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Web Appendix A: Derivation of Asymptotic Variance for µ̂(d1, d2)

If we introduce the empirical measure Pn for the SMART population and Pm for the

enrichment population, then the estimator can be written as

µ̂(d1, d2) =

{
Pn

[
Z
I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)
+ (1− Z)

I(A1 = d1(S))

p(A1|S)

]}−1

×
{

Pn

[
Z
I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)
Y

]
+ Pn

[
(1− Z)

I(A1 = d1(S))

p(A1|S)

nP̃n

{
Z̃Ỹ I(Ã1 = A1, Ã2 = d2(S,A1), S̃ = s)

}
+mP̃m

{
Ỹ I(Ã1 = A1, Ã2 = d2(S,A1), S̃ = S)

}
nP̃n

{
Z̃I(Ã1 = A1, Ã2 = d2(S,A1), S̃ = S)

}
+mP̃m

{
I(Ã1 = A1, Ã2 = d2(S,A1))

}
 .

(1)

First, since Ŷ (s, a1, a2) → E[Y |S = s, A1 = a1, A2 = a2] by assumption (b), µ̂(d1, d2)

converges to µ(d1, d2) which is equal to the same expression as (1) if we replace Pn and

Pm by their expectations, denoted by Ps and Pe, respectively. Therefore, using the linear

expansion and microscopic arguments, we obtain

µ̂(d1, d2)− µ(d1, d2)

= (Pn −Ps)

[
Z
I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)
(Y − µ(d1, d2))

+(1− Z)
I(A1 = d1(S))

p(A1|S)
E[Y − µ(d1, d2)|S,A1, A2 = d2(S,A1)]

]
+ (Pn −Ps)

[
ZY P̃s

{
(1− Z̃)

I(Ã1 = d1(S̃))

p(Ã1|S̃1)

× I(S = S̃, A1 = Ã1, A2 = d2(S̃, Ã1))

α(S̃, Ã1)π1(S̃, Ã1, d2(S̃, Ã1), ) + βπ3(S̃, Ã1, d2(S̃, Ã1))

}]

− (Pn −Ps)

[
ZP̃s

{
(1− Z̃)

I(Ã1 = d1(S̃))

p(Ã1|S̃1)

×E[Y |Ã1, Ã2 = d2(S̃, Ã1), S̃]I(S = S̃, A1 = Ã1, A2 = d2(S̃, Ã1))

α(S̃, Ã1)π1(S̃, Ã1, d2(S̃, Ã1)) + βπ3(S̃, Ã1, d2(S̃, Ã1))

}]

+β (Pm −Pe)

[
Y P̃s

{
(1− Z̃)

I(Ã1 = d1(S̃))

p(Ã1|S̃1)

× I(S = S̃, A1 = Ã1, A2 = d2(S̃, Ã1), )

α(Ã1, S̃)π1(S̃, Ã1, d2(S̃, Ã1)) + βπ3(S̃, Ã1, d2(S̃, Ã1))

}]
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−β (Pm −Pe)

[
P̃s

{
(1− Z̃)

I(Ã1 = d1(S̃))

p(Ã1|S̃1)

×E[Y |S̃, Ã1, Ã2 = d2(S̃, Ã1), ]I(A1 = Ã1, A2 = d2(S̃, Ã1), S = S̃)

α(Ã1, S̃)π1(S̃, Ã1, d2(S̃, Ã1), ) + βπ3(S̃, Ã1, d2(S̃, Ã1))

}]
+op(n

−1/2).

By introducing r(s, a1) = q(a1|s)q(s)/[p(a1|s)p(s)], we note

π2(a1, a2, s)

α(a1, s)π1(s, a1, a2) + βπ3(s, a1, a2)
=

1

p(a2|s, a1)
I(a2 = d2(s, a1))

α(s, a1) + βr(s, a1)
.

Hence, we can further simplify the expansion to

µ̂(d1, d2)− µ(d1, d2)

= (Pn −Ps)

[
Z
I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)
(Y − µ(d1, d2))

+(1− Z)
I(A1 = d1(S))

p(A1|S)
E[Y − µ(d1, d2)|S,A1, A2 = d2(S,A1)]

]
+ (Pn −Ps)

[
(1− α(S,A1))Z (Y − E[Y |A1, A2, S])

α(S,A1) + βr(S,A1)

I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)

]
+β (Pm −Pe)

[
(1− α(S,A1)) (Y − E[Y |A1, A2, S])

α(S,A1) + βr(S,A1)

I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)

]
.

