1 � 1/A

‖
m. On the

other hand, for a duration tm sufficiently shorter than T1 we expect no flip of the electron spin and hence the nuclear

memory hardly dephases in tm, regardless of the strength of the coupling A
‖
m.

In Supplementary Fig. 4, we show the coherence of nuclear memories used in the main text, namely, the intrinsic 14N

spin and the 13C spin with A
‖
m = −2π×31.26 kHz and A⊥m = 2π×29.24 kHz under a magnetic field of γ13CBz = 2π×5

MHz. We initialize the NV electron spin to the level ms = +1 and the memory qubit in a superposition state that is
an eigenstate of the Pauli operator σm,x in x̂ direction. Subsequently we measure the coherence of nuclear memory as

the polarization
√
〈σm,x〉2 + 〈σm,y〉2, without going to the rotating frame of the nuclear spin. The dynamics is solved

by Lindblad master equation with the electron spin relaxation rate 1/T1. The nuclear spin coherence is compared
with the one by the decoherence model of a qubit in a fluctuating environment25, which uses a model of Markovian
noise with the amplitudes given by the hyperfine fields for the corresponding electron spin levels ms that jump with
the transition rate 1/T1. In Supplementary Fig. 4, the coherence predicted by the classical noise converges to the

same curve (solid lines) for both values A
‖
m of the 14N and 13C memories. As shown in Supplementary Fig. 4 the

simulations using the Lindblad master equation fit well with the one based on the model of fluctuating environment,
confirming the analysis of the nuclear spin decoherence in the above paragraph. Because the nuclear spins have similar

coherence times if A
‖
m > 1/T1, we may use a more strongly coupled 13C spin as a quantum memory for fast storage

of the NV electron spin state.

Supplementary Note 4: Discussion on electron nuclear double resonance

Some electron nuclear double resonance (ENDOR) techniques utilize RF control to perform spectroscopy on chemical
compounds26. The stimulated echo [the upper panel of Supplementary Fig. 5 (a)] was recently introduced to detect
nuclear spin correlation in a single solid defect centre27–29. Because the centre electron spin interacts with all the
surrounding nuclear spins in the whole protocol, stimulated echo does not provide advantages on individual spin
addressing and control. A modification [which is called Mims ENDOR30, see Supplementary Fig. 5 (a)] by adding
a long RF π pulse on nuclear spins cannot individually address nuclear spins as well, because the electron-nuclear
interactions are still not selectively cancelled. In Supplementary Fig. 5 (b) we present the signal of Mims ENDOR
when there is only one 13C nuclear spin coupled to the NV electron spin. There are two signal dips of the nuclear
spin in spectrum. One at the bare Larmor frequency (γ13CBz = 2π × 5 MHz) of the 13C spin, and another one
(2π × 4980 kHz) is shifted by the hyperfine field when the electron spin is at the state ms = +1. In contrast, in our
delayed entanglement echo each single nuclear spin only makes a single signal dip in spectrum, making the nuclear
spin signals easier to be identified. In Supplementary Fig. 5 (c) irrespective to the interaction time τ , the population
P = (1 + L)/2 is always larger than 0.5, which is the case of classical signal8. In Supplementary Fig. 5 (d), we show
the signal of the same spin when we add one nuclear spin as the spin bath. Although the two nuclear spins have
distinct precession frequencies, the signal changes a lot by the perturbation of another nuclear spin, confirming that
the Mims ENDOR cannot address and control nuclear spins individually.

The hyperfine-decoupled ENDOR [see Supplementary Fig. 6 (a)] and its improved version (PEANUT ENDOR) [see
Supplementary Fig. 6 (b)] proposed in31 use spin-locking field to lock the electron spin coherence during the application
of RF pulse. One may introduce these spin-locking sequences to the field of single defect centres for spin detections.
For simplicity, here we calculate the signal when there is only one nuclear spin coupled to the NV centre. Similar to
delayed entanglement echo that has no control at the interaction windows, the system evolves for the time τ at each
interaction window with the evolution Uf = exp(−iA‖τ σz

