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Somatic MAP2K1 Mutations Are Associated
with Extracranial Arteriovenous Malformation

Javier A. Couto,1,6 August Y. Huang,2,6 Dennis J. Konczyk,1 Jeremy A. Goss,1 Steven J. Fishman,3

John B. Mulliken,1 Matthew L. Warman,2,4,5 and Arin K. Greene1,*

Arteriovenous malformation (AVM) is a fast-flow, congenital vascular anomaly that may arise anywhere in the body. AVMs typically

progress, causing destruction of surrounding tissue and, sometimes, cardiac overload. AVMs are difficult to control; they often re-expand

after embolization or resection, and pharmacologic therapy is unavailable. We studied extracranial AVMs in order to identify their

biological basis. We performed whole-exome sequencing (WES) and whole-genome sequencing (WGS) on AVM tissue from affected

individuals. Endothelial cells were separated from non-endothelial cells by immune-affinity purification. We used droplet digital PCR

(ddPCR) to confirmmutations found byWES andWGS, to determine whether mutant alleles were enriched in endothelial or non-endo-

thelial cells, and to screen additional AVM specimens. In seven of ten specimens, WES andWGS detected and ddPCR confirmed somatic

mutations in mitogen activated protein kinase kinase 1 (MAP2K1), the gene that encodes MAP-extracellular signal-regulated kinase 1

(MEK1). Mutant alleles were enriched in endothelial cells and were not present in blood or saliva. 9 of 15 additional AVM specimens

contained mutant MAP2K1 alleles. Mutations were missense or small in-frame deletions that affect amino acid residues within or adja-

cent to the protein’s negative regulatory domain. Several of these mutations have been found in cancers and shown to increase MEK1

activity. In summary, somatic mutations in MAP2K1 are a common cause of extracranial AVM. The likely mechanism is endothelial cell

dysfunction due to increased MEK1 activity. MEK1 inhibitors, which are approved to treat several forms of cancer, are potential thera-

peutic agents for individuals with extracranial AVM.
Arteriovenous malformation (AVM) is a congenital

vascular anomaly, comprised of abnormal connections

between arteries and veins that are missing normal

high-resistance capillary beds (Figure 1).1 Sporadic extra-

cranial AVMs are solitary and may be localized or

regional. Rapid blood flow is demonstrable by Doppler ul-

trasonography. Magnetic resonance imaging reveals

signal voids consistent with fast-flow, while angiography

shows the early filling of draining veins (Figure 1). With

time, arterial to venous shunting causes tissue ischemia

that leads to pain, ulceration, bleeding, and destruction

of adjacent tissues. Treatment for AVM has been discour-

aging. Embolization and/or resection are often followed

by expansion; there are no drug treatments.2 The purpose

of this study was to identify the genetic basis for sporadic,

extracranial AVM in an effort to devise a new therapeutic

strategy.

The Committee on Clinical Investigation at Boston Chil-

dren’s Hospital approved this study and informed consent

was obtained from study participants. Ten AVM specimens

that had been collected during a clinically indicated pro-

cedure, including matched unaffected tissue specimens

from three of the study participants, had DNA extracted

using the DNeasy Blood & Tissue Kit (QIAGEN); saliva

DNA was extracted using the prepIT-L2P extraction kit

(DNA Genotek). Five affected tissue samples underwent

deepWES and another five hadWES andWGS on Illumina
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platforms at Macrogen. WES and WGS used 101 basepair

(bp) or 150 paired-end reads, respectively. Average on-

target WES depths were between 224-fold and 281-fold

for the AVM samples and between 135-fold and 176-fold

for the unaffected tissues. Coverage R30-fold and R390-

fold were obtained for 90% to 93% and for 81% to 92%

of the exomes, respectively (Figure 2). The five AVM speci-

mens and the three matched unaffected tissue samples

subjected to WGS yielded average depths between 108-

fold and 145-fold and between 37-fold and 50-fold,

respectively.

