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Role of vascular normalization in benefit from metronomic 
chemotherapy: Insights from a mathematical model 
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Description of the mathematical model 

The mathematical model accounts for the growth of a spherical tumor with initial diameter 500 

μm surrounded by normal tissue. Tumor growth is modeled based on principles of continuum 

mechanics and specifically, on the multiplicative decomposition of the deformation gradient 

tensor (F), which describes the kinematics of the tumor. The kinematics of the tumor are 

decomposed into two components, the growth component (Fg) that accounts for the growth of 

the tumor and the elastic component (Fe) that accounts for mechanical interactions of the tumor 

with the surrounding normal tissue (1, 2),  

F = Fe Fg, (1) 

The growth component is set to be homogenous and isotropic (3-5) 

Fg = λg Ι, (2) 

where λg is the growth stretch ratio, which describes the growth of cancer cells and cancer stem 

cells (proliferation minus apoptosis). The elastic component Fe of the deformation gradient 

tensor is determined from Eq. (1) as 

Fe = F Fg
−1. (3) 

Calculation of growth stretch ratio λg 

We calculated the growth rate of the tumor taking into account the oxygen concentration as well 

as non-stem cancer cell (CC), stem-cell-like cancer cell (CSC) and induced cancer cell (ICC) 

proliferation (3, 4, 6-8). In particular, we used the expression 
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where T is the CC population, Csc is the CSC population, I is the ICC population, Ttot is the total 

density of cells given by the sum of the three populations, and 𝑆𝑇𝑐 , 𝑆𝐶𝑠𝑐𝐶  and 𝑆𝐼𝐶  are the 

proliferation/degradation rates of CCs, CSCs and ICCs, respectively. The 

proliferation/degradation rates are taken to be a function of oxygen concentration and the 

fraction of CCs, CSCs and ICCs, killed by chemotherapy or by immune cells (Eq. 5). 

Immune response to tumor growth 

For the immune system, three types of immune cells are considered, the natural killer (NK) cells 

the CD8+ T-cells and the regulatory T cells (Treg) (9-11). The system of equations accounts for 

the recruitment rates of the immune cells, their inactivation by cancer cells, the inhibitory role of 

Treg cells as well as their death rate and interaction with cancer cells.  

The equations that describe the conservation of cancer and immune cells are given below: 
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where N is the density of NK cells, L is density of tumor-specific CD8+ T-cells and Treg is the 

density of the Treg cells. In the equations above all cell densities are a function of position and 

time, and the migration of different cell types relative to the tissue is neglected. G describes the 

proliferation of CCs, CSCs and ICCs as a function of oxygen and Sf is an expression that 

accounts for the fraction of cells surviving chemotherapy. The proliferation of CSCs and ICCs is 

corrected by multiplying the expression for CCs by αcsc and αI, respectively according to 

experimental evidence (8, 12), c and D are the fractions of tumor cells killed by NK and CD8+ T-

cells, respectively, fNK, mT8 and mreg are death rates of NK cells, CD8+ T-cells and Treg cells 
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respectively, gNK, jT8 and greg are recruitment rates of immune cells, pim and q are inactivation 

rates of immune cells by CCs, σnk is a constant source of NK cells, r is the rate at which tumor-

specific CD8+ T cells are stimulated to be produced as a result of tumor cells killed by NK cells 

and λreg is the inhibition term of NK cells and CD8+ T cells from Treg cells. The rates of transfer 

of cancer cells from a type i to a type j are described by pij and their values were determined in 

(8) . Owing to a lack of studies that relate directly oxygen levels to activity of NK or CD8-T cells 

that our model incorporates, we used values from the range given by de Pillis et al. Under 

complete hypoxic conditions we used the lowest value for the activity of NK cells and CD8+ T 

cells reported in de Pillis et al. (9) which increased linearly to the highest value for normal 

oxygen conditions. The values of fNK and mT8 are modified to depend on oxygen levels. 

