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1 Additional	Methods	
	

Data	

Human	demographic	data	and	spaghetti	plot	can	be	found	in	Table	S1	and	Figure	S1,	respectively.	

Total	population	 	55		

Age;	median	(range)	 25	(18,	55)	

Baseline-BCG	status	 BCG:	N=	30,	BCG:	Y=25	

Gender	 M=19,	F=36	

Time	since	BCG	vaccination	 		

1	to	9		 7	(M	=	2)	

10	to	19		 10	(M	=	6)	

20	to	29		 8	(M	=	3)	

30+		 -	

Never		 30	(M	=	8)	

ML	ratio;	median	(range)	 0.26	(0.07,	0.56)	

Table	S1.	Human	demographics	

The	available	data	were	on	HIV	negative	and	Mtb	naïve	participants	(see	[1-3]	for	HIV	and	Mtb	latency	

testing	 procedures).	 Data	 on	 haematological	 parameters	 were	 based	 on	 routine	 laboratory	

haematology	 testing	 at	baseline	 and	only	 those	participants	with	 values	within	normal	 limits	were	

included	 in	clinical	 trials.	 IFN-γ	response	was	measured	using	a	standardized	ex	vivo	 IFN-γ	Enzyme-

Linked	ImmunoSpot	(ELISPOT)	assay	which	quantifies	IFN-γ	secreting	CD4+	T	cells	as	spot	forming	units	

(SFU)	per	million	peripheral	 blood	mononuclear	 cells	 (PBMCs)	 using	PPD	as	 a	 stimulant.	 The	 same	

ELISPOT	 method	 including	 plates,	 antibody	 kits,	 antigens,	 developing	 reagents,	 washing	 method,	

ELISPOT	reader	and	ELISPOT	counting	method	were	used	in	all	the	data	collection.	As	these	BCG	studies	

were	 conducted	as	part	 of	 a	 series	of	 Phase	 I	 clinical	 trials	with	MVA85A	all	 lab	protocols	 and	 lab	

reagents	were	harmonized	as	far	as	possible.	For	the	IFN-γ	ELISPOT	assay	300,000	PMBC	per	well	were	

performed	in	duplicate	and	the	results	were	averaged.	Incubation	time	was	18	hours.	For	the	exact	

laboratory	methodology	see	[1-3]	.	

The	four	covariates	included	in	this	analysis,	gender,	BCG	vaccination	history	at	baseline	and	baseline	

ML	ratio.	For	details	on	how	BCG-vaccination	history	was	determined	see	original	trial	methods	[1-3].	

BCG	vaccination	history	was	categorised	into	“never”	and	10	year	time-periods	since	vaccination	with	
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the	reference	group	as	1	to	9	years	since	BCG	vaccination.	Age	was	not	included	as	a	covariate	as	it	

was	colinear	with	BCG	vaccination	history.	

	For	macaques,	these	can	be	found	in	Table	S2	and	Figure	S2.		

	

Table	S2:	Macaque	demographics	

Species	(%	of	total	
animals)	

Colony	(%	of	total	
animals)	

Rhesus,	n=	58	(72%)	 India,	n=	58	(72%)	

Cynomolgus,	n=	23	

(28%)	

Mauritian,	n=12	

(15%)	

Chinese,	n=6	(8%)	

Indonesian,	n=	5	(6%)	
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Figure	S1.	.	Longitudinal	IFN-γ	responses	for	analysis	for	55	human	participants.	Baseline-BCG	vaccinated	(A)	and	baseline-BCG	naive	(B).	The	bold	line	represents	the	median	values	of	
each	group	at	each	time	point.	X-axis	is	not	to	scale.	Abbreviations:	IFN-γ	=	Interferon	gamma	;	SFU	=		spot	forming	unit	;	PBMC	=	peripheral	blood	mononuclear	cells	
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Figure	S2:	Number	of	IFN-γ	secreting	CD4+	T	cells	per	million	PBMCs	over	time	as	measured	by	the	ELISPOT	assay	in	macaques.	Data	is	shown	for	each	colony	separately,	Chinese,	
Indonesian	and	Mauritian	cynomolgus	macaques	and	Indian	rhesus	macaques.	The	red	line	indicates	median	responses.	
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Mathematical	Immunostimulation/Immunodynamic	(IS/ID)	Model	

The	equations	for	the	IS/ID	two-compartmental	in	Figure	1	are	as	follows:	
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Where	TEM	represents	the	transitional	effector	memory	(TEM)	cell	population,	CM,	the	resting	central	

memory	(CM)	cell	population,	t,	the	time	in	days	and	parameters	outlined	in	Figure	1.	The	equation	

for	the	recruitment	of	the	TEM	cell	population,	δ,	is:	
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Where	L,	h	and	k	are	the	gamma	pdf	parameters	outlined	in	Figure	1.	