Raw sequencing reads were aligned to the GRCh37

human reference genome using the Burrows-Wheeler

Aligner.3 The reads were processed by Picard and the

Genome Analysis Tool Kit4 for the removal of duplicated

and error-prone reads, indel realignment, and base-quality

recalibration. Candidate somatic mutations were identi-

fied using the single-sample (when only AVM DNA was

available) and paired-sample (when AVM and blood/saliva

DNA were available) modes of MosaicHunter.5 Somatic

mutations with at least 2% mutant allele fraction and at

least five reads supporting the variant allele were consid-

ered in subsequent analyses. We excluded common

variants that were annotated in the Single Nucleotide Poly-

morphism,6 1000 Genomes Project,7 Exome Sequencing

Project,8 or Exome Aggregation Consortium9 databases.

Among the protein-altering mutations, only those
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Figure 1. Solitary Extracranial AVMs
(A and B) Photograph of participant 23 during (A) childhood (stage I) and (B) adulthood (stage III). Note progressive growth of the facial
AVM.
(C) Coronal magnetic resonance image illustrates the extent of the lesion with multiple signal voids consistent with fast-flow (white
arrows).
(D) Angiogram showing tortuous arteries (white arrows) that feed the AVM, the ‘‘nidus’’ (dotted oval) where there are direct communi-
cations between numerous small arteries and veins, and early filling of draining veins (black arrows).
(E) Hematoxylin and eosin-stained section of participant 23’s affected tissue, obtained after initial resection. Note the large feeder artery
(asterisk), hyper-muscularized veins (arrows), and an area where arteries and veins connect in the absence of a normal capillary bed
(dotted oval).
(F) Participant 2, scalp AVM (stage III).
(G) Participant 6, ear AVM (stage I).
(H) Participant 12, upper lip AVM (stage I).
(I) Participant 19, abdominal AVM (stage II).
predicted to be deleterious by Polymorphism Phenotyping

(PolyPhen-2) or Sorting Intolerant From Tolerant (SIFT) al-

gorithms10,11 were analyzed further.

AVMs had between zero and four genes with putative

protein-altering somatic mutations, but only MAP2K1

(GenBank: NM_002755; MIM: 176872), encoding the

dual specificity mitogen-activated protein kinase MEK1

(GenBank: NP_002746.1), contained somatic mutations

(c.171G>T [p.Lys57Asn] or c.167A>C [p.Gln56Pro]) in

multiple samples (Table 1). Each AVM sample had R105-

fold coverage over the entire MAP2K1 coding sequence.

Because several specimens contained somatic MAP2K1

missense mutations, we reanalyzed samples in which we

failed to detect a mutation at reduced stringency by

lowering the detection threshold to R1% mutant allele

fraction and R3 reads supporting the variant allele,

and we also looked for short indels. This led to the identi-

fication of mutations in three additional deep WES sam-

ples (p.Lys57Asn [n ¼ 2], c.173_187del [p.Gln58_

Glu62del] [n¼ 1]) (Table 1) and in two of five AVM samples

from other participants that had standard12 WES (Table 2).
The Ameri
The specimen from participant 19 harbored two somatic

MAP2K1 mutations (c.[159T>G;199G>T]; p.[Phe53-

Leu;Asp67Tyr]) in cis (Table 2).

We developed ddPCR assays13 for each of the missense

mutations that were identified by WES and WGS (Table

S1). We used ddPCR to confirm the MAP2K1 mutations

found in deep WES (n ¼ 7) and standard WES (n ¼ 2).

We also used ddPCR to screen for somatic mutations in

16 additional individuals: 3 without mutations detected

by deep WES, 3 without mutations detected by standard

WES, and 10 whom we had not previously examined.