According to experimental data (13), a 40 times decrease in oxygen concentration (from 20% to 

0.5%) doubled the apoptotic rate of immune cells. Furthermore, the recruitment rates gNK, jT8 and 

greg of NK cells, CD8+ T-cells and Treg cells respectively, were modified to account for the 

effect of chemotherapy. According to previous studies (14) chemotherapy can decrease the 

number of Treg cells by a factor of four but low dose chemotherapy has no effect on the 

population of NK cells and CD8+ T-cells. At high doses of chemotherapy, however, the 

population of NK and CD8+ cells decreases by a factor of two. The range of values of the 

parameters of Eq. 5 are given in de Pillis et. al., based on preclinical and clinical data and from 

other pertinent studies (Table S1). The above equations are rendered dimensionless by dividing 

the number of cells per finite element node by the initial number of cancer cells, T0=5×102 cells. 

The initial population of cancer cells was taken to be: 98% CCs, 1% CSCs and 1% ICCs (15). 

The parameter D denotes the fractional cell kill of tumor cells by CD8+ T-cells and given by 

equation: 
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where dim is the saturation level of fractional tumor cell kill by CD8+ T-cells, s is steepness 

coefficient of the tumor-CD8+ T-cells competition term and λim the exponent of fractional cell 

kill by CD8+ T-cells.  
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The experimentally observed dependence of the volumetric growth rate on the local oxygen 

concentration is described by G and has the form (16, 17) 
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+
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where k1 and k2 are growth rate parameters and cox is the oxygen concentration. To account for 

the effect of drug delivery on growth, the surviving fraction of cells Sftr is included in Eq. (5), so 

that in the absence of drugs Sftr equals unity. The fraction of surviving cells with respect to drug 

concentration has been previously measured experimentally for doxorubicin (18), and the results 

were fitted to an exponential expression as a function of the internalized chemotherapy 

concentration cint, i.e., 

Sf = exp(−ωcint), (8) 

where ω is a fitting parameter defined in (19) for doxorubicin. According to this equation, if we 

ignore immune cells and assume that CCs, CSCs and ICCs, are killed by chemotherapy, the 

terms 𝑆𝑇𝑐 , 𝑆𝐶𝑠𝑐𝐶  𝑆𝐼𝐶 in Equation 12 become zero and thus, the growth stretch ratio in Equation 4 

gets a constant value. One would expect that the growth stretch ratio will decrease when CCs, 

CSCs and ICCs are killed, instead of taking a constant value. To account for this, Equation 8 was 

modified in the form: 

Sftr = 2*(exp(−ωcint)-0.5) (9) 

Due to the fact that CSCs are chemoresistant, we fit the equation to experimental data (20) to 

find the fitting parameter ω for this case (Sftrcsc). Additionally, even though different drugs might 

be incorporated into the model, in its current form the model does not distinguish between drugs 

assuming that their potency (i.e., parameter ω) is identical.  

For the proliferation rates of CSCs and ICCs, αcsc and αI, respectively we assume that for normal 

oxygen levels they are the same as the proliferation of CCs. In hypoxic conditions, for their 

growth rates we assume that they increase inversely proportional to the oxygen concentration so 

that as oxygen concentration approaches zero, the proliferation rates are twice as much as the 

rate at normal oxygen (12). For the parameters ccsc, Dcsc, cI, and DI that describe the killing 

potential of immune cells on CSCs and ICCs, we assume that they are more resistant in 



5 
 

interactions with immune cells. According to experimental data (21), the cytotoxicity of CD8+ T-

cells against CSCs is taken to be 7-fold lower than that of CCs. As a result, the parameters that 

describe the death of CSCs due to immune cells are assumed to be the same as for the CCs but 

multiplied with a factor of 0.14. For the ICCs, we assume that the dependence on drug delivery, 

oxygen concentration and immune response is the same as for the CSCs. 