2 Iz) exp(−iΩSτ
σz

2 ) in the doubly rotating frame of microwave
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and RF control fields. Here ΩS is the detuning of the spin-locking microwave field. During the spin-locking period, a
long RF pulse is applied together with the spin-locking microwave field along the direction n̂lock = sin θdecx̂+cos θdecẑ.
Here cos θdec = ΩS/Ω for the effective locking amplitude Ω and at the present of detuning the angle θdec 6= π/2. The
whole evolution of the spin-locking sequences is Uoff = UfULockUf and Uon = Uf exp(−iπIx)ULockUf for off-resonant
and on-resonant RF pulses, respectively. For hyperfine-decoupled ENDOR, ULock = exp(−i 1

2φLockσ · n̂lock), where the
rotating angle φLock = Ωtrf is not prescribed because in typical situations of spin-locking φLock � 1 and a small control
fluctuation can have a significant change of φLock larger than 2π. In these spin-locking sequences, the electron spin is
initially prepared in a superposition state by a π/2 pulse around the x̂ direction, and the electron spin polarization
signal along the ŷ direction is averaged over φLock to gives the signal. For on-resonant RF driving, the signal of
hyperfine-decoupled ENDOR is31

Erf = − sin2 θdec

[
cos2

(
A‖τ

2

)
sin2(ΩSτ)− sin2

(
A‖τ

2

)
cos2(ΩSτ)

]
. (31)

While for off-resonant RF driving, the signal31

E0 = − sin2 θdec

[
cos2

(
A‖τ

2

)
sin2(ΩSτ) + sin2

(
A‖τ

2

)
cos2(ΩSτ)

]
, (32)

shows that nuclear spins are not addressed selectively by hyperfine-decoupled ENDOR because nuclear spins under
off-resonant RF driving still perturb the electron spin dynamics. In contrast, in our delayed entanglement echo nuclear
spins under off-resonant RF driving do not perturb the NV dynamics and do not module the detection signal, which
are fundamental requirements for individual addressing of nuclear spins. For PEANUT ENDOR, ULock = I is an
identity evolution when there is no detuning error ΩS = 0, regardless of the frequencies of nuclear spins. Therefore,
as the case of hyperfine-decoupled ENDOR, one cannot use PEANUT ENDOR to individually addressed a number
of nuclear spins, because in these ENDOR sequences the NV electron couples to all nuclear spins in an unselective
manner.

In summary, these ENDOR techniques are not suitable for single spin addressing and control. Other shortcomings of
hyperfine-decoupled ENDOR in the application to single-defect centres are the high-power consumption of microwave
as well as electron dephasing and relaxation due to fluctuations of the spin-locking field.

Supplementary Note 5: Details of simulations

a. General remarks.

The 13C spins of the diamond samples are randomly distributed around the NV centre. In simulations for NV
dynamics, we randomly distribute 13C spins around the NV centre and select samples that do not contain 13C nuclei
within a distance of 0.714 nm from the NV centre (corresponding to 274 atomic sites), so that the hyperfine interactions
between the 13C nuclei and NV electron spin are simply described by the dipolar coupling. The probability of getting
this kind of samples is ∼ 5% for natural abundance of 1.1% and is higher for lower abundances. Because of low spin
concentration, simulations are accurate enough by grouping nuclear spins into interacting clusters and neglecting the
intercluster interactions32. Nuclear spins are initially in thermal mixed states if they are not polarized.

The microwave and RF control fields takes the form (Bx
c x̂ + Bz

c ẑ) cos(ωct+ φc) in the simulations. Non-vanishing
misalignments Bz

c/B
x
c > 0.125 are introduced to mimic general experimental situations. The Rabi frequency is

determined by the values of Bx
c . Because of the control fields, the total Hamiltonians is time-dependent. To simulate

the control fields, we sample the control fields in a time step of the minimum values of 0.01×2π/ωc. In the simulations,
we choose the intervals of successive π pulses as multiples of the periods of RF driving field 2π/ωrf .

We adopt the coordinate system ẑ = [111]/
√

3 along the symmetry axis of NV centre and the orthogonal unit

vectors x̂ = [11̄0]/
√

2 and ŷ = [112̄]/
√

6 to record the positions of 13C spins rj = [rj · x̂, rj · ŷ, rj · ẑ], which are
measured relative to the location of the NV electron spin at the origin [0, 0, 0].

b. Nuclear spin bath.