Out of these 16 individuals, 7 had MAP2K1 mutations de-

tected by ddPCR (Table 2). One person had a ddPCR pseu-

docluster that upon subcloning and sequencing was

found to represent the same 15-bp deletion

(c.173_187del [p.Gln58_Glu62del]) previously detected

by WES in another individual. In 13 participants who

had affected tissue with MAP2K1 mutations and a paired

unaffected tissue sample, none of the unaffected tissue

samples contained mutant MAP2K1 alleles (Table 2). We

also did not identify mutant MAP2K1 alleles in affected
can Journal of Human Genetics 100, 546–554, March 2, 2017 547
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Figure 2. Somatic Mutation Detection in AVMs after Whole-Exome Sequencing
(A) Graph depicts the depth-of-coverage across the exome for ten affected and three unaffected tissue samples. Note R90-fold coverage
for 90% of the exome obtained for each AVM sample.
(B) Integrative Genomic Viewer screenshots showing reads containing variant and reference alleles for four AVM samples. Total read
depth at the site of the somatic mutation is indicated as ‘‘-fold’’ coverage. Note 4 reads in participant 19 indicate that the (c.159T>G)
p.Phe53Leu and c.199G>T (p.Asp67Tyr) somatic mutations are in cis.
(C) Schematic diagram ofMEK1with approximate locations of the D, negative regulatory, and core kinase domains indicated. Note AVM
somatic mutations cluster near the negative regulatory domain. The orange arrows indicate that p.Phe53Leu and p.Asp67Tyr variant
were found in cis in a single individual. All other variants were found in two or more study participants.
tissue from individuals with other types of vascular anom-

alies, including infantile hemangioma, congenital heman-

gioma, capillary malformation, lymphatic malformation,

venous malformation, and verrucous venous malforma-

tion (data not shown).

We re-examined, at reduced stringency, the WES and

WGS data for the AVM specimens which did not have

detectable MAP2K1 mutations for mutations in other

RAS/MAPK signaling pathway components (HRAS [MIM:

190020], KRAS [MIM: 190070], NRAS [MIM: 164790],

ARAF [MIM: 311010], BRAF [MIM: 164757], RAF1 [MIM:

164760], MAP2K2 [MIM: 601263], MAPK1 [MIM:

176948], and MAPK3 [MIM: 601795]) as well as for previ-
548 The American Journal of Human Genetics 100, 546–554, March
ously reported AVM-associated genes (RASA [MIM:

139150], PTEN [MIM: 601728], ENG [MIM: 131195],

ACVRL1 [MIM: 601284], SMAD4 [MIM: 600993], and

GDF2 [MIM: 605120]). No suspicious somatic mutations

were found.

We next examined whether somatic MAP2K1 mutations

in AVMs were enriched in a specific cell type by separating

endothelial cells from other cell types14 in three AVM spec-

imens that harbored MAP2K1 mutations. In brief, speci-

mens were digested with collagenase A (Roche) and dispase

(BD Biosciences), filtered through a 70-mm strainer,

incubated with anti-cluster of differentiation 31 protein

(anti-CD31) antibody conjugated to magnetic Dynabeads
2, 2017
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The Ameri
(Invitrogen), and cultured. CD31þ cells were grown in

endothelial cell growth medium and CD31� cells were

cultured in mesenchymal stem cell growth medium (both

from Lonza). We observed mutant MAP2K1 alleles only in

the DNAwe extracted from the endothelial cells (Figure 3).