Biphasic formulation of the tumor’s mechanical behavior 

The conservation of the tumor’s solid and fluid phase is given by the following mass balance 

equations (3, 7): 
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where Φc and Φf are the volume fractions of the solid and fluid phases, respectively, and vs, vf 

are the corresponding velocities. The creation/degradation of the solid phase, 𝑆𝑇𝑐 , 𝑆𝐶𝑠𝑐𝐶  and 𝑆𝐼𝐶 

was expressed in accordance to Equation (5) and Ref. (3): 
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The term Q in Eq. (11) denotes the fluid flux entering from the blood vessels into the tumor or 

the surrounding normal tissue minus the fluid flux exiting through lymphatic vessels, and is 

expressed as (5): 

( ) ( )p v v i pl vl i lQ L S p p L S p p= − − − , (13) 

where Lp, Sv and pv are the hydraulic conductivity, vascular density and vascular pressure, 

respectively, Lpl, Svl and pl are the corresponding quantities for lymphatic vessels, and pi is the 

interstitial fluid pressure. Due to conservation of matter in the tissue, the volume fraction of the 

fluid phase was evaluated as 

1f cΦ Φ= − . (14) 



6 
 

Furthermore, the mass balance reads 
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where the fluid velocity vf  is given by Darcy’s law 

f sth i
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with kth the hydraulic conductivity of the interstitial space. 

According to the biphasic theory for soft tissues (22), the total stress tensor σtot is the sum of the 

fluid phase stress tensor σf = –piI and the solid phase stress tensor σs. As a result, the stress 

balance is written as: 

( )s
tot ip∇⋅ = ⇒∇⋅ − =σ 0 σ I 0 , (17) 

where the Cauchy stress tensor of the solid phase σs is given by (23): 

1s
e e T

e

WJ − ∂
=

∂
σ F

F
, (18) 

The tumor mechanical behavior was modeled to be incompressible and neo-Hookean with strain 

energy density given by (24-27): 

( )13
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, (19) 

where μ and k are the shear and bulk modulus of the material, respectively, Je is the determinant 
of the elastic deformation gradient tensor Fe, II1 = I1Je

–2/3 where I1 = trCe is the first invariant of 

the elastic Cauchy-Green deformation tensor Ce = Fe
T Fe, and p is a penalty variable introduced 

for near incompressible materials. The surrounding normal tissue was assumed to be 

compressible and neo-Hookean with a Poisson ratio of 0.2. Values for all parameters above are 

provided in Table S1. 

Equations (1-3) and (10-19) provide the general framework of the biomechanical tumor growth 

model and are solved to simulate the growth of the tumor within a normal/host tissue. Solution of 

these equations is used for the calculation of the interstitial fluid pressure, the fluid velocity and 

the stresses that are developed owing to mechanical interactions of the tumor with the host tissue. 
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Interstitial fluid pressure and fluid velocity are used in the drag transport equations (Eq. 23, 24), 

whereas mechanical interactions between the tumor and the host tissue affect how much the 

tumor will growth. Equations (4-9) describe the balance law of the different cell types into the 

tumor to calculate the growth stretch ratio, λg, which determines how fast the tumor will grow. 

The growth stretch ratio is employed by the general framework through Equations (2, 3 and 18).   

 

Vascular surface density 

To quantify the vascular density we assume that it is affected by the decrease in the vessel 

diameter caused by increased number of cancer cells (28) and by the permeability of the tumor 

vessel wall (29). To incorporate the effect of the former, we considered the vascular density as 

the vascular surface area S per unit volume, with S given by: 

S = πdLvwN, (20) 

where d, Lvw and N are the diameter, length and number of vessels, respectively. Assuming that 

the number of cancer cells does not affect the number or length of vessels, but only their 

diameter, the change in vascular density due to vessel compression is expressed as: 

SV = (d/d0) SV0, (21) 

where SV0 is the vascular density of the host tissue, SV0 = 70 cm–1. Fitting experimental data from 

histological sections (28, 30) to a mathematical equation, an expression for degree of vessel 

compression (i.e., d/do) as a function of cancer cell density can be estimated (Fig. S14). For low 

cancer cell density, d/do=1 and the vascular density is equal to the reference vascular density Svo 

given in Figure S5C. 

