Supporting Information

When Weaker Can Be Tougher: On the Role of Oxidation State (I) in P- vs. N-Ligand Derived Ni-Catalyzed Trifluoromethylthiolation of Aryl halides

Indrek Kalvet,[†] Qianqian Guo,[‡] Graham J. Tizzard,[§] and Franziska Schoenebeck*,[†]

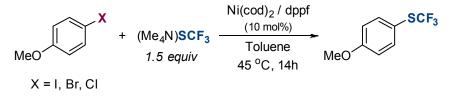
[†]Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

[‡]Institute of Inorganic Chemistry, X-Ray Crystallography, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

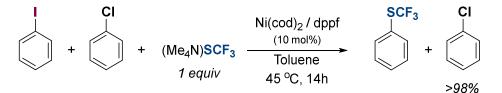
[§]EPSRC National Crystallography Service, School of Chemistry, University of Southampton, University Road SO17 1BJ Southampton, United Kingdom

* E-mail: <u>franziska.schoenebeck@rwth-aachen.de</u>

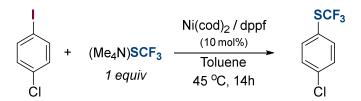
Contents


1.	General Information	
1.1	1. Trifluoromethylthiolation with dppf / Ni(cod) ₂ catalyst	3
1.2	2. Studies into SCF ₂ formation	4
2.	Synthetic procedures	6
2.1	Preparation of Ni ^(I) I- and Br-complexes	6
3.	Crystallographic data	
4.	Computational details	
5.	NMR spectra	
6.	References	

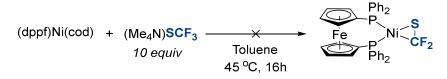
1. General Information


¹H, ¹³C and ¹⁹F NMR spectra were recorded either on V-NMRS 400 or Varian Mercury 300 spectrometer. ¹H spectra are referenced to residual solvent signals; CDCl₃ 7.26 ppm; benzene-*d*₆ 7.16 ppm and THF-*d*₈ 1.73 ppm. Chemical shifts (δ) of ¹⁹F NMR spectra are reported in ppm relative to trifluorotoluene (-63.18 ppm). Chemical shifts (δ) of ³¹P NMR spectra are given in ppm relative to trimethyl phosphate (2.36 ppm). Coupling constants (*J*) are reported in Hz and coupling patterns are described as br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

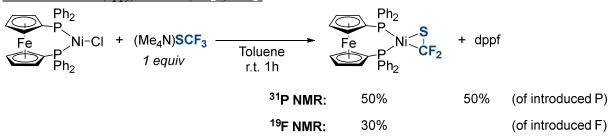
Ni(cod)₂, dppf, and anhydrous benzene were purchased from Sigma Aldrich. Toluene, THF and hexane were dried by solvent purification system (Innovative Technology PS-MD-5). Unless otherwise stated, all starting materials were commercially available and used as received. (Me₄N)SCF₃,¹ (dppf)Ni(cod),² (dppf)NiCl² and (dme)₂NiI₂³ were prepared according to their corresponding literature procedures.


1.1. Trifluoromethylthiolation with dppf / Ni(cod)₂ catalyst

In an argon filled glovebox, a mixture of Ni(cod)₂ (2.8 mg, 0.01 mmol), dppf (5.5 mg, 0.01 mmol), and (Me₄N)SCF₃ (26 mg, 0.15 mmol) in dry toluene (0.5 mL) was stirred at room temperature for 5 min, followed by the addition of aryl halide (0.1 mmol). The suspension was stirred at 45 °C for 12-15 h. Subsequently a known amount of trifluorotoluene was added as an internal standard and conversion to the trifluoromethylthiolated product was determined by quantitative ¹⁹F NMR analysis.


In an argon filled glovebox, a mixture of Ni(cod)² (2.8 mg, 0.01 mmol), dppf (5.5 mg, 0.01 mmol), and (Me₄N)SCF₃ (18 mg, 0.1 mmol) in dry toluene (0.5 mL) was stirred at room temperature for 5 min, followed by the addition of chlorobenzene and iodobenzene (0.1 mmol each). The suspension was stirred at 45 °C for 12-15 h. Subsequently a known amount of mesitylene was added as an internal standard and conversion to the trifluoromethylthiolated product as well as the amount of remaining starting materials was determined by calibrated GC/MS analysis. The yield of the formed product was further verified by ¹⁹F NMR analysis using trifluorotoluene as internal standard.