The sample used for Fig. 2 in the main text has a natural abundance of 1.1% and contains the host nitrogen and 736
13C nuclei, by neglecting weakly coupled 13C nuclei at distances larger than 4.5 nm. To simulate the dynamics using
the method in ref. 32, we group the nuclei into interacting clusters by neglecting intercluster interactions ≤ 2π×70 Hz,
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giving spin clusters with up to 7 spins. For this sample, a spin echo π pulse extends the electron coherence times from
T ∗2 ≈ 4 µs to ∼ 1 ms under magnetic fields much larger than the hyperfine fields at the nuclei (see Supplementary
Fig. 7), consistent with theories22 and experiments33. Supplementary Fig. 7 also shows that the NV coherence time
can be much longer if the nuclear-nuclear interactions are suppressed. To make the simulation feasible, we assume
instantaneous ideal π pulses on the NV electron spin, and we apply secular approximation on the NV electron spin
by using that the NV electron spin can not be flipped by nuclear spins in the relevant time scales.

c. High-fidelity quantum gates.

In Fig. 3 of the main text, the gate fidelity is calculated by F = |Tr(UQ†)|/|Tr(QQ†)|17 for the target unitary
quantum gate Q and the evolution U on the 13C spins G1 (rG1 = [0.80325, 0.80325, 0.44625] nm), G2 (rG2 =
[−0.62475,−0.80325,−0.80325] nm), and the nitrogen spin in the rotating frame. With the nuclear qubit G1 addressed
with θrf = π, the target gate

Q = [Uent(φg)e−iπI
x
G1 ]⊗ IG2 ⊗ I14N, (33)

is an entanglement quantum gate, where the identities IG2 and I14N represent no-operation (NULL) gates on the
unaddressed spins G1 and the nitrogen, respectively. For interaction time τ = 0 and a rotation angle θrf the gate
becomes single-qubit gates

Q = Ie ⊗ e−iθrfI
x
G1 ⊗ IG2 ⊗ I14N, (34)

with the identity gate on the electron qubit. The DD sequences applied at the delay window are equally-spaced
AXY-8 sequences with a total number of 80 rectangular π pulses. The echo π pulse after the delay and before the
second interaction widows is implemented by a composite Knill pulse (consisting of 5 elementary π pulses)34. In
simulations for quantum gates, we apply a composite Knill pulse at the end of the protocol. All the π pulses have a
pulse length of 50 ns and contain amplitude errors and hence rotation errors. In simulations for population signal, we
apply rectangular π/2 pulses (pulse duration 25 ns, no amplitude error) before and after the delayed entanglement
echo for state preparation and readout. In the simulation, we do not polarize the nuclear spins. Therefore the 14N
spin initially in a thermal mixed state causes a detuning error of ∼ 2π×2.2 MHz on all the microwave pulses through
the hyperfine coupling.

d. Electron spin relaxation.

In simulations for the results of Fig. 4a in the main text, the electron spin relaxation is solved by Lindblad master
equations, using an electron spin relaxation rate 1/T1. The effects of electron spin relaxation on the nuclear spin
dephasing are discussed in Supplementary Note 3. In Fig. 4a of the main text, the signals come from the addressing

to an isolated 13C nucleus located at rj = [0.0,−1.9635,−0.8925] nm with the weak hyperfine coupling A
‖
j = 2π×1.49

kHz and A⊥j = 2π × 2.93 kHz. The 13C memory qubit located at [−0.714, 0.0, 0.357] nm has A
‖
m = −2π × 31.26 kHz

and A⊥m = 2π × 29.24 kHz. AXY sequences with instantaneous π pulses are used to simulate the iSWAP gate on the
13C qubit with a gate time 2tg ≈ 318 µs, using a total number of ∼ 152 composite π pulses (explicitly, 760 elementary
π pulses since one composite pulse in AXY sequences has 5 elementary π pulses). See Supplementary Note 3 for the
details of the swap operations on the 14N or the 13C nuclear spin memories.

e. Nuclear spin pairs.

In Fig. 4b of the main text, the two 13C nuclei in a C-C bond are located at rj = [−1.2495, 0.714,−0.1785] nm
and rk = [−1.33875, 0.80325,−0.26775] nm, which imply a dipolar coupling of dj,k = 2π × 1.37 kHz. The hyperfine

components A
‖
j = −2π× 4.94 kHz and A⊥j = 2π× 5.33 kHz for spin j, while for another spin k A

‖
k = −2π× 3.72 kHz

and A⊥k = 2π × 4.2 kHz. In Fig. 5a,c of the main text, the two 13C nuclei are located at rj = [0,−0.8925,−0.5355]
nm and rk = [−0.08925,−0.80325,−0.62475]. In Fig. 5b,d of the main text, the two 13C nuclei are located at
rj = [−1.071,−0.357, 1.071] nm and rk = [−1.16025,−0.26775, 0.98175], and we adopt the approach that uses a 14N
memory in the simulations.
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f. Interaction windows protected by DD.