Analyses	

Analysis	1:	Model	calibration	to	IFN-γ	data	and	exploration	of	model	predictions	for	macaque	and	

humans,	separately	

Visual	Predictive	Check	(VPC)	plot	

The	 visual	 predictive	 check	 plot	 (VPC)	 is	 a	 simulation	 based	 diagnostic	 tool	 for	 assessing	 the	

appropriateness	of	the	proposed	mathematical	model	to	describe	the	empirical	data.	This	is	done	by	

comparing	 data	 simulated	 using	 the	 model	 and	 estimated	 population	 mean	 parameters	 and	

associated	variances,	to	the	empirical	data	distribution	[4].	To	construct	the	VPC,	the	mathematical	

model	(Figure	1)	is	calibrated	to	the	dataset	in	question	(e.g.	the	entire	human	population	data)	and	

the	 resulting	 estimated	 parameters	 and	 associated	 variances	 (Table	 1)	 are	 used	 to	 simulate	 a	

theoretical	population	dataset,	equivalent	to	the	size	of	the	population	in	question	(e.g.	N=55	for	the	

entire	human	population).	This	procedure	is	repeated	500	times	and	the	10
th
,	50

th
	and	90

th
	percentiles	

of	each	simulated	population	dataset	are	recorded	and	the	ranges	of	these	percentiles	are	plotted.	If	

the	model	is	appropriate	to	represent	the	data,	when	the	observed	percentiles	are	plotted	alongside	

the	VPC,	they	should	fall	in	the	bounds	of	the	simulated	percentile	ranges.		Figure	2	outlines	displays	

the	VPC	plots	for	the	human	and	macaque	model	predictions.	
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Scenario	analysis	for	parameter	CDEF	(per	day)	

	 Macaque	 Human	

Param	 µHIJ	
(per	day)	 BIC	 BIC	

1/2	 7269.01	 2825.22	

1/4	 7259.65	 2803.31	

1/6	 7254.20	 2791.84	

1/8	 7251.55	 2785.49	

1/10	 7248.89	 2780.97	

1/12	 7254.49	 2778.53	
1/14	 7259.81	 2780.80	

1/16	 7263.44	 2782.09	

Table	S3:	Scenario	analysis	for	parameter	μTEM	in	macaques	and	humans	

Table	S3	summarises	the	scenario	analysis	of	parameter	μTEM	in	macaques	and	humans.	In	macaques	

the	value	of	1/10	for	μTEM	resulted	in	the	lowest	BIC	value,	however	there	was	no	significant	difference	

in	 the	 BIC	 for	 the	 values	 μTEM	 from	 1/6	 to	 1/12	 (shaded)	 (see	 [5]	 for	 significance	 associated	with	

difference	of	BIC	values).	Similarly,	 in	humans	the	value	of	1/12	for	μTEM	resulted	in	the	 lowest	BIC	

value,	with	no	significant	difference	between	values	of	1/10	to	1/16	(shaded).	

Residual	Error	(RE)	Model	

Table	S4	outlines	the	results	of	the	RE	model	comparison	for	macaques	and	humans	separately	using	

BIC	as	an	assessment	of	fit.		

Error	model	
Model	

Description	

Macaque	 Human	

BIC	 BIC	

Constant	 Y	=	f+a*e	 7753.10	 2895.72	

Proportional	 Y	=	f+b*f*e	 -	 2780.65	

Combined	 Y	=	f+(a+b*f)*e	 7248.89	 2776.66	

Table	S4:	Results	of	comparing	residual	error	models	using	Monolix	in-built	tool.	Definitions:	Y	=	observation,	f	=	model	
prediction,	a,b=	scalars	to	be	determined	during	parameter	estimation	process,	e	=	Normally	distributed	random	
variable	N(0,1).	

The	BIC	 for	 the	human	residual	error	model	 indicate	that	a	combined	model	best	 represented	the	

residual	 error	 in	 the	 data,	 however	 the	 proportional	 or	 combined	 model	 were	 not	 significantly	

different	with	respect	to	calibration	to	the	data.		

The	same	comparisons	were	made	for	the	macaque	dataset,	however	when	a	RE	model	without	an	

additive	 term	was	applied	 (e.g.	a	proportional	model),	 the	parameter	TEM0	was	poorly	estimated,	
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potentially	due	to	a	lack	of	data	at	time=0.	Therefore,	the	BIC	was	compared	between	constant	and	

combined	RE	models	and	combined	was	chosen.	

The	estimated	values	for	the	residual	error	model	for	macaque	and	human	can	be	found	in	Table	S6.	

Test	for	random	effects	correlations	

Results	for	the	pairwise	test	for	random	effects	correlations	for	human	and	macaques	are	shown	in	

Table	S5.		

Combination	

tested	

Macaque	 Human	

BIC	

Diff	to	“none”	

(BIC)	

Decision	

to	include	 BIC	

Diff	to	“none”	

(BIC)	

Decision	

to	include	

None	 7253.68	 -	 -	 2779.40	 -	 -	

TEM0	&	L	 7252.74	 0.94	 No	 2788.21	 8.81	(higher)	 No	

TEM0	&	k	 7256.89	 3.21	(higher)	 No	 2782.02	 2.62	(higher)	 No	

TEM0	&	h	 7258.99	 5.1	(higher)	 No	 2778.45	 0.95		 No	

L	&	k	 7256.11	 2.2	 No	 2784.77	 5.37	(higher)	 No	

L	&	h	 7257.62	 3.73	(higher)	 No	 2778.35	 1.05	 No	

k	&	h	 7218.08	 35.6	 No*	 2787.57	 8.17	(higher)	 No	

Table	S5:	Tests	for	random	effects	correlations	for	macaques	and	humans	

All	BIC	values	in	Table	S5	were	non-significantly	different	from	no	random	effects	correlations	in	the	

macaque	population	except	for	when	parameters	k	and	h	were	correlated.	*However,	applying	this	

correlation	meant	that	some	parameters	could	not	be	accurately	estimated	(RSE%	was	NA)	so	it	was	

not	included.	In	the	human	population,	all	BIC	values	were	either	non-significantly	lower,	or	higher	

than	the	model	with	no	random	effects	correlations,	so	no	correlations	were	considered	necessary	to	

apply	in	further	analyses.	