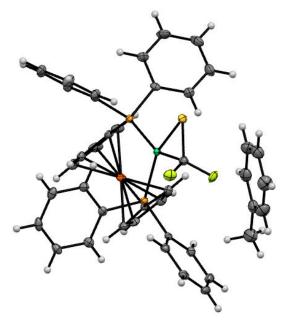
In an argon filled glovebox, a mixture of Ni(cod)₂ (2.8 mg, 0.01 mmol), dppf (5.5 mg, 0.01 mmol), and (Me₄N)SCF₃ (18 mg, 0.1 mmol) in dry toluene (0.5 mL) was stirred at room temperature for 5 min, followed by the addition of aryl halide (24 mg, 0.1 mmol). The suspension was stirred at 45 °C for 12-15 h. Subsequently a known amount of trifluorotoluene was added as an internal standard and conversion to the trifluoromethylthiolated products was determined by quantitative ¹⁹F NMR and GC/MS analyses.


1.2. Studies into SCF₂ formation

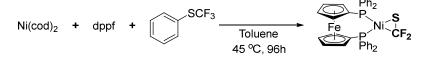
Thermal decomposition of (Me₄N)SCF₃ under catalytically relevant conditions:

In an argon filled glovebox, a mixture of (dppf)Ni(cod) (7.2 mg, 0.01 mmol) and (Me₄N)SCF₃ (18 mg, 0.1 mmol) in dry toluene (0.7 mL) was stirred at 45 °C for 16 h. The mixture was subsequently analyzed by ¹⁹F and ³¹P NMR and no conversion to (dppf)Ni(SCF₂) as well as to any other F- or P-containing species was observed.

Reaction between (dppf)NiCl and (Me₄N)SCF₃:



In an argon filled glovebox, a mixture of (dppf)NiCl (20 mg, 0.031 mmol) and (Me₄N)SCF₃ (5.4 mg, 0.031 mmol) in dry toluene (1.5 mL) was stirred at room temperature for 1 h, after which the solution had turned orange and a green precipitate had formed. A known amount of trifluorotoluene and triethyl phosphate were subsequently added and the formed species were quantified by ¹⁹F and ³¹P NMR analysis.


After 30 minutes the solution phase was also orange, along with a dark red precipitate. ³¹P NMR analysis revealed there to be only (dppf)Ni(SCF₂) present and no free ligand, suggesting that it is likely formed *via* the decomposition of the dark red precipitate. On a preparative scale it is however difficult to isolate the material at the time when there would not be any unreacted starting material or free dppf impurity present.

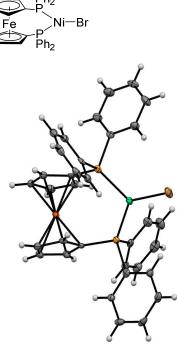
Crystals suitable for X-ray analysis were grown from the reaction mixture in toluene that was filtered through celite after 30 minutes running time. Slow diffusion of hexane through gas phase was used to induce crystal formation.

All the ellipsoids are drawn at 50% probability.

Formation of (dppf)Ni(SCF₂) via oxidative addtion:

Inside an argon filled glovebox, Ni(cod)₂ (138 mg, 0.5 mmol), dppf (282 mg, 0.505 mmol) and benzene (10 mL) were added to a vial. The solution was stirred for 10 min at room temperature, and then phenyl trifluoromethyl sulfide (1 mL) was added. The solution was stirred at 45 °C for 96 hours, followed by the isolation of the solid material by filtration. The obtained dark green solid was subsequently recrystallized from benzene/hexane to yield 70 mg of pale orange solid (20% yield). ¹H NMR (300 MHz, C₆D₆) δ (ppm) 7.95 (m, 8H), 7.02 (br, 12H), 4.37 (br, 2H), 4.02 (br, 2H), 3.86 (br, 2H), 3.77 (br, 2H). ¹⁹F NMR (282 MHz, C₆D₆) δ (ppm) -44.75 (dd, *J* = 37.6, 23.0 Hz). ³¹P NMR (121 MHz, C₆D₆) δ (ppm) 30.82 (t, *J* = 23.0 Hz), 22.10 (t, *J* = 37.6 Hz).