For the effect of vascular permeability on the functional vessel density, our previous research has 

shown that a decrease in the vessel wall pore size from 400nm (baseline value) to 150 nm or less 

causes a two-fold increase in the number of functional vessels and that the dependence in this 

range of vessel wall pore sizes is linear (29).     
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Oxygen Concentration 

The rate of change of oxygen in tissues depends on its transport through convection and 

diffusion, minus the amount of oxygen consumed by cells, plus the amount that enters the tissue 

from the blood vessels (3, 4), i.e., 

( ) ( )2f Cox ox ox
ox ox ox er V iox ox

ox ox

c A cc D c P S C c
t c k

∂
+∇ ⋅ = ∇ − Φ + −

∂ +
v , (22) 

where cox is the oxygen concentration, Dox is the diffusion coefficient of oxygen in the interstitial 

space, Aox and kox are oxygen uptake parameters, Per is the vascular permeability of oxygen that 

describes diffusion across the tumor vessel wall and Ciox is the oxygen concentration in the 

vessels. 

Drug transport 

We assumed that the chemotherapeutic agent exists in three distinct states: free to travel in the 

interstitial space (cf), bound to cancer cells (cb), and internalized by cells (31). Hence, drug 

transport in the interstitial space is expressed as (32): 
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(23) 

where Df is the diffusion coefficient of the drug in the tumor interstitial space, ce is the 

concentration of cell surface receptors, kon, koff and kint are the association (binding), dissociation 

and internalization rate constants of the drug with the cells, respectively, and Φ is the volume 

fraction of tumor accessible to the drug. The term Qsta on the right hand side of Eq. (23) denotes 

the transport of the drug across the tumor vessel wall and is given by Starling’s approximation as 

(32): 

( ) ( )(1 )sta er V iv f p V V i f fQ P S C c L S P p cσ= − + − −  (24) 
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where Lp is the hydraulic conductivity of the vessel wall, Civ = exp(–(t–t0)/kd) is the vascular 

concentration of the drug, describing a bolus injection, with t0 the time of drug injection and kd 

the blood circulation decay, and σf is the reflection coefficient. The hydraulic conductivity was 

calculated from the expression (33): 

2
0

8p
vw

L r
Lη

γ
= , (25) 

where γ is the fraction of vessel wall surface area occupied by pores, r0 is the pore radius, η is the 

viscosity of water at 310K, and Lvw is the thickness of the vessel wall. 

The vascular permeability Per and the reflection coefficient σf were calculated from the equations: 

0
er

vw

HDP
L

γ
=  (26) 

σf = 1 – W (27) 

respectively, where H and W describe hydrodynamic and electrostatic interactions and D0 is the 

diffusion coefficient of a particle in free solution at 310K, given by the Stokes-Einstein 

relationship 

0 6
b emp

s

K T
D

rπη
= , (28) 

where Kb is the Boltzmann constant, Temp is temperature and rs the radius of the diffusing 

particle. Ignoring electrostatic interactions, H and W are reduced to (33): 
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where F is the partition coefficient (33): 

F = (1 – λ)2, (31) 

and λ is the ratio of the drug size to the vessel wall pore size. The coefficients Ks and Kt in Eqs. 

(29) and (30) are determined by: 



10 
 

( ) ( )
2 4

5/2 32

1 0 3

9 2 1 1 1
4

nt n n

n n

n

s n n

K a a
K b b

λ λ λπ − +

= = +

      
= − + − +      

      
∑ ∑ . (32) 

In the case of oxygen, γ and Η in Eq. (26) were set equal to unity assuming that oxygen diffuses 

through any point of the vessel wall and its transport is not hindered by hydrodynamic 

interactions; D0 for oxygen was taken to be the same as the diffusion coefficient in the tissue (Dox 

in Table S1), i.e.: 

0
erox

vw

DP
L

= . (33) 

 

