1 Supplementary Figure 1

3 Supplementary Figure 1. Characterization of Ly6C^{high} and Ly6C^{low} Mos/Mps.

A. Western blot analysis of CCR2 and CX3CR1 expression in Ly6C^{high} and Ly6C^{low} Mos/Mps. 5 Mos/Mps were sorted from the peritoneal cavity in zymosan-challenged mice. B. 6 Densitometric quantification of *CCR2* and *CX3CR1* protein levels in Ly6C^{high} and Ly6C^{low} 7 Mos/Mps. *P < 0.05 vs. Ly6C^{high}, n = 6. **C.** mRNA expression of pro-inflammatory and 8 anti-inflammatory cytokines in Ly6C^{high} and Ly6C^{low} Mos/Mps. *P < 0.05 vs. Ly6C^{high}, n = 9 10.

Supplementary Figure 2. Effect of *Ep3* deletion on peritoneal Mo differentiation in zymosan-challenged mice.

A. Illustration of experimental protocol with adoptive transfer of sorted Ly6 C^{high} Mos (1×10⁶) or Ly6C^{low} Mos (0.5×10^6) labeled with cell proliferation dye eFluor 670. **B.** Flow cytometric analysis of peritoneal eFluor 670⁺Ly6C^{high} Mos in zymosan-challenged mice. C. Quantification of infiltrated eFluor $670^{+}Ly6C^{high}$ Mos/Mps as shown in **B.** n = 5-6. **D**. Quantification of differentiated eFluor 670⁺Ly6C^{low} Mos/Mps as shown in **B**. n=5-6. **E**. Flow cytometric analysis of peritoneal eFluor 670⁺Ly6C^{low} Mos in zymosan-challenged mice. F. Percentage (Left) and total number (Right) of infiltrated eFluor 670⁺Ly6C^{low} Mos/Mps were calculated from **E**. *P < 0.05 vs. $Ep3^{F/F}$, n = 5-6.

43 Supplementary Figure 3. PG production in ischemic hearts from $Ep3^{F/F}$ and 44 $Ep3^{F/F};LysM^{Cre}$ mice after MI.

45 Mice underwent LAD ligation for 2 weeks, and then heart tissues were collected for PG 46 extraction. **A-E**. PGE₂ (**A**), PGD₂ (**B**), PGF_{2 α} (**C**), 6-keto-PGF_{1 α}, a stable hydrolyzed product 47 of PGI₂ (**D**), and TxB₂ (**E**) were examined by LC/MS/MS. **P < 0.01, n = 5.

61 Supplementary Figure 4. Ep3 deletion reduces recruitment of Ly6C^{low}Mos /Mps.

A. Gating strategy for CD11b⁺CD115⁺Ly6G⁻F4/80⁻Ly6C^{high} Mos, CD11b⁺CD115⁺ Ly6G⁻
F4/80⁻Ly6C^{low} Mos, CD11b⁺CD115⁺Ly6G⁻F4/80⁺Ly6C^{high} Mps, CD11b⁺CD115⁺Ly6G⁻F4/80⁺
Ly6C^{high} Mps in hearts after left anterior descending (LAD) artery ligation in mice. B-D.
Effect of *Ep3* deletion on number of Ly6C^{high} Mps (B), Ly6C^{high} Mos (C), Ly6C^{low} Mps (D)
and Ly6C^{low} Mos (E) in injured hearts of mice after MI. *P < 0.05 vs. *Ep3^{F/F}*, n = 5-6.

96 Supplementary Figure 6

- 118 Supplementary Figure 7
- 119

Supplementary Figure 7. Effect of *Ep3* deletion on Mo differentiation in infarcted
hearts in mice.