2. Synthetic procedures


2.1. Preparation of Ni^(I) I- and Br-complexes

Preparation of (dppf)Ni⁽¹⁾Br via oxidative addition:

 $Ni(cod)_2$ + dppf + PhBr r.t., 24h Benzene Fe Fe

Inside an argon filled glovebox, Ni(cod)₂ (138 mg, 0.5 mmol), dppf (282 mg, 0.505 mmol), and benzene (10 mL) were added to a 20 mL vial. The solution was stirred at room temperature for 5 minutes, after which 1 mL of bromobenzene was added. Additional stirring for 24 hours, yielded an orange suspension. After filtration and washing with hexane, orange powder (231 mg) was collected, 67% yield. Crystals suitable for X-ray analysis were grown by slow diffusion of hexane through gas phase into a moderately concentrated solution of the title compound in benzene (400 μ L saturated solution + 100 μ L benzene) at room temperature.

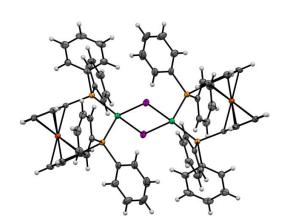
All the ellipsoids are drawn at 50% probability. C_6H_6 is omitted for clarity.

Preparation of (dppf)Ni⁽¹⁾Br via comproportionation:

Ni(cod)₂ + (dme)NiBr₂ + dppf
$$\xrightarrow{\text{THF}}_{r.t., 24h}$$
 Fe Ni-Br

Inside an argon filled glovebox, Ni(cod)₂ (55 mg, 0.2 mmol), dppf (222 mg, 0.4 mmol), (dme)NiBr₂ (61 mg, 0.2 mmol) and THF (10 mL) were added to a 20 mL vial. The solution was stirred at room temperature for 24 hours, after which an orange suspension had formed. After filtration and washing with hexane, orange powder (174 mg) was collected, 63% yield. Paramagnetic ¹H NMR (400 MHz, C₆D₆) δ (ppm) 12.7 (br), 4.5 (br), 1.3 (br).

Preparation of (dppf)Ni⁽¹⁾I via oxidative addition:

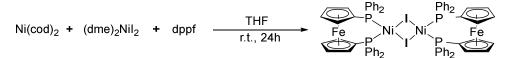

Ni(cod)₂ + dppf + PhI

$$\xrightarrow{\text{Benzene}}$$
 $r.t., 24h$
 $\xrightarrow{\text{Ph}_2}$
 \xrightarrow

Inside an argon filled glovebox, Ni(cod)₂ (138 mg, 0.5 mmol), dppf (282 mg, 0.505 mmol), and benzene (10 mL) were added to a 20 mL vial. The solution was stirred at room temperature for 5 minutes, after which 1 mL of iodobenzene was added. Additional stirring for 24 hours, yielded an orange suspension had formed. After filtration and washing with hexane, orange-purplish powder (231 mg) was collected, 67% yield. ¹H NMR analysis indicated the isolated material to be a mixture of (dppf)Ni^(II)I and (dppf)Ni^(II)I₂. The latter is not observed when the reaction is run on a more dilute NMR experiment scale (0.01 mmol in 0.7 mL), suggesting that its (NiI₂) isolation may be associated with its poor solubility in benzene.

¹H NMR spectrum of (dppf)Ni^(II)I₂ contains characteristic signals at 19.8 and -2.8 ppm (as determined after mixing (dme)₂NiI₂ and dppf in THF- d_8 or C₆D₆ for 1h).

Attempt to grow single crystal of the isolated impure material from THF yielded a dimeric (dppf)Ni⁽¹⁾I, whereas crystallization from benzene yielded (dppf)Ni⁽¹¹⁾I₂. Crystals suitable for X-ray analysis were grown by slow diffusion of hexane through gas phase into a solution of the isolated material at room temperature.



A A

All the ellipsoids are drawn at 50% probability. THF is omitted for clarity.

All the ellipsoids are drawn at 50% probability. C₆H₆ is omitted for clarity.

Preparation of (dppf)Ni⁽¹⁾I via comproportionation:

Inside an argon filled glovebox, Ni(cod)₂ (55 mg, 0.2 mmol), dppf (222 mg, 0.4 mmol), (dme)₂NiI₂ (98 mg, 0.2 mmol) and THF (10 mL) were added to a 20 mL vial. The solution was stirred at room temperature for 24 hours, after which the reaction mixture had turned greenish-purple. After filtration and washing with hexane, dark greenish orange powder (168 mg) was collected, 57% yield. Paramagnetic ¹H NMR (400 MHz, C₆D₆) δ (ppm) 12.8 (br), 4.4 (br).