Solution strategy 

The model consists of a spherical tumor domain embedded at the center of a cubic host domain 

two orders of magnitude larger to avoid any boundary effects on the growth of the tumor; due to 

symmetry, only one eighth of the system was considered. We simulated a murine tumor that 

grows within a period of 30 days based on published experimental protocols (34-36). To this 

end, Equations (1)-(33) were solved simultaneously using the commercial finite element 

software COMSOL Multiphysics (COMSOL, Inc., Burlington, MA, USA). Values for the model 

parameters are provided in Supplementary Table 1. The boundary conditions for the continuity 

of the stress and displacement fields, as well as the concentration of the oxygen and the drug at 

the interface between the tumor and the normal tissue, were applied automatically by the 

software, the remaining boundary conditions are shown in Fig. S15. 
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Table S1 Parameter values used in the model 

Parameter Description Value Reference 

μ shear modulus 
5.00 kPa for host tissue; 

10.40 kPa for tumor 
(37-39) 

k bulk modulus 
6.67 kPa for host tissue; 

10.40×107 kPa for tumor 
(37-39) 

kth hydraulic conductivity 6.5×10−10 m2∙Pa−1∙day−1 (39) 

Ciox 
initial oxygen 

concentration 
0.2 mol∙m−3 (4,15) 

Dox 
oxygen diffusion 

coefficient 
1.55×10−4 m2∙day−1 (4) 

Aox oxygen uptake 2,200 mol∙m−3∙day−1 (4, 17) 

kox oxygen uptake 0.00464 mol∙m−3 (4, 17) 

k1 growth rate parameter 3,500 day−1 --- 

k2 growth rate parameter 0.0083 mol∙m−3 (17) 

ce receptor concentration 0.01  mol∙m−3 (40, 41) 

Φ 

volume fraction of 

tumor accessible to 

drug 

0.3 

 
(40, 41) 

kon binding rate 
1.296 ×106                     

m3∙mol−1∙day−1 (40, 41) 

koff dissociation rate 691.2 day−1 (40, 41) 

kint internalization rate 3.7 day−1 (40, 41) 

Df 
drug diffusion 

coefficient 
8.64×10−6 m2∙day−1  (42) 

ω 
cancer cell survival 

constant 
0.6603 m3/mol (19) 

ωcsc 
stem-cell-like cell 

survival constant 
0.0272 m3/mol (19, 20) 

ωI induced cancer cell 0.0272 m3/mol --- 
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survival constant 

acsc 
stem-cell-like cell 

growth multiplier 
range **: 1-2 [-] (11) 

aI 
induced cancer cell 

growth multiplier 
range **: 1-2 [-] --- 

 kd blood circulation decay 0.417 day−1 (43) 

Lvw vessel wall thickness 5×10−6 m (5) 

η water viscosity at 310K 7×10−4 Pa∙s (5) 

Tabs absolute temperature 310K --- 

γ 

fraction of vessel wall 

surface area occupied 

by pores 

1×10−5 [-] (43) 

c 
fractional tumor cell 

kill by NK cells 

range *: 3.23×10−7 -

3.23×10−6 cell−1∙day–1 
(44) 

dim 
fractional tumor cell 

kill by CD8+ T-cells 
range *: 1.43 – 7.15 day–1  (44) 

λim 

exponent of fractional 

cell kill by CD8+ T-

cells 

1.36 [-] (44) 

s 

steepness coefficient of 

the tumor-CD8+ T-cells 

competition term 

2.73 [-] (44) 

σnk 
constant source of NK 

cells 
1.3×104 cells∙day–1 (44) 

fNk death rate of NK cells  
range **: 0.0412 - 0.0814 

day–1  
(44) 

mΤ8 
death rate of CD8+ T-

cells  
range **: 0.02 - 0.04 day–1   (44) 

mreg 
death rate of regulatory 

T-cells  
0.02 day–1   (10) 