A. Illustration of experimental approach with separate adoptive transfer of sorted 123 CD45.2⁺Ly6C^{high} Mos (1×10⁶) and CD45.2⁺Ly6C^{low} Mos (0.5×10⁶) in $Ep3^{F/F}$;LysM^{Cre} and 124 $Ep3^{F/F}$ (CD45.1⁺) mice 3 days after MI. **B.** Flow cytometric analysis of blood CD45.2⁺ 125 Ly6C^{high} Mos from $Ep3^{F/F}$; Lys M^{Cre} and $Ep3^{F/F}$ mice. C. Flow cytometric analysis of blood 126 CD45.2⁺Ly6C^{low} Mos from $Ep3^{F/F}$; Lys M^{Cre} and $Ep3^{F/F}$ mice. **D.** Flow cytometric analysis of 127 cardiac CD45.2⁺Ly6C^{high} Mos in Ep3^{F/F};LysM^{Cre} and Ep3^{F/F} mice after MI on day 3 after 128 adoptive transfer. E. Quantification of differentiated CD45.2⁺Ly6C^{low} Mos/Mps as shown in 129 **D**. n=4-5. **F**. Quantification of infiltrated CD45.2⁺Ly6C^{high} Mos/Mps as shown in **D**. n=4-5. 130 n=4-5. G. Flow cytometric analysis of cardiac CD45.2⁺Ly6C^{low} Mos in $Ep3^{F/F}$; LysM^{Cre} and 131 $Ep3^{F/F}$ mice after MI on day 3 after adoptive transfer. Percentage (**H**) and total number (**I**) of 132

133 infiltrated CD45.2⁺Ly6C^{low} Mos/Mps were calculated from **G**. *P < 0.05 vs. EP3^{F/F}, n = 4-5.

137 Supplementary Figure 8. Effect of *Ep3* deficiency on *CX3CR1* ligand in infarcted 138 hearts in mice.

A. Relative mRNA levels of chemokine ligand *CX3CL1*, *CCL2* and *CCL5* in the infarcted 140 hearts from $EP3^{F/F}$; $LysM^{Cre}$ and $Ep3^{F/F}$ mice at day 14 after MI. n=5. B. Representative 141 CX3CL1 staining images of the infracted hearts from $Ep3^{F/F}$; Lys^{Cre} and $Ep3^{F/F}$ mice at 14 142 after MI. n=5. Scale bar, 20 µm .C. Quantification of CX3CL1⁺ cells in the infarcted hearts 143 shown in B. n=5.

164 Supplementary Figure 9

Supplementary Figure 9.Effect of *Ep3* deficiency in proliferation and apoptosis of Mps infiltrated in infarcted hearts.

A. Representative TUNEL⁺CD68⁺ cell staining images of the infracted hearts from $Ep3^{F/F};LysM^{Cre}$ and $Ep3^{F/F}$ mice at day 7 after MI. Scale bar, 50µm. IZ, infarct zone. **B.** Quantification of TUNEL⁺CD68⁺ cells in infracted hearts at day 7 after MI. n=5. **C.** Representative Ki67⁺CD68⁺ cell staining images of infracted hearts from $EP3^{F/F};LysM^{Cre}$ and $Ep3^{F/F}$ mice at day 7 after MI. Scale bar, 50 µm. **D**.Quantification of Ki67⁺ CD68⁺ cells in infracted hearts at day 7 after MI. n=5.

187 Supplementary Figure 10. *Ep3* deficiency in Mos/Mps increases infarct size in mice 188 after MI.

189	A. Representative images of Evans blue and triphenyltetrazolium chloride staining on heart
190	sections from $Ep3^{F/F}$ and $Ep3^{F/F}$; Lys M^{Cre} mice two weeks after MI. The dotted line denotes the
191	infarct zone. Scale bar, 1 mm. B. Infarct sizes were quantitated as shown in A. $*P < 0.05$ vs.
192	$Ep3^{F/F}$, n = 5. C. Brain natriuretic protein (BNP) was measured by enzyme-linked
193	immunosorbent assay. *P < 0.05 vs. $Ep3^{F/F}$, n = 10.

208

Supplementary Figure 11. Effect of *Ep3* deletion on neutrophil infiltration in hearts after MI.

A. Gating strategy for neutrophils in hearts from mice after MI. B. Effect of myeloid cell-Ep3 211 deletion on neutrophil infiltration in infarted hearts at different timepoits. n=6. C. 212 Representative Ly6G⁺ cell staining images of the infracted hearts from $Ep3^{F/F}$; LysM^{Cre} and 213 $Ep3^{F/F}$ mice after MI. Scale bar, 50 µm. **D.** Quantification of Ly6G⁺ cells in infarcted hearts. 214 n=5. E-F ROS levels in neutrophils isolated from infracted hearts at day 3 after MI. n=4. G 215 MPO expression in neutrophils isolated from infracted hearts day 3 after MI. n=4. H. Relative 216 mRNA levels of surface makers, proteases and matrix metallopeptidases of neutrophils isolated 217 218 from infracted hearts at day 3 after MI. n=4.