3. Crystallographic data

	(dppf)Ni(SCF ₂)	(dppf)Ni ⁽¹⁾ Br	[(dppf)Ni ^(I) I]2	(dppf)Ni ^(II) I ₂
Chemical formula	C34H28F2FeNiP2S,C7H8	C34H28BrFeNiP2,C6H6	C68H56Fe2I2Ni2P4,C4H8O	C34H28FeI2NiP2,C6H6
Mr	787.27	771.08	1552.03	944.97
Crystal system, space	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Monoclinic, C2/c	Triclinic, $P\overline{1}$
group				
<i>a, b, c</i> (Å)	11.2326(10)	9.6075(11)	23.6771(5)	8.9532(2)
	11.3360(10)	10.9191(13)	13.9547(3)	10.0303(3)
	16.1197(14)	17.624(2)	19.1841(4)	20.4331(11)
α, β, γ (°)	78.1070(10)	96.565(2)	90	91.917(3)
	72.5100(10)	105.405(2)	90.394(2)	99.127(4)
	67.2790(10)	103.759(2)	90	94.971(2)
$V(Å^3)$	1796.3(3)	1699.9(3)	6338.4(2)	1802.83(12)
Ζ	2	2	4	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	1.116	2.278	2.153	2.754
Crystal size (mm)	0.30 x 0.30 x 0.21	0.18 x 0.15 x 0.04	0.06 x 0.05 x 0.04	0.07 x 0.05 x 0.03
Total/unique	22492, 7576	19061, 6202	41356, 7243	9996, twinned crystal
reflections	0.0500	0.0(22	0.0.00	
Rint	0.0529	0.0622	0.060	twinned crystal
$R(F^2 > 2\sigma(F^2)]$	0.0345	0.0383	0.0395	0.0415
$wR_2(F^2)$	0.0849	0.0872	0.0798	0.0878
GoF	1.028	1.009	1.017	1.071
No. of reflections	7576	6202	7243	9996
No. of parameters	443	406	397	416
No. of restraints	0	0	30	0
$\Delta \geq_{max}, \Delta \geq_{min} (e \text{ Å}^{-3})$	0.424, -0.467	0.933, -0.374	1.098, -0.435	3.023, -0.982
CCDC Number	1528670	1528671	1528182	1528181

3.1. Structural details of (dppf)Ni^(I)Br

To investigate a possible electronic exchange between the Ni-center and the ferrocene ligand (e.g. whether it is truly $Ni^{(I)}/Fe^{(II)}$ and not $Ni^{(0)}/Fe^{(III)}$), we performed calculations of the spin density in (dppf) $Ni^{(I)}Br$ complex. The obtained results indicate that the unpaired electron in this complex is localized predominantly on the Ni center (Figure S1).

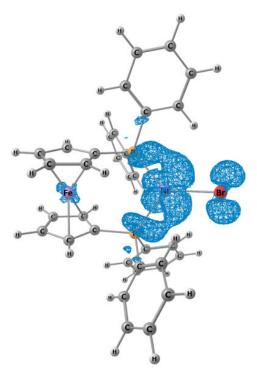


Figure S1. Spin density analysis for (dppf)Ni⁽¹⁾Br, calculated at CPCM (Toluene) M06L/def2TZVP // ω B97XD/6-31G(d) SDD level of theory.

Furthermore, we also compared the average C-Fe distances in the ferrocene moieties of the obtained crystal structures with the corresponding distances in $Fe^{(II)}$ (CCDC 1154857) and $Fe^{(III)}$ (CCDC 194434, 170258, 138350 and 1194362) ferrocenes. The data, shown in the Table S1 indicate that the ferrocene units in our Ni^(I) complexes are more similar to $Fe^{(II)}$ ferrocene.