Analysis	2:	Population	covariate	impact	on	within-population	variation	in	model	parameter	

estimates	

	

Associations	between	population	covariates	and	 individual	estimated	parameters	 (from	analysis	1)	

were	 conducted	 in	 R	 [6]	 using	 graphical	 plots	 and	 non-parametric	 rank	 tests	 for	 each	 species	

separately.	The	non-parametric	rank	tests	conducted	to	establish	parameter-covariate	relationships	

are	as	follows.	For	categorical	covariates	with	2	levels	(BCG	status	and	gender	in	humans)	the	Wilcoxon	

test	was	applied.	For	categorical	covariates	with	2+	categories	(BCG	vaccination	history	in	human	and	

colony	in	macaques)	a	kruskal-Walllis	followed	by	a	Dunn	post-hoc	test	with	a	Bonferroni	correction	

was	applied.	For	continuous	covariate,	ML	ratio,	linear	regression	was	applied.	
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If	a	significant	association	(p-value<0.05)	was	found	between	model	parameters	and	a	covariate,	a	

forward	stepwise	addition	strategy	was	used	 in	Monolix	to	establish	a	subpopulation-model.	Here,	

parameter-covariate	 relationships	were	added	to	 the	subpopulation	 -model	one	at	a	 time	and	 the	

likelihood	ratio	test	(LRT)	was	used	to	assess	if	the	addition	improved	the	fit	of	the	covariate-model.		

The	parameter-covariate	relationship	was	multiplicative,	for	example,	the	population	estimation	of	

the	 initial	 transitional	effector	memory	cells	 (TEM0)	 in	accounting	 for	BCG	status	was	modelled	by	

TEM0BCG:N=TEM0BCG:Y*e
α
,	where	TEM0BCG:Y	is	the	value	for	TEM0	for	those	in	the	BCG:Y	subpopulation	

(the	reference	subpopulation)	and	α	is	the	exponentiated	scalar	of	this	value	to	represent	changes	in	

TEM0	for	those	in	the	BCG:Y	subpopulation.		The	covariate	effects	(α’s)	are	estimated	in	the	NLMEM	

analysis	alongside	the	associated	p-values,	but	the	value	for	the	subpopulation	parameter	(left	hand	

side	of	above	equation)	is	reported	in	the	results.			

Analysis	 3:	Which	macaque	 subpopulations	 best	 predicted	 immune	 responses	 in	 different	 human	

subpopulations?	

In	order	to	assess	the	calibrated	macaque	subpopulation	parameters	ability	to	describe	the	human	

data	 in	 Monolix,	 it	 was	 necessary	 to	 provide	 one	 parameter	 to	 estimate.	 To	 achieve	 this,	 all	

subpopulation	parameters	were	 fixed	 at	 their	 calibrated	 value	 except	 for	 parameter	 L,	which	was	

allowed	to	vary	within	a	minimal	 range	of	 [calibrated	value-1,	calibrated	value+1].	This	provided	a	

parameter	to	estimate	to	provide	a	BIC	value	but	did	not	substantially	change	the	calibrated	macaque	

subpopulation	parameters	from	analysis	2.	The	BIC	values	for	this	analysis	are	reported	in	Figure	4	in	

the	main	paper.		

	 	



	 10	

	

2 Additional	Results	
Analysis	1:	Model	calibration	to	IFN-γ	data	and	exploration	of	model	predictions	for	macaque	and	

humans,	separately	

Estimates	for	the	residual	error	model	parameters	

	 Macaque	 Human	

	 All	(analysis	1)	 Covariate	(analysis	
2)	 All	(analysis	1)	 Covariate	(analysis	

2)	

	
Estimated	
Value	

RSE	
(%)	

Estimated	
Value	

RSE	
(%)	

Estimated	
Value	

RSE	
(%)	

Estimated	
Value	

RSE	
(%)	

Additive	 contribution	

(cells)	
5.37	 90	 5.51	 87	 3.79	 65	 6.04	 43	

Proportional	 contribution	

(%	of	predicted	response)	
61	 10	 61	 9	 42	 10	 39	 10	

Table	S6:	Residual	error	model	estimated	parameters	for	a	combined	residual	error	model	for	macaques	and	humans.	

The	estimates	for	the	combined	residual	error	model	parameters	for	both	macaques	and	humans	for	

analysis	1	and	2	are	in	Table	S6.	The	RSE	for	the	additive	component	of	the	residual	error	model	is	high	in	

both	cases.		

Diagnostic	plots	
Additional	diagnostic	plots	for	analysis	1	can	be	found	in	S3-S7.	
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Figure	S3:	Residual	(difference	between	data	and	total	cells	as	predicted	by	the	model)	plots	for	macaque	predicted	total	responses.	The	first	row	shows	the	individual	weighted	residuals	
(IWRES)	and	normalised	prediction	distribution	errors	(NPDE)	using	simulated	individual	parameters	against	time.	The	second	row	shows	the	residual	error	against	the	prediction.	The	
bottom	rows	show	the	distribution	of	the	residuals	compared	to	a	Gaussian	pdf	curve	so	assess	the	normality	of	the	residuals.	
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Figure	S4:	Residual	(difference	between	data	and	total	cells	as	predicted	by	the	model)	plots	for	human	predicted	total	responses.	The	first	row	shows	the	individual	weighted	residuals	
(IWRES)	and	normalised	prediction	distribution	errors	(NPDE)	using	simulated	individual	parameters	against	time.	The	second	row	shows	the	residual	error	against	the	prediction.	The	
bottom	rows	show	the	distribution	of	the	residuals	compared	to	a	Gaussian	pdf	curve	so	assess	the	normality	of	the	residuals.	