- 219
- 220

223

Supplementary Figure 12.Adverse cardiac remodelling in *Ep3^{F/F};LysM^{Cre} mice* after MI

A. Representative SMA staining images of the infracted hearts from Ep3^{F/F};LysM^{Cre} and 226 $Ep3^{F/F}$ mice at day 7 and 14 after MI. **B**. Quantification of SMA staining shown in **A**. *P < 227 0.05 vs. $Ep3^{F/F}$, n = 6. Scale bar, 50 µm. C. Relative mRNA levels of *MMPs* in the infracted 228 hearts from $Ep3^{F/F}$; Lys M^{Cre} and $Ep3^{F/F}$ mice at day 14 after MI. *P < 0.05 vs. $Ep3^{F/F}$, n = 6. **D**. 229 Relative mRNA levels of fibrotic genes in the infracted hearts from EP3^{F/F};LysM^{Cre} and 230 $Ep3^{F/F}$ mice at day 14 after MI. *P < 0.05 vs. $Ep3^{F/F}$; n = 6. E. Western blot analysis of 231 MMP9 and fibrotic proteins in the infracted hearts from $Ep3^{F/F}$; LysM^{Cre} and $Ep3^{F/F}$ mice at 232 day 14 after MI. F. Quantification of MMP9 and fibrotic protein expression shown in E. *P < 233 0.05 vs. $Ep3^{F/F}$, n = 6. G. Representative collagen I staining images in the infracted hearts 234 from $Ep3^{F/F}$; $LysM^{Cre}$ and $Ep3^{F/F}$ mice at day 7 and 14 after MI. **H**. Quantification of collagen I 235 staining shown in **G**. *P < 0.05 vs. $Ep3^{F/F}$, n = 6. Scale bar, 50 µm. **I**. Representative THBS1 236 staining images of the infracted hearts from $Ep3^{F/F}$; Lys M^{Cre} and $Ep3^{F/F}$ mice at day 7 and 14 237 after MI. Scale bar, 50 μ m. J. Quantification of THBS1 staining shown in I. *P < 0.05 vs. 238 239 $Ep3^{F/F}$, n = 6.

242

Supplementary Figure 13. Effect of myeloid-Ep3 deficiency on scar formation and
necrosis in mice after MI.

A.Representative Masson's trichrome staining images of heart cross sections (2.0 mm distance from ligation site). from $Ep3^{F/F}$; $LysM^{Cre}$ and $Ep3^{F/F}$ mice at day 7 and 14 after MI. Scale bar, 1mm. **B**. Quantification of collagen I density within scar area shown in **A**. *P < 0.05 vs. $Ep3^{F/F}$, n = 6. **C**. Quantification of scar size in infracted hearts shown in **A**. *P < 0.05 vs. $Ep3^{F/F}$, n = 6. **D**. Representative NBT staining images of heart sections (mid-papillary muscle level) from $Ep3^{F/F}$; $LysM^{Cre}$ and $Ep3^{F/F}$ mice 12 hours and 24 hours after LAD ligation. Scale bar, 1mm. **E**. Quantification of necrotic areas in infracted hearts shown in **D**. n = 5.

252

253

254

Supplementary Figure 14.Mp *Ep3* deficiency reduces VEGF secretion and tube
 formation of co-cultured human vascular endothelial cells (HUVECs) *in vitro*.