Complex	Average C-Fe distance (Å)
Fe ^(II) ferrocene	2.045
Fe ^(III) ferrocene	2.065
(dppf)Ni ^(I) Br	2.041
(dppf)Ni ^(I) I dimer	2.042
(dppf)Ni ⁽⁰⁾ (cod)	2.044

4. Computational details

All calculations were performed using Gaussian 09 software.⁴ Structural optimizations and frequency calculations were performed with ω B97XD method along with 6-31G(d) basis set and the SDD ECP on Ni and Fe atoms. Single point energy calculations were performed with M06 and M06L methods and def2-TZVP basis set. Solvent effects of toluene and THF were included using the CPCM solvation model. Frequency calculations were performed to confirm whether the structure is a minimum or a transition state. Intrinsic reaction coordinate (IRC) analysis was used to confirm that the obtained transition states connect the correct minima. Energies of all structures are corrected to 1M standard state with the addition of a constant of 1.89 kcal/mol.⁵ Both singlet and triplet spin states were considered for Ni^(II) complexes, with the lowest energy ones reported herein.

Energetic and thermal data for computed structures

MeO-Ph-Cl

Zero-point correction=	0.125560 (Hartree/Particle)
Thermal correction to Energy=	0.133511
Thermal correction to Enthalpy=	0.134456
Thermal correction to Gibbs Free Energy=	0.092354
Sum of electronic and zero-point Energies=	-806.101249
Sum of electronic and thermal Energies=	-806.093298
Sum of electronic and thermal Enthalpies=	-806.092353
Sum of electronic and thermal Free Energies=	-806.134455
CPCM (Toluene) M06L/def2TZVP E = -806.457700124	

MeO-Ph-Br

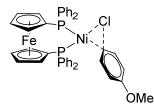
Meo

Zero-point correction=	0.125022 (Hartree/Particle)
Thermal correction to Energy=	0.133254
Thermal correction to Enthalpy=	0.134199
Thermal correction to Gibbs Free Energy=	0.090526
Sum of electronic and zero-point Energies=	-2917.353822
Sum of electronic and thermal Energies=	-2917.345589
Sum of electronic and thermal Enthalpies=	-2917.344645
Sum of electronic and thermal Free Energies=	-2917.388318
CPCM (Toluene) M06L/def2TZVP E = -2920.31216203	

MeO-Ph-I

MeO

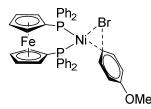
0.124817 (Hartree/Particle) Zero-point correction= 0.133128 Thermal correction to Energy= Thermal correction to Enthalpy= 0.134072 Thermal correction to Gibbs Free Energy= 0.089764 -357.342624 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -357.334313 Sum of electronic and thermal Enthalpies= -357.333368 Sum of electronic and thermal Free Energies= -357.377676


CPCM (Toluene) M06L/def2TZVP E = -644.124891465

[(dppf)Ni⁽⁰⁾(cod)]

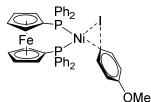
Zero-point correction=	0.712882 (Hartree/Particle)
Thermal correction to Energy=	0.752464
Thermal correction to Enthalpy=	0.753408
Thermal correction to Gibbs Free Energy=	0.641932
Sum of electronic and zero-point Energies=	-2600.878556
Sum of electronic and thermal Energies=	-2600.838974
Sum of electronic and thermal Enthalpies=	-2600.838030
Sum of electronic and thermal Free Energies=	-2600.949506

CPCM (Toluene) M06L/def2TZVP E = -5079.72044133 CPCM (Toluene) M06/def2TZVP E = -5078.57741291


TS-OA-ArCl

Zero-point correction=	0.650568 (Hartree/Particle)
Thermal correction to Energy=	0.692698
Thermal correction to Enthalpy=	0.693642
Thermal correction to Gibbs Free Energy=	0.572084
Sum of electronic and zero-point Energies=	-3095.184115
Sum of electronic and thermal Energies=	-3095.141985
Sum of electronic and thermal Enthalpies=	-3095.141041
Sum of electronic and thermal Free Energies=	-3095.262599

CPCM (Toluene) M06L/def2TZVP E = -5574.03756636


TS-OA-ArBr

Zero-point correction= 0.650998 (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

CPCM (Toluene) M06L/def2TZVP E = -7687.89995235

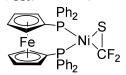
TS-OA-ArI

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies=

Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

CPCM (Toluene) M06L/def2TZVP E = -5411.72153315

0.692166	
0.693110	
0.575356	
-5206.448728	
-5206.407560	
-5206.406616	
-5206.524370	


0.651107 (Hartree/Particle) 0.692317 0.693262 0.575259 -2646.446733 -2646.405523 -2646.404578 -2646.522581