Figure	S3	shows	the	residual	plots	for	the	macaque	total	cell	predictions	in	analysis	1.	The	residuals	seem	to	be	normally	distributed,	although	the	IWRES	by	

time	and	the	prediction	pdf	(bottom	row)	show	slight	model	under	prediction.	This	is	most	apparent	at	time	points	84	and	112.	However,	this	may	be	a	result	

of	the	large	variation	in	the	data	between	time	points	(particularly	for	day	84	and	112),	which	the	model	is	unable	to	accommodate.	Figure	S4	shows	the	

residual	plots	for	the	human	total	cell	predictions	in	analysis	1.	Residual	error	in	this	case	seem	to	approximate	a	normal	distribution,	however	there	appears	

to	be	slight	under	prediction	by	the	model,	particularly	at	day	0	and	28	(IWRES	plot,	top	row).	Despite	this,	the	VPC	in	Figure	2	indicates	that	the	model	is	still	
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an	adequate	prediction	of	the	data,	for	both	species.	The	observed	versus	predicted	response	plots	in	Figure	S5	also	reflect	the	discrepancy	between	data	

and	model	total	cell	predictions	for	population	(left	column)	and	individual	(right	column)	data	for	A.	macaques	and	B.	humans.	



	 14	

	

Figure	S5:	Empirical	data	versus	predicted	total	IFN-γ	responses	for	A.	macaques	and	B.	humans	
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Figure	S6:	Data	(black	points),	predicted	total	number	of	T	cells	secreting	IFN-γ	(black	line),	predicted	number	of	transitional	effector	memory	(TEM)	cells	(blue	line),	and	predicted	
number	of	resting	central	memory	(CM)	cells	(orange	line),	over	time.	Model	predictions	use	the	estimated	parameters	from	Table	1	for	the	A)	macaque	and	B)	human	populations.		
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Figure	S7.	Prediction	distribution	plot	for	A.	macaques	and	B.	humans.	The	black	points	represent	the	empirical	data.	The	bands	represent	the	10th	to	90th	percentiles	of	the	theoretical	
predictions	using	the	estimated	population	parameters	and	associated	variation	for	analysis	1	(Table	1).	The	black	line	shows	the	median	total	cell	response	prediction
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Analysis	2:	Population	covariate	impact	on	within-population	variation	in	model	parameter	estimates	
	

Non-parametric	rank	test	in	R	on	individual	macaque	estimated	parameter	values	from	Analysis	1	
	

Colony	

TEM0	 L	
	 Cyn:	Chi	 Rhe:	Ind	 Cyn:	Indo	 	 Cyn:	Chi	 Rhe:	Ind	 Cyn:	Indo	
Rhe:	Ind	 NS	 	 	 Rhe:	Ind	 NS	 	 	
Cyn:	Indo	 S	 NS	 	 Cyn:	Indo	 NS	 NS	 	
Cyn:	Maur	 S	 S	 S	 Cyn:	Maur	 S	 NS	 S	

k	 h	
	 Cyn:	Chi	 Rhe:	Ind	 Cyn:	Indo	 	 Cyn:	Chi	 Rhe:	Ind	 Cyn:	Indo	
Rhe:	Ind	 NS	 	 	 Rhe:	Ind	 NS	 	 	
Cyn:	Indo	 NS	 NS	 	 Cyn:	Indo	 NS	 NS	 	
Cyn:	Maur	 S	 NS	 NS	 Cyn:	Maur	 NS	 NS	 NS	

Table	S7:	p-value	 results	of	applying	 the	non-parametric	Kruskal-Wallis	 and	post-hoc	Dunn	 test	 (for	more	 than	 two	groups)	on	

individual	macaque	 estimated	 parameters	 from	 analysis	 1	with	 colony	 as	 the	 predictor.	 Abbreviations:	 Cyn:	 chi	 =	 cynomolgus	

macaques	of	Chinese	origin,	Cyn:	Maur	=	cynomolgus	macaques	of	Mauritian	origin,	Cyn:	Indo=	cynomolgus	macaques	of	Indonesian	

origian,	Rhe:	 Ind	=	Rhesus	macaques	of	 Indian	origin.	 	NS	equates	 to	non-significant	 (p-value>0.05),	S	equates	 to	significant	 (p-

value<0.05).	
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Figure	S8:	Boxplot	of	individual	macaque	estimated	parameters	from	analysis	1	by	colony	

Table	S7	and	Figure	S8	show	that	there	 is	significant	difference	on	the	 individual	macaque	estimated	parameters	
TEM0,	L	and	k	between	the	Chinese,	Mauritian,	Indonesian	and	Indian	macaques.	The	colony	covariate	will	be	added	
to	the	covariate	model	for	macaques	in	analysis	2.	