A. VEGF mRNA expression levels in peritoneal Mos/MPs from $Ep3^{F/F}$; Lys M^{Cre} and $Ep3^{F/F}$ 261 mice. *P < 0.05 vs. $Ep3^{F/F}$, n =10. **B.** Representative immunostaining of CD68 (green) and 262 VEGF (red) in peritoneal Mps from $Ep3^{F/F}$; Lys M^{Cre} and $Ep3^{F/F}$ mice. Scale bar, 20 µm. C. 263 Ouantitation of VEGF signaling in CD68⁺ cells in Mos/MPs as shown in (**B**). *P < 0.05 vs. 264 $Ep3^{F/F}$, n = 6. **D-G.** Fibrin bead-bound HUVECs were co-cultured with Mps from 265 $Ep3^{F/F}$; $LysM^{Cre}$ and $Ep3^{F/F}$ mice, and multiple capillary-like sprouts were displayed on day 7 266 (D). Black arrow, capillary-like sprout; scale bar, 20 µm. The number of vessel sprouts per 267 268 bead (E), the lumen diameter (F), and single-tube length per bead (G) were quantified at day 7. *P < 0.05 vs. $Ep3^{F/F}$, n = 4. 269

270

271

272

273

Supplementary Figure 15. Effect of *Ep3* deletion on expression of CCR2 and CX3CR1
 and TGFβ1 signaling in Mps.

A-C. Densitometric quantification of CCR2, p-Smad2/3, CX3CR1, and VEGF protein expression of peritoneal Mps from in zymosan-challenged mice, as shown in Figure 5A-5C. *P < 0.05 vs. $Ep3^{F/F}$, n = 3-4.

Supplementary Figure 16. Effect of Inhibition or activation of *Ep3* receptor on
 CX3CR1 expression and migration of human CD14^{dim} CD16⁺ Mos.

```
A. Gating strategy for CD14<sup>dim</sup> CD16<sup>+</sup> cells from human PBMCs. B. Effect of Sulprotone or
L798, 106 treatment on CD14<sup>dim</sup> CD16<sup>+</sup> Mos migration. *P < 0.05 vs. DMSO; n = 3-4. C.
Effect of Sulprotone or L798,106 treatment on CX3CR1 expression of CD14<sup>dim</sup> CD16<sup>+</sup> Mos.
*P < 0.05 vs. DMSO; n = 5.
```


Supplementary Figure 17. Characterization of Ep3α transgenic mice

A. Transgenic construct for CD68 promoter-driven $Ep3\alpha$ expression. **B.** Genotyping of *Mac-Ep3\alpha-Tg* mice. M, marker; TG, transgenic mice. **C.** Analysis of Ep3 expression levels in different tissues from Mp-Ep3Tg mice by gel electrophoresis of RT-PCR products. He, heart; Li, liver; Lu, lung; Sp, spleen; S.M, skeletal muscle; Co, colon; Ki, kidney; EC, endothelial cell; CM, cardiomyocyte cell; Mp, macrophage. W, WT mice; T, transgenic mice. **D**. Relative Ep3 mRNA expression levels in different tissues from Mp-Ep3Tg mice. **P < 0.05 vs. wild-type (WT), n = 6.

Supplementary Figure 18. Densitometric quantification of CCR2, p-Smad2/3, CX3CR1, and VEGF protein expression of peritoneal Mps after treatment from overexpression mice, as shown in Figure 5H. *P < 0.05 vs. WT, #P < 0.05 vs. Control, n = 4.

367

Supplementary Figure 19. Mp-Ep3 overexpression enhances VEGF secretion and tube formation of co-cultured HUVECs *in vitro*.

371 A.VEGF mRNA expression level in peritoneal Mos/Mps from WT, Mp-Ep3Tg-C, and *Mp-Ep3Tg-E m*ice. *P < 0.05 vs. WT, n =10. **B.** Representative immunostaining of CD68 372 (green) and VEGF (red) in peritoneal Mps from WT, Mp-Ep3Tg-C, and Mp-Ep3Tg-E mice 373 mice. Scale bar, 20 µm. C. Quantitation of VEGF signaling in CD68⁺ cells in Mos/MPs, as 374 shown in (**B**). *P < 0.05 vs. WT, #P < 0.01 as indicated, n = 6-7. **D-G.** Fibrin bead-bound 375 HUVECs were co-cultured with Mps from WT, Mp-Ep3Tg-C, and Mp-Ep3Tg-E mice, and 376 multiple capillary-like sprouts were displayed at day 7 (D). Black arrow, capillary-like sprout. 377 Scale bar, 20 μ m. The number of vessel sprouts per bead (E), the lumen diameter (F), and 378 379 single-tube length per bead (G) were quantified at day 7. *P < 0.05 vs. WT, n = 4.

Supplementary Figure 20. The uncropped scans of western blots from Figure 5, Figure S1
 and Figure S12.