In Fig. 4c of the main text, the two separated spins located at rj = [0.0,−1.9635,−0.8925] nm (i.e., the target spin
in Fig. 4a of the main text) and rk = [0.0, 1.2495, 1.9635] nm have similar hyperfine components. The hyperfine values

for the second weakly coupled spin are A
‖
k = 2π × 1.43 kHz and A⊥k = 2π × 2.28 kHz. We protect the interaction

window with τ = 0.5 ms, by using CP sequences with 1000 microwave π pulses (corresponding to 200 composite π
pulses for AXY sequences). In the delay window, the two CP π pulses on the 13C spins have the pulse duration
250× 2π/ωrf , corresponding to a Rabi frequency of ≈ 2π × 10 kHz for ωrf ≈ 2π×5 MHz in the simulations.

g. Decoupling by optical illumination.

In the simulation with optical illumination used in Fig. 4d of the main text, we adopt the Lindblad model of the
experimental paper35. This model provides results in good agreement with experimental data35, by incorporating
11 levels for the NV electronic states to describe the optical transitions, electronic decay, spin relaxation, as well as
the ionization and deionization of NV centre. To use the model for our system, we replace the 13C memory spin in
ref. 35 by our 13C memory spin and add a proton spin for detection. The memory 13C spin is similar to the one used

in ref. 35, with the location rm = [−0.108,−0.295,−1.74] nm and hyperfine components A
‖
m = −2π × 1.69 kHz and

A⊥m = 2π×5.4 kHz. The proton spin for detection is located 4 nm away from the NV centre, with rj = [2.31, 2.31, 2.31]
nm (hence A⊥j = 0 and the spin is hard to detect by standard DD). We adopt the parameters in ref. 35. For the
tunable parameter of the laser intensity, we use a value of 64Isat (in terms of saturation intensity Isat), which gives the
deionization rate γ1 = 64/(70ns) and ionization rate γ2 = 2γ1 used for simulations35. Note that ref. 35 also confirms
that the presence of RF driving does not interfere in the optical illumination process, because of their very different
operating frequencies.

In performing the iSWAP gates for the protocol we use continuous DD36 on the NV electron qubit with the Rabi
frequency on resonant to the precession frequency of the 13C memory. To implement a complete SWAP gate, we use
delayed entanglement echo on the 13C memory after the iSWAP operation. The delay window for the 13C memory
uses a 20-pulse CP sequence with duration ≈ 100 µs for a protected RF π gate. The total SWAP gate time for the
simulation is ≈ 584 µs, which can be reduced by a factor of two if we use the electron levels ms = ±1. The gate can
be further protected by storing the electron state to the nitrogen spin when applying the delay window for the 13C
memory. Using a 13C memory more strongly coupled to the NV electron can also significantly reduce the required
SWAP gate times.

The procedure to detect the chemical shifts of proton spins with optical illumination is the following. We first
pump the NV electron spin by optical field to initialize the NV electron spin to the state |0〉 with a fidelity 82% (the
fidelity is obtained for the parameters in ref. 35 and it is higher for better samples), which is followed by using a swap
operation to polarize the 13C memory spin. Then we use optical pumping again and a microwave pulse to initialize
the NV electron to a superposition state (|0〉 + | + 1〉)/

√
2. After the initialization of NV electron spin and memory

qubit, we let the whole system freely evolve for a time of τ to generate electron-nuclear entanglement (which can be
protected by DD as shown in the main text). Then we store the NV electron spin to the memory spin by a swap
gate. Subsequently we use optical illumination to decouple electron-nuclear coupling for applying a RF pulse with
the length trf ≈ 80 ms. The carry frequency of RF driving is set to the target proton spin. After optical illumination,
we wait for 2 µs to relax the NV electron spin back to |0〉 state. Subsequently, we use a swap gate to retrieve the
quantum state of NV electron spin and to re-popularize the ancillary 13C spin. Finally, we apply a microwave π pulse
on the electron spin and wait for another interaction window of time τ before readout of the electron spin state. We
can increase the interaction to target spins by using the NV levels ms = ±1, as described in the main text.
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