Forward	stepwise	addition	method	for	selecting	macaque	covariate	model	
Model	#	 Parameter(s)	 -2LL	 Diff	 in	 -2LL	

(*from	
Model	#)	

0.05	 level	 significant?	
(Chi^2	test	1	d.f.:	crit	val	
=	3.84)	

1	 TEM0	 7189.96	 -	 -	
2	 L	 7206.53	 -	 -	
3	 k	 7209.26	 -	 -	
4	 h	 7222.45	 	 	
	
3	 TEM0+L	 7183.75	 6.21	(*1)	 Yes	
4	 TEM0+k	 7185.89	 4.07	(*1)	 Yes	
5	 TEM0+h	 7199.01	 +9.05	(*1)	 No	

TEM0	
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5	 TEM0+L+k	 7177.55	 6.2	(*3)	 Yes	

Table	S8:	Forward	stepwise	addition	method	for	selecting	a	subpopulation-model	for	colony	in	macaques.	-2LL	values	are	taken	

from	running	in	Monolix	with	colony	applied	to	the	parameter.	Difference	in	-2LL	from	the	nested	model	(indicated	with	a	*)	 is	

calculated	and	significance	is	assessed	by	a	chi	squared	distribution	for	one	degree	of	freedom	(for	a	p-value	of	0.05,	this	is	a	critical	

value	of	3.84).	

Non-parametric	rank	test	in	R	on	individual	human	estimated	parameter	values	from	Analysis	1	
	

Gender	

Parameter	 Wilcoxon	test	p-value	
TEM0	 0.45	
L	 0.26	
k	 0.31	
h	 0.14	

Table	S9:	Results	of	applying	the	Wilcoxon	test	on	individual	human	estimated	parameters	from	analysis	1		with	gender	as	the	

predictor	

	

Figure	S9:	Boxplot	of	individual	human	estimated	parameters	from	analysis	1	by	gender,	F=Female,	M=Male	

As	gender	did	not	significantly	impact	the	individual	human	estimated	parameters	(Table	S9	and	Figure	S9),	it	
was	not	considered	further	in	this	work.	

ML	Ratio	

Parameter	 Linear	 regression	 slope	
parameter	p-value	
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TEM0	 0.70	
L	 0.69	
k	 0.33	
h	 0.24	

Table	S10:	Results	of	applying	linear	regression	on	individual	human	estimated	parameters	from	analysis	1	with	ML	ratio	as	the	

predictor	

	

Figure	S10:	Scatterplots	of	individual	human	estimated	parameters	from	analysis	1	against	ML	ratio	

As	ML	ratio	did	not	significantly	impact	the	individual	human	estimated	parameters	(Table	S10	and	Figure	
S10),	it	was	not	considered	further	in	this	work.	

BCG	History	

TEM0	 L	
	 Never	 10-19	yrs	 1-9yrs	 	 Never	 10-19	yrs	 1-9yrs	
10-19	yrs	 S	 	 	 10-19	yrs	 S	 	 	
1-9yrs	 S	 NS	 	 1-9yrs	 S	 NS	 	
20-29	yrs	 S	 NS	 NS	 20-29	yrs	 S	 NS	 NS	
k	 h	
	 Never	 10-19	yrs	 1-9yrs	 	 Never	 10-19	yrs	 1-9yrs	
10-19	yrs	 NS	 	 	 10-19	yrs	 NS	 	 	
1-9yrs	 NS	 NS	 	 1-9yrs	 NS	 NS	 	
20-29	yrs	 NS	 NS	 NS	 20-29	yrs	 NS	 NS	 NS	
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Table	S11:	p-value	results	of	applying	the	non-parametric	Kruskal-Wallis	and	post-hoc	Dunn	test	(for	more	than	two	groups)	with	a	

Bonferroni	correction	on	individual	human	estimated	parameters	from	analysis	1	with	BCG	history	as	the	predictor.	NS	equates	to	

non-significant	(p-value>0.05),	S	equates	to	significant	(p-value<0.05).	

	

	

Figure	S11:	Boxplot	of	individual	human	estimated	parameters	from	analysis	1	by	BCG	history	

Table	S11	and	Figure	S11	show	that	there	is	a	significant	difference	on	the	individual	estimated	parameters	
between	the	“never”	group,	and	the	1-9,	10-19	and	20-29	years	since	BCG	vaccination	groups,	but	not	between	
the	1-9,	10-19	and	20-29	years	since	BCG	vaccination	groups.	As	such,	these	groups	are	considered	as	“BCG	
status”,	where	1+	years	since	BCG	vaccination	groups	are	aggregated	 into	a	BCG:Y	group	and	the	“never”,	
BCG:N.	

BCG	Status	

Parameter	 Wilcoxon	 test	 p-
value	

TEM0	 2x10-10	

L	 9.6x10-9	

k	 0.31	
h	 0.13	

Table	S12:	Results	of	applying	the	Wilcoxon	test	on	individual	human	estimated	parameters	from	analysis	1	with	BCG	status	as	the	

predictor	
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Figure	S12:	Boxplot	of	individual	human	estimated	parameters	from	analysis	1	by	BCG	status	

As	BCG	status	significantly	impacted	the	individual	human	estimated	parameters	(Table	S12	and	Figure	S12),	
it	was	applied	to	parameters	in	Monolix.	