As a result, the asymptotic variance of µ̂(d1, d2) is V/n as defined in section 3.

V ≡ V ars

(
Z
I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)

×
{

(Y − µ(d1, d2)) +
1− α(S,A1)

α(S,A1) + βr(S,A1)
(Y − E[Y |S,A1, A2])

}
+ (1− Z)

I(A1 = d1(S))

p(A1|S)
E[Y − µ(d1, d2)|S,A1, A2 = d2(S,A2)]

)
+βV are

(
(1− α(S,A1)) (Y − E[Y |A1, A2, S])

α(S,A1) + βr(S,A1)

I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)

)
,

where V ars and V are denote the variance in the SMART and enrichment population respec-

tively. We thus conclude that
√
n(µ̂(d1, d2)−µ(d1, d2)) converges in distribution to N(0, V ).
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Clearly, a consistent estimator for V is given by

V̂ = Pn

[
Z
I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)
(Y − µ̂(d1, d2))

+(1− Z)
I(A1 = d1(S))

p(A1|S)
(Ŷ (A1, d2(S,A1), S)− µ̂(d1, d2))

+
(1− α̂(S,A1))Z

(
Y − Ŷ (A1, A2, S)

)
α̂(S,A1) + βr̂(S,A1)

I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)

2

+βPm

(1− α̂(S,A1))
(
Y − Ŷ (A1, A2, S)

)
α̂(S,A1) + βr̂(S,A1)

I(A1 = d1(S), A2 = d2(S,A1))

p(A1|S)p(A2|S,A1)

2

,

where α̂(s, a1) and r̂(s, a1) are the empirical estimates of α(s, a1) and r(s, a1) respectively.



4 Biometrics, 000 0000

Web Appendix B: Derivation of Simplified Formula for Comparative Efficiency

(2)

From the notation in the main manuscript, one have the relative efficiency is

ρ = V0/V =
Es

[
(ν(S)−µ(d1,d2))2+σ(S)2

p1(S)p2(S)

]
Es

[(
α

p1(S)p2(S)
+ 1−α

p1(S)

)
(ν(S)− µ(d1, d2))2 + σ(S)2

p1(S)p2(S)
α(1+βω(S))2+β(1−α)2ω(S)

(α+βω(S))2

] .
Substituting the simplified assumptions into the formula: p1(S) = p1, p2(S) = p2 and

ω(s) ≈ 1, one has

ρ ≈ Es [(ν(S)− µ(d1, d2))
2 + σ(S)2]

Es

[
(α + p2(1− α)) (ν(S)− µ(d1, d2))2 + σ(S)2 α(1+β)

2+β(1−α)2
(α+β)2

] .
Since we assume γ ≈ Eσ(s)2/E(ν(s) − µ(d1, d2))

2, one can devide by Es(ν(s) − µ(d1, d2))
2

on the denominator and nominator, then the relative efficiency is in the form of (2).

ρ ≈ 1 + γ

(α + p2(1− α)) + γ α(1+β)
2+β(1−α)2

(α+β)2

=
1 + γ

1− (1− α)(1− p2) + γ α(1+β)
2+β(1−α)2

(α+β)2

.
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Web Appendix C: Sensitivity Analysis for Assumption (C.2)

We conducted sensitivity analysis for the non-informative drop out assumption in C.2: The

dropout is independent of {Y (a1, a2)} given (S,A1). The simulation setting for treatment,

the covariates and outcome, was identical to scenario 1 in Section 4.1 and the value of

the same DTR was estimated. The completion rate α was simulated to be associated with

the outcome Y , so that the non-informative drop out assumption does not hold. The non-

drop-out status denoted by Z in the main paper was generated from a logistic model with

probability
1

1 + exp(−aY )
for the n patients in the SMART sample, where a can be viewed

as a sensitivity parameter representing strength of informative dropout as a violation of

assumption (C.2). The sample size was n = 800 and there were 500 replications.