The most common type of AVM occurs sporadically and

is solitary. The prevalence of AVMs is unknown. The

Vascular Anomalies Center at Boston Children’s Hospital

annually evaluates ~50 new individuals with extracranial

AVM.15 Solitary, extracranial AVM is not heritable, has

similar incidence in males and females, and exhibits vari-

able severity. These features are typical of disorders caused

by a somatic mutation16 and are consistent with the

finding of somatic MAP2K1 mutations in 16 of 25 tissue

specimens. Solitary AVMs progress through four clinical

stages: stage I lesions are typically small, warm to the

touch, and exhibit arteriovenous shunting by Doppler ul-

trasonography; stage II lesions enlarge significantly,

become pulsatile, and develop venous dilatation; stage III

AVMs exhibit pain, ulceration, and/or bleeding; and stage

IV lesions are characterized by cardiac failure.2,17 We

cannot exclude the possibility that somaticMAP2K1muta-

tions arise as a consequence of AVM expansion, rather

than being the cause of AVM. Arguing against the former

interpretation is the presence of mutations in stage I

lesions (Figure 1 and Table 2) and the absence of mutations

in other enlarging vascular malformations. Finding

MAP2K1 mutations solely within the endothelial cell

compartment of an AVM strongly suggests that mutant

endothelial cells are responsible for the malformation pro-

cess, perhaps by preventing capillary networks from form-

ing between developing arteries and veins.

We found MAP2K1 mutations in 64% of the specimens;

the remaining samples may contain mutations at levels

below our detection limit, in regions of the gene not

interrogated by ddPCR, or in other genes. AVMs also occur

in individuals segregating three Mendelian genetic dis-

eases; however, these AVMs are clinically, radiologically,

and/or histologically distinct from AVMs with MAP2K1

mutations. AVMs associated with hereditary hemorrhagic

telangiectasia (HHT [MIM: 187300, 600376, 175050,

615506]), caused by mutations in ENG, ACVRL1,

SMAD4, or GDF2, are multifocal, small, and affect lungs,

gastrointestinal system, and brain (see McDonald and

Pyeritz, GeneReviews, in Web Resources). Families with

RASA1 mutations have capillary malformation-arteriove-

nous malformation (CM-AVM [MIM: 608354]). This syn-

drome is characterized by multiple, small, cutaneous

fast-flow lesions; some affected individuals also have intra-

cranial or extracranial AVMs (see Beyrak-Toydemir and

Stevenson, GeneReviews, in Web Resources). Multiple,

intramuscular AVMs occur in individuals with phospha-

tase and tensin homolog (PTEN) hamartoma-tumor syn-

drome (MIM: 601728) (see Eng, GeneReviews, in Web

Resources).

The MAP2K1 protein product MEK1 plays an important

role in the RAS/MAPK signaling pathway that controls
can Journal of Human Genetics 100, 546–554, March 2, 2017 549



Table 2. MAP2K1Variant Detection in 25 Participants with AVM

Participant Age Sex Location, Stage DNA Sourcea Variantb WESc WGSc ddPCRd,e

1 5 y M lip, stage II frozen p.Gln56Pro 7% (3/45) – 11% (231/2,628)

6 y frozen p.Gln56Pro – – 2% (49/2,764)

saliva ND – – 0% (0/931)

2 7 y M scalp, stage III frozen p.Gln58_Glu62del 2% (10/493) 3% (2/58) 6%f (954/15,592)

saliva ND – – 0% (0/1,745)

3 9 y F thigh, stage III frozen ND 0% (0/633) 0% (0/68) 0% (0/4,828)

blood ND 0% (1/348)g 0% (0/31) 0% (0/5,006)

4 9 y M forehead, stage II frozen p.Lys57Asn – – 6% (138/2,654)

frozen p.Lys57Asn – – 8% (105/1,379)

CD31þ cells,a p3 p.Lys57Asn – – 31% (187/437)

CD31� cells,a p3 ND – – 0% (0/624)

blood ND – – 0% (0/2,062)

5 11 y F cheek, stage II frozen p.Lys57Asn – – 5% (124/3,445)

saliva ND – – 0% (0/1,274)

6 11 y M ear, stage I frozen p.Lys57Asn 2% (13/646) – 8% (157/2,208)

blood ND 0% (0/271) 0% (0/35) 0% (0/6,913)