Forward	stepwise	addition	method	for	selecting	human	covariate	model	
Model	#	 Parameter(s)	 -2LL	 Diff	 in	 -2LL	

(*from	
Model	#)	

0.05	 level	 significant?	
(Chi^2	test	1	d.f.:	crit	val	
=	3.84)	

1	 TEM0	 2698.00	 -	 -	
2	 L	 2697.36	 -	 -	
3	 k	 2739.45	 	 	
4	 h	 2737.22	 	 	
	
5	 L	+	TEM0	 2665.75	 31.61	(*2)	 Yes	

6	 L	+	h	 2694.01	 3.35	(*2)	 No	
7	 L	+	k	 2696.85	 0.51	(*2)	 No	
	
8	 L+TEM0+k	 2657.75	 8	(*5)	 Yes	
9	 L+TEM0+h	 2653.96	 11.79	(*5)	 Yes	

	
10	 L+TEM0+h+k	 2651.54	 2.42	 No	

Table	S13:	Forward	stepwise	addition	method	for	selecting	a	covariate	model	for	BCG	status	in	humans.	-2LL	values	are	taken	from	

running	 in	Monolix	with	BCG	status	applied	 to	 the	parameter.	Difference	 in	 -2LL	 from	the	nested	model	 (indicated	with	a	*)	 is	

calculated	and	significance	is	assessed	by	a	chi	squared	distribution	for	one	degree	of	freedom	(for	a	p-value	of	0.05,	this	is	a	critical	

value	of	3.84).	
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We	chose	the	covariate-parameter	relationship	of	L,	TEM0	and	h	for	the	BCG	status	covariate	as,	although	it	
did	not	result	in	the	lowest	-2LL	(see	model	10,	Table	S13),	parameters	were	better	estimated.	

Diagnostic	plots	
Additional	diagnostic	plots	for	the	macaque	and	human	subpopulation-models	can	be	found	in	Figures	S13-
S20.	
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Figure	S13:	Visual	predictive	check	plots	for	all	colonies	of	macaque.	Points	represent	the	empirical	data.	Blue	regions	represent	the	ranges	of	the	90th	and	10th	percentiles	of	the	
simulated	populations.	The	pink	region	represents	the	range	of	the	50th	percentile.	The	green	line	links	the	observed	percentiles	(10th,	50th	and	90th)	for	each	time	point.	Red	regions	
represent	where	the	observed	data	falls	outside	the	ranges	of	the	simulated	percentiles.	
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Figure	S14:	Visual	predictive	check	plots	for	BCG:	N	and	BCG:	Y	humans.	Points	represent	the	observed	data.	Blue	regions	represent	the	ranges	of	the	90th	and	10th	percentiles	of	the	
simulated	populations.	The	pink	region	represents	the	range	of	the	50th	percentile.	The	green	line	links	the	observed	percentiles	(10th,	50th	and	90th)	for	each	time	point.	Red	regions	
represent	where	the	observed	data	falls	outside	the	ranges	of	the	simulated	percentiles.	
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Figure	S15:	Residual	(difference	between	data	and	total	cells	as	predicted	by	the	model)	plots	for	macaque	predicted	total	responses	stratified	by	colony.	The	first	row	shows	the	
individual	weighted	residuals	(IWRES)	and	normalised	prediction	distribution	errors	(NPDE)	using	simulated	individual	parameters	against	time.	The	second	row	shows	the	residual	error	
against	the	prediction.	The	bottom	rows	shows	the	distribution	of	the	residuals	compared	to	a	Gaussian	pdf	curve	so	assess	the	normality	of	the	residuals	
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Figure	S16:	Macaque	observed	versus	predicted	IFN-γ	total	responses	stratified	by	colony	

Figures	S15	and	S16	show	the	accuracy	of	the	model	predictions	for	the	macaque	covariate	model.	Although	the	residuals	are	close	to	normally	distributed	

(Figure	S15),	the	Mauritian	and	Chinese	cynomolgus	macaque	parameter	sets	over	predict	for	higher	IFN-γ	responses	(Figure	S16).	This	could	potentially	be	

due	to	small	colony	populations.	The	Indian	rhesus	and	Indonesian	cynomolgus	macaque	predictions	better	describe	the	data.	The	VPC	plots	(Figure	S13)	

show	that,	although	the	simulated	percentile	bands	are	wide	for	the	Chinese,	Indonesian	and	Mauritian	cynomolgus	macaques	due	to	reduction	in	

population	size	for	these	colonies,	the	empirical	percentiles	still	fall	(aside	from	variation	between	time	points	in	the	data)	within	the	simulated	bands.	
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Figure	S17:	Residual	(difference	between	data	and	total	cells	as	predicted	by	the	model)	plots	for	human	predicted	total	responses	stratified	by	BCG	status.	The	first	row	shows	the	
individual	weighted	residuals	(IWRES)	and	normalised	prediction	distribution	errors	(NPDE)	using	simulated	individual	parameters	against	time.	The	second	row	shows	the	residual	error	
against	the	prediction.	The	bottom	rows	shows	the	distribution	of	the	residuals	compared	to	a	Gaussian	pdf	curve	so	assess	the	normality	of	the	residuals	
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Figure	S18:	Human	observed	versus	predicted	IFN-γ	responses	stratified	by	BCG	status	

Figures	S17	and	S18	show	the	accuracy	of	the	model	predictions	for	the	human	covariate	model.	For	the	human	subpopulations	of	BCG	status,	the	residuals	

are	close	to	normally	distributed	(Figure	S17),	however	both	BCG:	Y	and	BCG:	N	parameter	sets	under	predict	the	higher	IFN-γ	responses,	more	so	for	the	