The results for varying a and β are presented in Table 1 and Figure 1. When a = 0, Y

is independent of drop out with the completion rate fixed at α = 0.5, which is the same

scenario as in Section 4.1. As a increases from 0 to 0.8, the estimated value of the DTR

has larger bias, and the coverage rate for the 95% confidence interval decreases from 95% to

around 55% as shown in Figure 1. For all choices of enrichment ratio β, the coverage rate

are similar. The results show that for a weaker informative (a < 0.2) of assumption (C.2),

the coverage probability is maintained at about 85%. However, stronger informative dropout

may affects inference and warrants a different analysis strategy to account for informative

missing.

[Table 1 about here.]

[Figure 1 about here.]

Web Appendix D: Sensitivity Analysis for Assumption (C.3)

We conducted sensitivity analysis for assumption C.3: “The mean of Y given (S,A1) in the

enrichment group is the same as that in the original SMART population”. The simulation



6 Biometrics, 000 0000

setting is the same as scenario 1 in Section 4.1 except that the outcome in the enrichment

sample is

Y = S2 + (1 + a)A2(1− S1) + I(S1 = 1, A1 = 1, A2 = −1) + e,

which differs from the SMART population. Here a can be viewed as a sensitivity parameter

representing strength of violation of assumption (C.3).

Similar to the previous sensitivity analysis, the results for varying a and β with n = 800

and 500 replications are presented in Table 2 and Figure 2. When a = 0, the outcome Y in the

SMART and enrichment sample are generated from the same model, and thus assumption

C.3 holds. When a increases from 0 to 0.8, the 95% CI coverage rate for the value of a

DTR decreases gradually depending on the enrichment ratio β. When β = 2, the coverage

probability decreases fastest. When β = 0.5, the coverage probability decreases slower and

is still maintained at 78% for a = 0.6. The results show that when the enrichment ratio β

is not high (β = 0.5), the validity of inference is not sensitive to assumption (C.3) in this

setting.

[Table 2 about here.]

[Figure 2 about here.]
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Web Appendix E: Learning the Optimal DTR from SMARTer

Here we demonstrate how to use data collected from the SMARTer find optimal DTR.

Using a two-stage design as an example, first one can find the optimal second stage treatment

using the subjects randomized at the second stage, which includes n1 group 1 patients and

the m group 3 enrichment patients. We identify this optimal second stage treatment as:

d∗2(S,A1) = arg maxa2{E(Y |S,A1, A2 = a2)}. In this step, one can also obtain an estimation

formula for g(s, a1) = Ê(Y |S = s, A1 = a1, A2 = d∗2(s, a1)) either from a parametric or

nonparametric model. Second, treating the predicted value Ê(Y |A2 = d∗2(S,A1), A1, S)

as the outcome for the n patients in stage 1, one can fit a regression model on (S,A1)

so as to determine the optimal first stage treatment as d∗1(S) = arg maxa1{E(Ê(Y |A2 =

d∗2(S,A1), A1, S)|S,A1 = a1)}. A simulation study is included in Web Appendix B to demon-

strate the feasibility.

We conducted a simple simulation study, where the outcomes are generated as R1 =

1 + β1A1 ∗ S1 + ε1; R2 = β2A2 ∗ R1 + ε2, where β1 = β2 = 1, S1 is generated from a

standard normal distribution, and the errors are independent normal random variables with

ε1 ∼ N (0, 4) and ε2 ∼ N (0, 4). In addition, we also simulate 4 independent noise covariates

from standard normal distribution. We consider different dropout rates in the first stage and

set the enrichment rate β = 1. From the results presented in Figure 3, we observe that as

the dropout rate increases, SMARTer shows increasingly greater value function than the

analysis which only uses the participants staying in the SMART. Most interestingly, when

all patients drops out (α = 0), by enrolling the same number of enrichment patients, the

SMARTer can still generate an optimal rule with high value function.

[Figure 3 about here.]
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Web Appendix F: R code and Software

We provide the R code in a zip file, which contains the sample size computations for

simulations presented in tables 1,2,3 in section 4, an illustration of sample size caculation

for the real data example presented in table 4 in section 5, and the sensitivity analysis in

table 1 and 2 of Web Appendix C and D. The readers can refer to the R code for empirical

computation of variance for SMARTer estimates and the sample size calculation. For more

detailed description of the code, please refer to the README file. We also have published a

R package ‘DTRlearn’ (Liu et al., 2015), which contains the Q-learning algorithm mentioned

in Web appendix E to estimate the best DTR.

