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Section 1: Supplementary Results 

 

 

 

Supplementary Figure 1: Robustness of results to burst detection threshold. In the 

main manuscript, we define network-wide bursts as periods of activity in which the 

number of neurons firing at the same time met or exceeded a threshold level of 40% of 

neurons in the network divided by the number of steps per ms. Here we show that our 

results were robust to changes in the threshold level of neurons that must be active for a 

period of activity to be considered a burst. (A)  Number of active neurons as a function of 

time in seconds for an example simulation at the excitatory strength of 7. (B) Number of 

active neurons as a function of time in seconds for an example simulation at the 

excitatory strength of 9. Colored horizontal lines indicate different threshold choices 

(20%, dark blue dotted line; 40%, red solid line; 60% green dot-dashed line; 80%, cyan 

dashed line). Note that the number of network-wide bursts is identical across these 

threshold choices.  

 



 

Supplementary Figure 2: Network size does not affect activity dynamics, but 

network density can lead to an alteration in firing rate.  A. Across networks sizes that 

could be as large as 10,000 total neurons, the relative change in firing rate across 

different excitatory synaptic strengths did not differ significantly.  B. Similarly, when 

autapses were added to the same fraction of neurons across these different-sized 

networks, there was no significant change in the burst rate differences that appear across 

these networks.  C. In comparison, adding more connections of similar synaptic strength 

to increase the network density would lead to more active networks.  However, the 

difference in firing rates that occurred when autapses were added in these increasingly 

dense networks would not change significantly until the networks started to show 

bursting behavior in the initial state (density .15, .20).  D. For these more dense networks, 

bursting became more common at high synaptic strengths (9) and, in turn, led to no 

significant difference in the change of bursting rate when autapses were added. 



 

Supplementary Figure 3: Effect of targeting strategy. In the main text, we report 

results comparing three targeting strategies using a mixed-model ANOVA:  neurons 

chosen by highest average controllability, highest modal controllability, and uniformly at 

random. Here, we use the same statistical procedure to show results for all seven 

targeting strategies. (A) Differences in burst frequency induced by adding connections 

according to the seven targeting strategies, Color indicates p-values of posthoc Tukey’s 

HSD test.  (B) Dependence of results in (A) as a function of both the proportion of 

excitatory neurons (x-axis) and the amount of autapses added (y-axis).  The number of 

significant differences between addition rules was greater for simulations with more 

autapses and smaller proportion of excitatory neurons. (C) Number of significantly 

different pairs of simulations (across different levels of excitatory and inhibitory strength, 

and across different amounts of autapses) for each set of targeting strategies. Color 



indicates number of significantly different pairs. (D) Dependence of summary results in 

panel (C) on the inhibitory/excitatory strength combination (top) and the amount of 

autapses added (bottom). 

 

 

Supplementary Figure 4: Burst duration dependent on excitatory and inhibitory 

strength. Mean	burst	duration	(color)	as	a	function	of	mean	excitatory	strength	(x-axis)	and	

mean	inhibitory	strength	(y-axis). 

 

Section 2: Supplementary Discussion 

In the main manuscript, we utilize a mathematical definition of a network-wide bursts. 

However, it is important to note that there is no one well-accepted definition of a 

network-wide burst. To illustrate this point, here we describe previously-used definitions, 

which vary both quantitatively and qualitatively. 

1. In a previous computational model, the resulting spiking activity was binned into 10 

ms time windows. A burst was identified when more than 25% of the neuronal 

population fired during that time window [1]. 



2. In a different study that included both a computational model and multi-unit activity 

(MUA) from multielectrode array recordings of in vitro rat cortical neurons, a “network 

spike” was detected by counting the spikes recorded at all electrodes in 50 ms time 

windows. If the number of spikes detected exceeded a threshold of 25% of the maximum 

spike count recorded, then a burst was detected [2]. 

3. In another analysis of MUA activity, recordings from each electrode were searched for 

sequences of sequences of at least four spikes with inter-spike intervals less than a 

threshold set to the less of 100 ms or ¼ of that electrode’s inverse spike detection rate. If 

a group of these sequences overlapped in time across multiple electrodes, it was called a 

burst [3]. 

4. Pasquale et al [4] developed a burst detection algorithm involving two cases based on 

the separation of the two peaks (bursting ISI peak and non-bursting ISI peak) logarithmic 

histogram of the ISI. If the minimum between the two peaks is less than 100 ms, that 

minimum is used as the maximum ISI allowed within a burst and used to identify spikes 

within a burst. On the other hand, if the minimum is greater than 100 ms, a 100 ms 

threshold is used to detect burst cores and the location of the minimum between the peaks 

is used as the absolute bursting threshold. Spikes occurring within the burst core ISI 

threshold are identified as burst core spikes while spikes occurring at rates between the 

burst core ISI threshold and the minimum on the histogram are referred to as burst 

boundary spikes. 

5. Recent work utilized and compared the results of several burst detection algorithms. 

These included: (a) a rate-threshold detector in which a burst was detected if a firing rate 

histogram with 50 ms time windows exceeded a threshold number of spikes, (b) a ISI-

threshold detector in which interspike interval thresholds were set at the minimum 

between peaks of the logarithmic ISI probability distribution and capped at 10 ms. If the 

ISIs of five consecutive spikes were each less than the ISI threshold, then a single-

channel burst was detected. A network burst required 20% of the recording channels to 

be activated. (c) a rank surprise detector in which the minimum number of spikes and 

maximum ISI within a burst were 5 spikes and 100 ms, respectively, and at least 10 

single channel bursts overlapped in time, and (d) an ISIN-threshold method in which the 

user chooses a minimum network burst size in terms of N, the number of spikes that 



make the smallest network burst, and then if N consecutive spikes occur within a time 

period less than or equal to the ISIN-threshold, where ISIN is the ISI between every Nth 

spike in the network and the ISIN-threshold is the minimum between regions of bursting 

and non-bursting in a logarithmic histogram of ISIN, the time period is a burst [5]. 
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