BCG:	N	predictions	(Figure	S18).	Despite	this,	the	VPC	plots	(Figure	S14)	show	that,	the	empirical	percentiles	still	fall	within	the	simulated	bands.	
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Figure	S19:	Prediction	distribution	plot	for	all	colonies	of	macaque.	Points	represent	the	empirical	data.	The	bands	represent	the	10th	to	90th	percentiles	of	the	theoretical	predictions	
using	the	predicted	population	parameters	and	associated	variation	for	analysis	2	(Table	1).	The	black	line	shows	the	median	total	response	prediction.	
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Figure	S20:	Prediction	distribution	plot	for	humans	by	BCG	status	subpopulation.	Points	represent	the	empirical	data.	The	bands	represent	the	10th	to	90th	percentiles	of	the	theoretical	
predictions	using	the	predicted	population	parameters	and	associated	variation	for	analysis	2	(Table	1).	The	black	line	shows	the	median	total	response	prediction.	
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Analysis	3:	Which	macaque	subpopulations	best	predicted	immune	responses	in	different	human	
subpopulations?	

	
	

	

	

Figure	S21:	VPC	plots	for	macaque	estimated	subpopulation-model	parameters	fit	to	the	human	BCG:	Y	data	(top)	and	BCG:	N	data	
(bottom)	for	Chinese	cynomolgus	macaques.	The	green	line	links	the	observed	percentiles	(10th,	50th	and	90th)	for	each	time	point.	
Blue	regions	represent	the	ranges	of	the	90th	and	10th	percentiles	of	the	simulated	populations	time-matched	to	the	observed	data	
points.	The	pink	region	represents	the	range	of	the	50th	percentile.	Red	regions	represent	where	the	observed	data	falls	outside	the	
ranges	of	the	simulated	percentiles.	
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Figure	S22:	Individual	empirical	data	versus	individual	prediction	for	macaque	estimated	subpopulation-model	parameters	fit	to	

human	BCG:	Y	data	(top)	and	BCG:	N	data	(bottom)	for	Chinese	cynomolgus	macaques.	
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Figure	S23:	VPC	plot	 for	macaque	estimated	subpopulation-model	parameters	 fit	 to	 the	human	BCG:	Y	data	 (top)	and	BCG:	N	data	
(bottom)	for	Mauritian	cynomolgus	macaques.	The	green	line	links	the	observed	percentiles	(10th,	50th	and	90th)	for	each	time	point.	
Blue	regions	represent	the	ranges	of	the	90th	and	10th	percentiles	of	 the	simulated	populations	time-matched	to	the	observed	data	
points.	The	pink	region	represents	the	range	of	the	50th	percentile.	Red	regions	represent	where	the	observed	data	falls	outside	the	
ranges	of	the	simulated	percentiles.	
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Figure	S24:	Individual	empirical	data	versus	individual	prediction	for	macaque	estimated	subpopulation-model	parameters	fit	to	the	
human	BCG:	Y	data	(top)	and	BCG:	N	data	(bottom)	for	Mauritian	cynomolgus	macaques.	
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Figure	S25:	VPC	plot	 for	macaque	estimated	subpopulation-model	parameters	 fit	 to	 the	human	BCG:	Y	data	 (top)	and	BCG:	N	data	
(bottom)	for	Indonesian	cynomolgus	macaques.	The	green	line	links	the	observed	percentiles	(10th,	50th	and	90th)	for	each	time	point.	
Blue	regions	represent	the	ranges	of	the	90th	and	10th	percentiles	of	 the	simulated	populations	time-matched	to	the	observed	data	
points.	The	pink	region	represents	the	range	of	the	50th	percentile.	Red	regions	represent	where	the	observed	data	falls	outside	the	
ranges	of	the	simulated	percentiles.	
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Figure	S26:	Individual	empirical	data	versus	individual	prediction	for	macaque	estimated	subpopulation-model	parameters	fit	to	the	
human	BCG:	Y	data	(top)	and	BCG:	N	data	(bottom)	for	Indonesian	cynomolgus	macaques.	
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Figure	S27:	VPC	plot	 for	macaque	estimated	 subpopulation-model	parameters	 fit	 to	 the	human	BCG:	Y	data	 (top)	and	BCG:	N	data	
(bottom)	for	Indian	rhesus	macaques.	The	green	line	links	the	observed	percentiles	(10th,	50th	and	90th)	for	each	time	point.	Blue	regions	
represent	the	ranges	of	the	90th	and	10th	percentiles	of	the	simulated	populations	time-matched	to	the	observed	data	points.	The	pink	
region	 represents	 the	 range	 of	 the	 50th	 percentile.	 Red	 regions	 represent	where	 the	 observed	data	 falls	 outside	 the	 ranges	 of	 the	
simulated	percentiles.	
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Figure	S28:	Individual	empirical	data	versus	individual	prediction	for	macaque	estimated	subpopulation-model	parameters	fit	to	the	
human	BCG:	Y	data	(top)	and	BCG:	N	data	(bottom)	for	Indian	rhesus	macaques.
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3 Additional	Discussion	
Assumption	 Implications	for	model	
CD4	T	cell	stimulation	greatly	simplified	
The	immune	response	to	vaccination	is	a	complex	network	of	cells	and	cytokines	behaving	nonlinearly	over	time.	