References

Liu, Y., Wang, Y., and Zeng, D. (2015). DTRlearn: Learning Algorithms for Dynamic

Treatment Regimes. R package version 1.2.
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Figure 1: Sensitivity Analysis for Assumption C.2: 95% Coverage Rate for varying sensitivity
parameter a
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Figure 2: Sensitivity Analysis for Assumption C.3: 95% Coverage Rate for varying sensitivity
parameter a
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Figure 3: Estimated average outcome (value function) comparing SMARTer with SMART.
The optimal value is 4.0.
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Table 1: Sensitivity Analysis for Assumption C.2

a β Estimate Estimated SE empirical SD 95% CI coverage ρ̂

0 0.5 1.667 0.084 0.087 0.938 0.848
0 1 1.667 0.073 0.079 0.920 1.028
0 2 1.668 0.069 0.072 0.946 1.262

0.2 0.5 1.734 0.083 0.083 0.868 0.907
0.2 1 1.730 0.079 0.074 0.880 1.163
0.2 2 1.725 0.070 0.071 0.881 1.251
0.4 0.5 1.782 0.087 0.080 0.755 0.983
0.4 1 1.776 0.078 0.072 0.717 1.204
0.4 2 1.768 0.074 0.070 0.739 1.283
0.6 0.5 1.810 0.085 0.078 0.619 1.033
0.6 1 1.804 0.081 0.070 0.625 1.271
0.6 2 1.794 0.073 0.068 0.603 1.362
0.8 0.5 1.824 0.087 0.076 0.579 1.098
0.8 1 1.819 0.079 0.069 0.529 1.341
0.8 2 1.807 0.076 0.067 0.554 1.411

Note: Parameter a measures the association between the non-drop-out indicator Z and the outcome, where Z is

Bernoulli distributed with probability
1

1 + exp(−aY )
; β = m/n is the ratio of sample size between enrichment and

SMART group; ρ̂ is the empirical efficiency; the enrichment population and the SMART sample have the same
distribution q = (1/3, 1/3, 1/3) for S1 taking values on (0, 1, 2), and q(A1|S1) = 1/2.
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Table 2: Sensitivity Analysis for Assumption C.3

a β Estimate Estimated SE empirical SD 95% CI coverage ρ̂

0.0 0.5 1.667 0.084 0.087 0.936 0.848
0.0 1 1.667 0.076 0.079 0.930 1.028
0.0 2 1.668 0.070 0.072 0.944 1.262
0.2 0.5 1.697 0.084 0.086 0.921 0.849
0.2 1 1.711 0.076 0.077 0.896 1.050
0.2 2 1.719 0.070 0.069 0.880 1.314
0.4 0.5 1.731 0.084 0.087 0.872 0.840
0.4 1 1.756 0.077 0.078 0.786 1.032
0.4 2 1.772 0.071 0.070 0.672 1.272
0.6 0.5 1.764 0.085 0.087 0.781 0.827
0.6 1 1.800 0.078 0.079 0.603 1.007
0.6 2 1.825 0.072 0.072 0.407 1.221
0.8 0.5 1.798 0.086 0.088 0.661 0.810
0.8 1 1.844 0.079 0.080 0.396 0.976
0.8 2 1.879 0.073 0.074 0.181 1.164

Note: a is a parameter in the difference for the outcome generating schemes between the enrichment sample and the
SMART sample: Y = S2 + (1 + a)A2(1 − S1) + I(S1 = 1, A1 = 1, A2 = −1) + e for the enrichment sample, and
Y = S2 + A2(1− S1) + I(S1 = 1, A1 = 1, A2 = −1) + e for the SMART sample; β = m/n is the ratio of sample size
between enrichment and SMART group; ρ̂ is the empirical efficiency; the enrichment population and the SMART
sample have the same distribution q = (1/3, 1/3, 1/3) for S1 taking values on (0, 1, 2), and q(A1|S1) = 1/2.