7 12 y F cheek, stage II frozen ND 0% (0/37) – 0% (0/3,207)

saliva ND – – 0% (0/4,085)

8 12 y F ear, stage I frozen p.Lys57Asn 4% (2/52) – 13% (414/3,498)

saliva ND – – 0% (0/965)

9 13 y M foot, stage III frozen ND – – 0% (0/2,461)

saliva ND – – 0% (0/1,926)

10 13 y F lip, stage II frozen p.Lys57Asn – – 7% (172/3,117)

saliva ND – – 0% (0/533)

11 13 y M forehead, stage II frozen p.Lys57Asn – – 4% (68/2,066)

blood ND – – 0% (0/3,698)

12 14 y F lip, stage I frozen p.Gln56Pro 7% (45/625) – 9% (210/2,334)

13 14 y F lip, stage II frozen p.Gln56Pro – – 8% (172/2,980)

frozen p.Gln56Pro – – 6% (102/1,821)

frozen p.Gln56Pro – – 10% (209/2,655)

CD31þ cells,a p5 p.Gln56Pro – – 35% (175/514)

CD31� cells,a p2 ND – – 0% (0/563)

blood ND – – 0% (0/2,396)

14 15 y M knee, stage I frozen p.Gln58_Glu62del – – 10%f (1,336/12,887)

15 15 yo M cheek, stage III frozen ND 0% (0/675) 0% (0/143) 0% (0/3,708)

16 17 y M forehead, stage II frozen ND – – 0% (0/4,025)

saliva ND – – 0% (0/1,396)

17 18 y F lip, stage II frozen ND 0% (0/30) – 0% (0/3,757)

saliva ND – – 0% (0/2,458)

(Continued on next page)
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Table 2. Continued

Participant Age Sex Location, Stage DNA Sourcea Variantb WESc WGSc ddPCRd,e

18 21 y M ear, stage II frozen p.Lys57Asn 3% (17/529) 4% (3/69) 7% (155/2,559)

CD31þ cells,a p4 p.Lys57Asn – – 53% (468/946)

CD31� cells,a p4 ND – – 0% (0/765)

blood ND 0% (0/250) 0% (0/25) 0% (0/3,681)

19 22 y M abdomen, stage II frozen p.Phe53Leu 5% (6/134) – 1% (9/1,318)

p.Asp67Tyr 5% (10/203) – 1% (7/1,336)

blood ND 0% (0/15) – –

20 22 y M scalp, stage I frozen p.Lys57Asn 2% (9/584) – 4% (63/2,660)

blood ND – – 0% (0/3,171)

21 23 y M face, stage III frozen ND – – 0% (0/4,061)

22 24 y M cheek, stage I frozen p.Lys57Asn 1% (6/583) – 5% (100/2,531)

saliva ND – – 0% (0/807)

23 32 y M cheek, stage III frozen p.Gln56Pro 3% (21/611) 4% (2/47) 7% (128/2,103)

saliva ND – – 0% (0/1,494)

24 39 y F scalp, stage III frozen ND – – 0% (0/3,640)

25 65 y F nose, stage II frozen ND 0% (0/656) – 0% (0/2,642)

saliva ND – – 0% (0/1,325)

Abbreviations are as follows: ND indicates no mutant alleles were detected; dash (–) indicates no study was performed.
aFor cultured CD31þ and CD31� cells, the passage number (p) at the time DNA was extracted in indicated.
bThe effect of the mutation at the protein level is indicated.
cMutant allele percentages are provided as whole numbers and are calculated from the number of mutant reads/total reads at that locus.
dMutant allele percentages are provided as whole numbers and are calculated by counting droplets that contain mutant, mutantþwild type, and wild-type am-
plimers. For simplicity, the ratio of mutant amplimer containing droplets/all amplimer containing droplets is shown.
eWhen no MAP2K1 mutation was detected in affected tissue, the denominator for the ddPCR assay is the sum of wild-type droplets for the four individual assays.
fBecause no ddPCR assay was developed for this mutation, the mutant allele percentages were determined using pseudocluster counts, which were observed with
each of the other missense mutant ddPCR probes.
gWe cannot preclude this variant (p.Asp67Tyr) being a true positive somatic mutation; however, this variant was not detected in 3,867 DNA containing ddPCR
droplets from affected tissue, nor in ddPCR droplets from the same blood sample. Therefore, we suspect the WES result is a false positive finding.
numerous cellular and developmental processes.18,19 The