394 Supplementary Tables

Supplementary Table 1. Effect of Mo/Mp Ep3 deletion on cardiac recovery after MI in mice

397

	Sh	Sham		[
	Ep3	Ep3 ^{F/F} ;LysM ^{Cre}	Ep3	Ep3 ^{F/F} ;LysM ^{Cre}
LVESD(mm)	3.03±0.13	2.71±0.11	4.18±0.22 [#]	5.48±0.29* ^{,#}
LVEDD(mm)	4.22±0.10	4.02±0.08	4.86±0.15 [#]	5.82±0.26* ^{,#}
LVESV(µl)	37.77±3.22	29.91±2.47	81.79±9.8 [#]	152.53±17.96* ^{,#}
LVEDV(µl)	78.00±4.81	71.28±3.28	112.6±8.26 [#]	173.15±17.86* ^{,#}
FS(%)	28.45±1.92	32.45±2.38	14.53±2.23 [#]	6.21±1.01* ^{,#}
SV(%)	43.07±1.94	43.08±2.77	30.81±3.21 [#]	20.61±1.53* ^{,#}
CO(ml/min)	17.02±1.45	17.43±1.97	11.96±1.73 [#]	9.21±1.30* ^{,#}
HR(BPM)	391.81±7.93	401.3±6.99	389.75±6.38	405.18±6.87
BW (g)	25.22±1.03	25.47±2.21	25.69±1.09	26.36±1.59
LVW/BW(mg/g)	3.22±0.04	3.13±0.06	4.43±0.03	4.19±0.01
HW/BW(mg/g)	4.65±0.10	4.37±0.08	6.17±0.24 [#]	6.77±0.44* ^{,#}
LW/BW(mg/g)	4.25±0.08	4.34±0.09	6.31±0.23 [#]	7.34±0.42* [#]

398 LVESD, Left ventricular end-systolic dimension; LVEDD, Left ventricular end-diastolic 399 dimension; LVESV, Left ventricular end-systolic volume; LVEDV, Left ventricular 400 end-diastolic volume; FS, Fractional Shortening; SV, Stroke volume; CO, Cardiac output; HR, 401 Heart rate. B W, Body weight; LVW, Left ventricular weight; HW, Heart weight; LW, Lung 402 weight. *P < 0.05 vs EP3^{F/F}, *P < 0.05 vs Sham, n=9-13.

- 403
- 404
- 405
- 406

Supplementary Table 2. Effect of Mo/Mp Ep3 deletion on cardiac function in mice

challenged with dobutamine.

	Baseline		dobutamine	
	EP3	Ep3 ^{F/F} ; LysM ^{Cre}	Ep3	Ep3 ^{F/F} , Cre
LVESD(mm)	2.65±0.21	2.62±0.11	1.33±0.20 [#]	1.46±0.13 [#]
LVEDD(mm)	3.52±0.27	3.63±0.19	3.38±0.13 [#]	3.31±0.67 [#]
LVESV(µl)	33.35±4.84	27.84±2.04	12.58±0.67 [#]	12.89±17.96 [#]
LVEDV(µl)	64.44±4.49	63.86±4.13	47.22±2.57 [#]	45.13±3.42 [#]
EF(%)	64.23±5.60	65.64±2.67	87.51±3.40 [#]	85.40±2.13 [#]
FS(%)	35.15±4.17	35.60±1.96	58.51±5.15 [#]	54.25±2.65 [#]
SV(%)	32.53±3.89	37.11±3.15	34.09±2.97	35.73±2.36
CO(ml/min)	14.22±1.72	15.78±1.36	18.17±1.13 [#]	17.25±1.15 [#]
HR(BPM)	401.79±7.14	400±10.81	479.94±4.94 [#]	487.13±7.29 [#]

 $^{\#}P < 0.05$ vs baseline. n=6-7.

426 Supplementary Table 3. Histological analysis of infarcted hearts from EP3^{F/F}Lys^{Cre} and 427 EP3^{F/F} mice at day 14 after MI.

