## Supplementary Information Single Molecule Counting of Point Mutations by Transient DNA Binding

Xin Su<sup>1</sup>, Lidan Li<sup>1</sup>, Shanshan Wang<sup>2</sup>, Dandan Hao<sup>1</sup>, Lei Wang<sup>1</sup>, and Changyuan Yu<sup>1,\*</sup>

<sup>1</sup>College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China, 100029.

<sup>2</sup>Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

\*corresponding. yucy@mail.buct.edu.cn

| Name                    | Sequance (5'-3')                        |
|-------------------------|-----------------------------------------|
| Strands for single      |                                         |
| molecule assays         |                                         |
| KRAS c.34G              | GACTGAGTATAAACTTGTGGTAGTTGGAGCTGGTGGCGT |
| KRAS c.34A              | GACTGAGTATAAACTTGTGGTAGTTGGAGCTAGTGGCGT |
| Capture probe for KRAS  | AACTACCACAAGTTTATACTCAGTC-Biotin        |
| 12-nt Fluorescent probe | Cy3-GCCACTAGCTCC                        |
| for KRAS                |                                         |
| 11-nt Fluorescent probe | Cy3-GCCACTAGCTC                         |
| for KRAS                |                                         |
| 10-nt Fluorescent probe | Cy3-CCACTAGCTC                          |
| for KRAS                |                                         |
| 9-nt Fluorescent probe  | Cy3-CCACTAGCT                           |
| tor KRAS                |                                         |
| BRAF c.1/991            |                                         |
| BRAF c.1799A            | TAAAAATAGGTGATTTTGGTCTAGCTACAGAGAAATC   |
| Capture probe for BRAF  | GCTAGACCAAAATCACCTATTTTTA-Biotin        |
| 9-nt Fluorescent probe  | Cy3-TTTCTCTGT                           |
| for BRAF                |                                         |
| 9-nt Fluorescent probe  | Cy3-CCACCAGCT                           |
| for KRAS wild type      |                                         |
| 9-nt Fluorescent probe  | Cy3-TTTCACTGT                           |
| for BRAF wild type      |                                         |
| Strands for PCR         |                                         |
| KRAS forward primer     | TTATAAGGCCTGCTGAAAAT                    |
| KRAS reverse primer     | TCCGTTCTCAGGAACTGCTA                    |
| BRAF forward primer     | TCTTCATGAAGACCTCACAG                    |
| BRAF reverse primer     | TGCTACCTACGGGTCG                        |

Table S1 Synthetic oligonucleotide used in this work

Bases highlighted in blue are the mutation allele studied.

| Component                  | Amount        |
|----------------------------|---------------|
| 10× Thermopol Buffer       | 5 μL          |
| MgCl <sub>2</sub> , 25 mM  | 1 µL          |
| dNTP Mixture, 10 mM        | 1 μL          |
| Forward Primer, 10 µM      | 1 μL          |
| Reverse Primer, 10 µM      | 1 μL          |
| Taq Polymerase             | 1.25 units    |
| First strand cDNA reaction | 10 µL         |
| ddH <sub>2</sub> O         | Fill to 50 µL |

## **Table S2 Normal PCR reaction protocol**

## Shape parameter description in Gamma distribution.

k is the shape parameter in the Gamma distribution and is defined as the expected number of transitions between the bound and unbound state per unit time. We have

$$k = \frac{2k'_{on}k_{off}}{k'_{on}+k_{off}} \tag{1}$$

 $k'_{on}$  is the pseudo-first order rate of binding and  $k_{off}$  is rate of unbinding. In our previous work, k can be modeled by Poisson distribution.



Fig. S1 A) Transition histogram in absence of target DNA sequence for triplicate measurements. Fluorescence state change was as transitions. B) Transition histograms in presence of 200 fM ssDNA target. According to the transition distribution of the background (in the absence of targets), the transition threshold was set as 12. Additionally, to rule out the fluorescence bursts, the minimal t\_bound and t\_unbound were set as 3 s. This is the universal threshold for all assays to remove non-nucleic acid background.



Fig. S2 Sensitivity comparison of 9-nt probe with different acquisition times.



Fig. S3 Fluorescence time trajectory of (A) KRAS mutant, (B) KRAS wild type with 12 nt fluorescent probe at 500 mM NaCl under 10 min acquisition time where the probe and target concentrations were 25 nM and 200 fM, respectively. Due to the high G-C content in this sequence, the binding is close to stable hybridization. The wild type and mutant can't be discriminated.



Fig. S4 State dwell time distribution of KRAS wild type and mutation by using 10 nt (A) and 11 nt (B) probe. The NaCl concentration is 500 mM.



Fig. S5 State dwell time distribution of KRAS wild type and mutation by using 9 nt probe with 100 mM (A) and 1000 mM NaCl (B).



Fig. S6 Transient binding kinetics and thermodynamics. (A and D) Stern-Volmer plots of pseudo-first order constant  $k'_{on}$  for different assay conditions, illustrating the expected linear dependence of  $k_{on}$  with probe concentration. The slopes represent binding rate  $k_{on}$ . (B and C) Binding rate  $k_{on}$  and unbinding rate  $k_{off}$  as a function of probe length. (E and F) Binding rate  $k_{on}$  and unbinding rate  $k_{off}$  of 9-nt probe as a function of NaCl concentration. (G) Predicted and experimental dissociation constant  $K_d$  of 9-nt probe as a function of NaCl concentration.



Fig. S7 The correlation between hybridization kinetics and predicted T<sub>m</sub> (NUPACK).



Fig. S8 (A) Standard curves from single molecule assays of target KRAS c.34A. Linear fits were constrained to a *y*-intercept of 0, yielding  $R^2$  =0.996. Note that the count number was obtained using "stringent threshold". Inset: Standard curves of the concentrations below 50 fM. The LOD is defined as 3 × standard deviation of the background. (B) Significant (P < 0.01) differences between 1 fM and 0 fM is noted.



Fig. S9 Dynamic equilibrium prediction of BRAF c.1799A mutation with 9 or 10-nt probes which were completely complementary with BRAF c.1799A based on NUPACK.



Fig. S10 A) Fluorescence time trajectory of BRAF SNV and wild type with 9 nt fluorescent probe where the probe and target concentrations were 25 nM and 200 fM, respectively. NaCl was 900 mM. B) State dwell time map of BRAF SNV and WT. Inset: the average bound and unbound time of SNV and WT.



Fig. S11 PAGE gel analysis of the PCR products. Lane1: 50 bp DNA marker. Lane2: Asymmetric PCR products of KRAS gene from A549 cell line. Lane3: Asymmetric PCR products of BRAF gene from A375 cell line. Line 4: Synthetic ssDNA of KRAS amplicon. Line 5: Synthetic ssDNA of BRAF amplicon.



Fig. S12 Single molecule assay for synthetic PCR amplicons (80-nt), KRAS (A) and BRAF (B). The assay conditions are the same with the 39-nt model strands.