somatic mutations we identified cluster within or adjacent

to the protein’s negative regulatory domain (Figure 2); they

have been observed in neoplasms, including melanoma,

lung cancer, and hematopoietic malignancies,20–25 and

have been shown to constitutively increase MEK1 activ-

ity.26–28 MEK1 and its paralog MEK2 phosphorylate ERK1

and ERK2.MAPK signaling is activated by receptor tyrosine

kinases, integrins, and G protein coupled receptors and is

modulated by cross-talk with several other signaling path-

ways including the AKT-mTOR pathway.19 Somatic muta-

tions affecting proteins upstream of MEK1 occur in cancer

and other types of vascular malformations.12,19,29–34 The

MAP2K1 mutations we detected in AVMs likely alter the

function of MEK1 by producing a hypermorphic or neo-

morphic effect, since these mutations have previously

been shown to increase ERK1 and ERK2 phosphorylation

in tumors and in cultured cells. Consistent with this hy-

pothesis, mice that are heterozygous forMek1 knockout al-

leles do not exhibit a phenotype, whereas homozygous

knockout alleles cause embryonic lethality and placental

defects.35 Germline mutations in MAP2K1 have been
The Ameri
found in persons with Noonan syndrome (NS [MIM:

163950])36 and cardio-facio-cutaneous syndrome (CFC

[MIM: 115150]).37 Individuals with NS or CFC have cardiac

malformations, including pulmonic stenosis and atrial

septal defect, but not AVM (see Allanson and Roberts,

GeneReviews, and Rauen, GeneReviews, in Web Re-

sources). The MAP2K1 mutations we detected in AVMs

differ from those found in NS and CFC.

The AVMs in which MAP2K1 mutations were found do

not metastasize, but they enlarge over time.38 Incom-

pletely resected AVMs often re-expand and attempts to

embolize or ligate feeding arteries result in increased

flow from collateral vessels.2 Delineating similarities and

differences between MAP2K1 mutation-containing AVMs

and cancers will provide insights regarding cell-type-spe-

cific functions for MEK1 and broader roles for MEK1 in

responding to environmental stress such as tissue injury

or hypoxia. MEK1 inhibitors currently are in use against

various cancers.18 Further study is required to determine

whether these drugs have efficacy for AVM. Current

agents are cytostatic rather than cytotoxic, but might

benefit individuals with AVM if they cause mutant
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Figure 3. AVM Endothelial Cells Enriched for the MAP2K1 Mutation
(A) Photograph of an upper labial AVM (participant 13) from which CD31þ and CD31� cells were separated.
(B) Angiogram prior to resection shows arteriovenous shunting.
(C) ddPCR assay results performed onDNA extracted from the AVM (resected tissue), endothelial (CD31þ), and non-endothelial (CD31�)
cells, and peripheral blood. Droplets containing mutant only, mutant and wild-type, or wild-type only alleles appear in left upper, right
upper, and right lower quadrants, respectively (empty droplets are in the left lower quadrant). Percentages of mutant alleles in each sam-
ple are indicated (droplet counts are provided in Table 2).
endothelial cells to terminally differentiate into capillary

beds or prevent the regrowth of AVMs after resection or

embolization.
Supplemental Data

Supplemental Data include one table and can be found with this

article online at http://dx.doi.org/10.1016/j.ajhg.2017.01.018.
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