	$EP3^{F/F}(n)$	Ep3 ^{F/F} ;Lys ^{Cre} (n)
Total Mo/Mps (×10 ⁴ /heart)	9.45±0.91(6)	5.67±0.51*(6)
Ly6C ^{high} (×10 ⁴ /heart)	1.22±0.19(6)	0.89±0.12(6)
$Ly6C^{low}$ (×10 ⁴ /heart)	8.23±0.51(6)	4.79±0.58*(6)
Angiogenesis (CD31 ⁺ PCNA ⁺ cells/field)	15.52±1.53(7)	7.01±0.49*(7)
Fibrosis (Collagen % scar area)	53.46±1.94(6)	40.51±0.57*(6)
Myofibroblast (SMA ⁺ area %)	9.68±0.36(6)	5.92±0.40*(6)
Infarct area(%)	29.91±1.81(5)	44.87±3.52*(5)
EF(%)	30.00±4.19(13)	14.18±2.30*(11)

429 * P<0.05 vs EP3^{F/F}.

		WT VO		KO KO
	WT→WT	WT→KO	KO→WT	KU→KU
LVESD(mm)	3.98±0.12	4.01±0.1	4.99±0.42*	4.91±0.28* ^{,#}
LVEDD(mm)	4.55 ± 0.1	4.79±0.13	5.32±0.37*	5.29±0.16* ^{,#}
LVESV(µl)	70.88±5.19	81.24±4.51	122.84±14.96*	122.81±9.40*'
LVEDV(µl)	95.61±5.55	108.16±6.48	141.43±16.86*	138.8±7.35* ^{,#}
FS(%)	12.58±1.43	11.36±0.88	6.14±0.64*	6.72±0.69* ^{,#}
SV(%)	25.60±2.98	26.91±2.94	18.59±2.56*	15.88±0.85* ^{,#}
CO(ml/min)	10.88±1.06	10.86±1.47	7.90±1.28*	6.46±0.41* ^{,#}
HR(BPM)	408.50±13.45	428±10.03	419±6.76	396±3.03
P < 0.05 vs WT -	\rightarrow WT mice, [#] $P < 0$.	$05 \text{ vs WT} \rightarrow \text{KC}$) mice, n=8-11.	

443 Supplementary Table 4. Effect of BTM on cardiac function of Ep3 KO mice after MI

		Control			SB525334	
	WT	Mp-EP3Tg-C	Mp-EP3Tg-E	WT	Mp-EP3Tg-C	Mp-EP3Tg-E
LVESD(mm)	4.41±0.22	3.63±0.38*	3.23±0.23*	4.65±0.49* ^{,#}	5.13±0.23* ^{,#}	5.02±0.32* ^{,#}
LVEDD(mm)	4.95±0.29	4.50±0.29*	4.07±0.17*	4.98±0.47* ^{,#}	5.52±0.21* ^{,#}	5.34±0.27* ^{,#}
LVESV(µl)	94.18±10.27	62.37±13.65*	43.40±6.06*	109.35±28.35* ^{,#}	128.8±12.23* ^{,#}	123.61±17.43* ^{,#}
LVEDV(µl)	119.3±9.03	96.62±14.71*	74.08±6.70*	125.89±29.31* ^{,#}	151.8±12.74* ^{,#}	140.89±15.83* ^{,#}
FS(%)	11.69±1.54	20.82±4.41*	21.33±2.57*	7.11±1.29* ^{,#}	7.4±0.81* ^{,#}	6.41±1.33* ^{,#}
SV(%)	25.10±2.04	34.25±3.03*	30.67±1.04	16.55±2.02* ^{,#}	22.09±1.72* ^{,#}	17.29±2.08* ^{,#}
CO(ml/min)	11.34±1.83	14.52±2.64*	16.35±2.45*	7.78±2.34 [#]	9.09±1.18 [#]	8.11±2.47 [#]
HR(BPM)	484.4±33.52	441.2±14.11	453.24±19.5	466.22±19.18	458.1±18.32	469.43±19.58
476 477 *, 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497	<i>P</i> < 0.05 vs WT	mice, [#] <i>P</i> < 0.01v	7s Control, n=7-8	3.		