13 
 

gNK 
recruitment rate of NK 

cells 
initial***: 0.025 day–1 (44) 

jT8 
recruitment rate of 

CD8+ T-cells 
initial***: 0.0375 day–1 (44) 

greg 
recruitment rate of 

regulatory T-cells 
initial***: 0.0375 day–1 (10) 

h 

steepness coefficient of 

NK cell recruitment 

curve 

2.02×107 cell2 (44) 

pim 
inactivation rate of NK 

cells 
1×10−7 cell−1∙day–1 (44) 

kim 

steepness coefficient of  

CD8+ T-cells 

recruitment curve 

2.02×107 cell2 (44) 

q 
inactivation rate of  

CD8+ T-cells 
3.42×10−10 cell−1∙day–1 (44) 

r 
stimulation rate of  

CD8+ T-cells  
1.1×10−7 cell−1∙day–1 (44) 

λreg 

inhibition term of NK 

cells and CD8+ T-cells 

from T-reg cells 

100 cell−1∙day–1 (10) 

pTC 

rate of dedifferentiation 

from cancer cells to 

stem-like-cell cancer 

cells 

0.55 day–1 prior treatment;  

0 day–1 after application of 

chemotherapy 

(8) 

pCT 

rate of transition from 

stem-like-cell cancer 

cells to cancer cells 

1 day–1 prior treatment;  

0.96 day–1 after application 

of chemotherapy 

(8) 

pCI 
rate of transition from 

stem-like-cell cancer 

0.58 day–1 prior treatment;  

0 day–1 after application of 
(8) 



14 
 

cells to induced cancer 

cells 

chemotherapy 

pIC 

rate of transition from 

induced cancer cells to 

stem-like-cell cancer 

cells 

0.96 day–1 prior treatment;  

0.38 day–1 after application 

of chemotherapy 

(8) 

pTI 

rate of transition from 

cancer cells to induced 

cancer cells 

0.21 day–1 prior treatment;  

1 day–1 after application of 

chemotherapy 

(8) 

pIT 

rate of transition from 

induced cancer cells to 

cancer cells  

1 day–1 prior treatment;  

0.98 day–1 after application 

of chemotherapy 

(8) 

 

*:  linear increase from minimum to maximum value depending on oxygen levels 

**: linear decrease from maximum to minimum value depending on oxygen levels 

***: initial value in the absence of drug. 
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Table S2 Value of parameter k1 used for fitting the model to experimental data 

 

Experimental study k1 

Doloff et al.(45)  1,950 day−1 

Cham et. al.(35) 
800 day−1 (PaCa8) 

1,100 day−1 (PaCa13) 

Yapp et. al. (46) 
2,400 day−1 (PaCa8) 

2,600 day−1 (PaCa13) 
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Figure S1 Effect of TSP-1 variation on (A) functional vascular density, (i.e., Sv in 
Supplementary Eq. 21), (B) tissue oxygenation, (C) drug concentration taken up by all types of 
cancer cells, (D) NK cell, (E) CD8+ T cell and (F) Treg cell population defined as number of 
cells per computational node normalized with initial cancer cells concentration. Drug 
concentration was normalized with the vascular concentration. The values of the model 
parameters were calculated in the middle distance between the tumor center and periphery. 
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Figure S2 Effect of TSP-1 variation on (A) cancer cell, (B) stem-cell-like cancer cell and (C) 

induced cancer cell population - defined as number of cells per computational node normalized 

with the initial cancer cells concentration and on (D) final tumor volume at the end of the 

simulation. The values of the model parameters were calculated in the middle distance between 