In	the	Th1	response	to	Mtb	infection	(or	vaccination),	innate	and	adaptive	cells	interact	to	optimise	and	maintain	

a	protective	response	[7].	Very	simply,	cytokines	secreted	by	innate	cells	after	infection	or	vaccination,	such	as	IL-

12,	work	to	stimulate	adaptive	cells	to	produce	IFN-γ	that	both	encourages	innate	cells	to	phagocytose	bacteria	

and	produce	more	IL-12	[8,	9].	As	such,	a	feedback	stimulation	loop	is	established.	In	addition,	to	avoid	an	over-

inflammatory	response	(which	is	harmful	to	the	host)	cytokines	such	as	IL-10	are	produced	to	regulate	and	dampen	

the	 immune	 response	 [10].	 In	 the	model,	 function	 δ	 is	 used	 to	 represent	 the	 delay	 of	 T	 cell	 initiation	 due	 to	

processes	such	as	antigen	processing	and	presentation	and	the	decline	of	T	cell	responses	due	to	depreciation	of	

the	 required	 stimulation	 (creating	 a	 “n-shaped”	 curve).	 However,	 δ	 neglects	 the	 influence	 of	 stimulation	

amplification	 as	 a	 result	 of	 cytokine	 feedback	 loops,	 amongst	 other	 co-stimulation	 factors.	 As	 such,	 δ	 is	 a	

generalization	of	the	complex	networks	required	to	protect	against	 infection	or	vaccination	and	may	not	be	as	

prolonged	as	required	to	generate	a	response	to	vaccination.	

If	 data	 were	 available	 on	 IL-12	 or	 other	 cytokines	 believed	 to	 be	

important	to	an	immune	response	to	BCG,	It	is	possible	that	δ	could	be	

modelled	 as	 a	 parallel	 “innate	 response”	 compartmental	 model.	

Incorporating	such	a	model	would	provide	insight	into	the	innate	cell	

mechanisms	and	thus	strengthen	the	conclusions	we	draw	on	the	T	cell	

dynamics.	

Shape	of	stimulation	curve,	δ	
The	Gamma	pdf	distribution	function	fit	well	for	δ	for	the	BCG	data	in	the	analysis,	so	no	other	functional	forms	

were	tested.	Although	an	abstract	concept,	it	is	possible	that	a	different	shape	may	be	required	if	the	model	was	

to	be	applied	to	different	type	of	vaccine	(i.e.	viral	vector	vaccines	(e.g.	novel	TB	vaccine	MVA-85A)	deliver	a	rapid	

“burst”	of	transitional	effector	cells	compared	to	a	live	replicating	vaccines	(BCG)	[communication,	H.	Fletcher]).	

	

No	Terminal	Effector	cells	
It	is	known	that	before	TEM	cells	apoptose,	they	transition	to	a	terminal	effector	phenotype	[11].	We	assume	this	

process	is	incorporated	into	the	µTEM	parameter,	i.e.	for	humans,	the	TEM	cells	will	transition	to	terminal	effector	

phenotype	and	apoptose	on	average	after	12	days	(Table	1	and	Table	S2).		This	assumption	was	made	to	simplify	

the	model	to	avoid	over-parameterisation.	

To	incorporate	the	terminal	effector	cells,	a	separate	terminal	effector	

compartment	would	 be	 added	where	 the	 proportion	 p	 of	 TEM	 cells	

would	 enter	 at	 a	 new	 rate	 βTEM	 which	 would	 then	 be	 calibrated	 in	

Monolix.	Terminal	effector	cells	would	then	apoptose	at	a	rate	to	be	

derived	from	literature.	

No	initial	recruitment	into	resting	memory	compartment		
The	model	assumes	a	linear	progression	from	transitional	effector	memory	to	resting	memory	cell	phenotype	[12-

14]	.	However	a	branched	differentiation	model,	whereby	memory	cells	progress	directly	from	naive	CD4	T	cells	

and	 bypass	 the	 transitional	 effector	 stage,	 has	 been	 suggested	 [15,	 16].	 The	 determining	 factor	 as	 to	 which	

pathway	is	optimal	is	still	not	fully	understood	[17].	

To	incorporate	a	nonlinear	effector-memory	pathway	into	the	model,	a	

recruitment	term	like	δ	would	be	added	to	the	memory	compartment.	

Transition	and	replication	of	transitional	effector	cells	happens	in	Lymph	node	before	entering	the	blood	
The	model	assumes	that	the	recruited	transitional	effector	cells	are	former	Mtb-specific	naïve	CD4	T	cells	that	have	

clonally	expanded	within	the	 lymph	node	and	exited	into	the	blood	stream.	Under	this	assumption,	transitional	

effector	 cells	 do	 not	 replicate	 in	 this	model.	 The	 rate	 of	 naïve	 CD4	 T	 cell	 clonal	 expansion	 changes	with	 time	

dependent	 on	 stimulation	 from	 innate	 processes	 and	 antigen	 presence	 [17]	 so	 could	 be	 considered	 to	 be	

incorporated	into	δ.	

To	incorporate	replication	of	transitional	effector	cells	into	the	model,	

a	parameter	RE	would	be	applied	which	would	determine	the	rate	at	

which	 replication	 occurs,	 dependent	 on	 the	 current	 transitional	

effector	cell	count.	

Table	S14:	Main	assumptions	of	the	model	and	implications	on	challenging	these	assumptions
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