474 Supplementary Table 5. Effect of TGFβ1 blocker SB525334 on cardiac function of

475 **Mp-Ep3Tg mice after MI.**

498	Supplem	nentary Table 6. Primers for real-time	PCR analysis in mice
499	Gene	Sense	Anti-sense
500	CCR2	ATCCACGGCATACTATCAACAT	CCAAGGCTCACCATCATCGTAG
501	CX3CR1	CCTGTTATTTGGGCGACATT	ACGCCCAGACTAATGGTGAC
502	EP1	TAACGATGGTCACGCGATGG	ATGCAGTAGTGGGGCTTAGGG
503	EP2	GCTCGCCTGCAACATCAGCGTTA	AGCTCGGAGGTCCCACTTTTCCT
504	EP3	CGCACAGCAACCTGTCAAGTA	CCCCACTAAGTCGGTGGAGC
505	EP4	GGATCATGTGTGTGTGGTGTCC	GCAGAACTTCCGAAGAAGGA
506	IL1	TCTCAACCAATCAGCACACCCGA	GATGTAGCGGAGGCTAGAGTTGC
507	IL12	ATGGCCATGTGGGAGCTGGAGAAA	GGTGGAGCAGCAGATGTGAGTGGCT
508	IL-13	CCTGGCTCTTGCTTGCCTTGG	TCTTGTGTGATGTTGCTCA
509	MMP-9	TTTGAGTCCGGCAGACAATCC	CAACCGTCCTTGAAGAAATG
510	TNFα	TGCCTATGTCTCAGCCTCTTCG	AGGCCATTTGGGAACTTCT
511	TGFβ	TGTTAAAACTGGCATCTGA	GTCTCTTAGGAAGTAGGT
512	VEGF	GCACATAGAGAGAATGAGCTT	CCCTCCGCTCTGAACAAGGCT
513	GAPDH	CCCTTATTGACCTCAACTACA	TGGTGAGGGGCCATCCACAGTCTTCTG
514			
515			
516			
517			
518			
519			
520			
521			
522			
523			
524			
525			
526			
527			
528			
529			
530			
531			
532			
533			
534			
535			
536			
537			
538			
539			
540			
541			

542	Supp	lementary Table 7. Primers for Chip l	PCR analysis
543	Gene	Sense	Anti-sense
544	S 1	AGGAAGCGGATAGAATGCAG	CATCTACCCATGTGCCAGAG
545	S2	ACACGGATGAGATTGGTTGA	TTGCCATCTGAGCTGTATCC
546	S 3	TTGAAATGCAGGCTCTCTTG	GGTTTCCTGTGTGGTACCCT
547	S4	GGTCAATCAGGCACAGTCAC	TCAAGTTACGAGCGTGCAA
548	S1′	GCC AGA CTA CAC AGTGCA TA	GCT TAT CTG AGC CCT TGT CTG
549	S2′	GGATCATGTGTGTGTGGTGTCC	GCAGAACTTCCGAAGAAGGA
550	hS	TAAGTGGCACCTCTCTCCCT	TCTTTAGATGCTGCCACAGG
551	h S1 $^\prime$	GCATTCCCATTCTCAGTCC	GAAGAGTGGGACCAGTCAGT
552	h S2 $^\prime$	CTGGGTGGATAATCAGACTG	GCTGGTTTCTGACCTGGCTA
553	hS3'	ATGAGTCTGGGCTTGGGCTGATAG	TGATGATTCAAACCTACCCGCC
554	h S4 $^{\prime}$	CTCAGTTCCCTGGCAACATCTG	TGGGAGGGAAGAGGACCTGTT
555	h S5′	AGCCCATTCCCTCTTTAGCCAG	ACACTCACTCACCCACACAGACAC
556			
557			
558			
559			
560			
561			
562			
563			
564			
565			
566			
567			
568			
569			
570			
571			
572			
573			
574			
575			
576			
577			
578			
579			
580			
581			
582			
583			
584			
585			

Gene	Sense	Anti-sense
S3+S4	CGTTGAGCTTGCTTGTCACAGC	CGATACAAGTTTGAGACCAGCCTAC
S1 '+ S2 ' 0	GTTTAGAAGATGAACCGTAAGCCTAGG	C TCTCTCTGTTCGCTCGCCAGCGCGC
hS	GCCTGTTTGCTTACGTGCAGAC	GGATACTCAGGCTCAGGTTTGTGT
hS3 '-hS5 '	ACAGTGACCGTGGAGACTCAAG	GAACAAAGCTGAACCTAAGGAT