the tumor center and periphery. 
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Figure S3 Spatial distribution of various quantities. Increase in TSP-1 levels leading to increase 
of (A) oxygen levels, (B) drug concentration (dimensionless with respect to the concentration in 
the vessels), (C) NK cells and (D) CD8+ T-cells concentration and decrease of (E) cancer cells 
(F) stem-cell-like cancer cells and (G) induced cancer cells concentration.  Cell concentration is 
defined as number of cells per computational node normalized with the initial cancer cells 
concentration. The total number of computational nodes for the tumor domain is 135.  
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Figure S4 Proportion of populations (A-C) and total number of cell population (D-F; logarithmic 
scale) of all cell types considered in the model without chemotherapy (A, D) and with 
chemotherapy using two different levels of TSP-1; (B, E) TSP-1 level 1 and (C, F) TSP-1 level 
4. Model results for the population of the three cancer cell types are in agreement with previous 
studies (8). Increase of TSP-1 levels results in an increase in the population of induced cancer 
cells (ICCs) due to the fact that are more resistant to increased drug levels compared to cancer 
cells (CCs). Furthermore, the initial increase in the population of NK cells is also observed in 
Ref. (9) where the equations of the immune cells were first used and validated.   
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Figure S5 Model assumptions for TSP-1 levels and TSP-1 induced vessel normalization. (A) A 
sigmoidal function was employed to describe the relationship of relative increase of TSP-1 with 
the dose schedule (47). Dose of unity corresponds to the MTD protocol, while lower doses to 
different metronomic therapy protocols. (B) Dependence of vessel wall pore size (47) (vascular 
permeability) on TSP-1 relative increase with respect to the TSP-1 amount of MTD. (C) 
Dependence of initial functional vessel density (i.e., Svo in Supplementary Eq. 21) on the relative 
TSP-1 increase with respect to the TSP-1 amount of MTD (29).  
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Figure S6 Phase diagram for the effect of dose scheduling and tumor relapse/cell recovery on 
(A) CD8+ T-cells and (B) Treg concentration. Low dose chemotherapy increases levels of CD8+ 
T-cells and decreases slightly levels of Treg cells. Relative values of metronomic therapy with 
respect to the corresponding values of the MTD protocol are presented. The values of the model 
parameters presented in the figure were calculated in the middle distance between the tumor 
center and periphery. 
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Figure S7 Total cancer cells population as a function of time for the MTD protocol (solid line) 
and metronomic protocol (dashed line) - the lowest dose employed - for three different times for 
tumor relapse (1, 2 and 4 days). The decrease and recovery of cancer cells following drug 
administration with MTD is shown, which is absent for the metronomic protocol. Cell 
concentration is normalized with the initial cancer cells concentration. 
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Figure S8 Comparison of model predictions with experimental data by Cham et. al. (35). 
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Figure S9 Comparison of model predictions with experimental data by Yapp. et. al. (46) 
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Figure S10 Internalized drug concentration as a function of the functional vascular density and 
the pore size (permeability) of the tumor vessel wall. Drug delivery is optimized for high 
vascular densities and for pore sizes on the order of 150 nm. Drug concentration is normalized 
by division with the concentration at the vessels. 
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Figure S11 Model predictions of tumor growth with and without the effect of vascular 

normalization on immune response activation (A). The killing rates of NK (parameter c) and 

CD8+ T-cells (parameter d) have the baseline values and remain unaltered after normalization of 

tumor vessels. The results show that when immune activation in not accounted for metronomic 

therapy is still more effective compared to MTD, which is simply an effect of improved drug 

delivery. Predictions for two different times of tumor relapse are presented: (B) 3 days and (C) 5 

days. The 1/14 dose schedule (compared to MTD) of metronomic therapy was employed. 
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Figure S12 Model predictions of tumor growth when metronomic chemotherapy accounts only 

for immunogenic cell death and not changes in the tumor vasculature (A). Metronomic therapy 

reduces immunogenic cell death and results in smaller tumor volumes compared to MTD (B). 

The 1/14 dose schedule (compared to MTD) of metronomic therapy was employed.  
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Figure S13 Model predictions of tumor growth as a function of the inhibition of immune cell 

activity by regulatory T cells. The corresponding parameter λreg in Eq. (5) was varied to receive a 

minimum (one order of magnitude lower) and a maximum (one order of magnitude higher) value 

from the baseline reported in Table S1. Increasing the value of λreg leads to higher tumor 

volumes because inhibition of immune response increases the density of cancer cells and cancer 

stem cells. The MTD protocol was employed for the simulations. 
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Figure S14 Dependence of vessel diameter on cancer cell density derived from the analysis of 
experimental data (28, 30). In the model cancer cell density is evaluated as the total number of 
cancer cells in the tumor (i.e., sum of cancer cells at each computational node) per unit area 
calculated as πr2, where r is the tumor radius. 
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Figure S15 Computational domain and boundary conditions employed. 
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