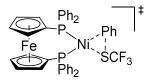
1,5-cyclooctadiene

Zero-point correction= 0.183361 (Hartree/Particle) Thermal correction to Energy= 0.190701 Thermal correction to Enthalpy= 0.191646 Thermal correction to Gibbs Free Energy= 0.151915 -311.745607 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -311.738266 -311.737322 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -311.777053 CPCM (Toluene) M06L/def2TZVP E = -312.0931233CPCM (Toluene) M06/def2TZVP E = -311.885770491 CPCM (THF) M06/def2TZVP E = -311.886489619

(dppf)Ni (SCF₂)

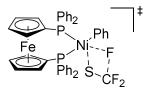
0.540297 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.577186 Thermal correction to Enthalpy= 0.578130 Thermal correction to Gibbs Free Energy= 0.468722 Sum of electronic and zero-point Energies= -2925.008081 -2924.971193 Sum of electronic and thermal Energies= -2924.970249 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -2925.079656

CPCM (Toluene) M06L/def2TZVP = -5403.69208574


(dppf)Ni(Ph)(SCF₃)

Ph₂ Ph SCF₃

Zero-point correction=	0.635991 (Hartree/Particle)
Thermal correction to Energy=	0.679119
Thermal correction to Enthalpy=	0.680063
Thermal correction to Gibbs Free Energy=	0.557839
Sum of electronic and zero-point Energies=	-3256.282808
Sum of electronic and thermal Energies=	-3256.239680
Sum of electronic and thermal Enthalpies=	-3256.238735
Sum of electronic and thermal Free Energies=	-3256.360960


CPCM (Toluene) M06/def2TZVP E = -5734.08229759

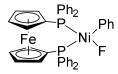
TS-RE-PhSCF₃

Zero-point correction=	0.635105 (Hartree/Particle)
Thermal correction to Energy=	0.677832
Thermal correction to Enthalpy=	0.678776
Thermal correction to Gibbs Free Energy=	0.557630
Sum of electronic and zero-point Energies=	-3256.255528
Sum of electronic and thermal Energies=	-3256.212802
Sum of electronic and thermal Enthalpies=	-3256.211857
Sum of electronic and thermal Free Energies=	-3256.333004
CPCM (Toluene) M06/def2TZVP E = -5734.05622609	

TS-βF-elim-PhSCF₃

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= 0.634900 (Hartree/Particle) 0.677967 0.678911 0.557817 -3256.253080 -3256.210014 -3256.209069 -3256.330164

CPCM (Toluene) M06/def2TZVP E = -5734.04455539


PhSCF₃

 SCF_3

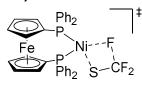
Zero-point correction=	0.108184 (Hartree/Particle)
Thermal correction to Energy=	0.117609
Thermal correction to Enthalpy=	0.118553
Thermal correction to Gibbs Free Energy=	0.071274
Sum of electronic and zero-point Energies=	-967.159310
Sum of electronic and thermal Energies=	-967.149886
Sum of electronic and thermal Enthalpies=	-967.148942
Sum of electronic and thermal Free Energies=	-967.196220

CPCM (Toluene) M06/def2TZVP E = -967.397178728 CPCM (THF) M06/def2TZVP E = -967.398135792

(dppf)Ni(Ph)(F)

0.620929 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.659966 Thermal correction to Enthalpy= 0.660910 Thermal correction to Gibbs Free Energy= 0.547259 -2620.399423 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -2620.360387 -2620.359443 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -2620.473093 CPCM (Toluene) M06/def2TZVP E = -5098.07454855

(dppf)Ni(SCF₃)


 Ph_2 Ni-SCF₃ Fe

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

CPCM (Toluene) M06/def2TZVP = -5502.5638082

```
0.543054 (Hartree/Particle)
 0.581734
 0.582678
 0.467024
   -3024.844392
    -3024.805712
    -3024.804768
    -3024.920421
```

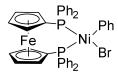
TS-βF-elim-Ni^(I)SCF₃

Zero-point correction=	0.540907 (Hartree/Particle)
Thermal correction to Energy=	0.579795
Thermal correction to Enthalpy=	0.580739
Thermal correction to Gibbs Free Energy=	0.463477
Sum of electronic and zero-point Energies=	-3024.808429
Sum of electronic and thermal Energies=	-3024.769541
Sum of electronic and thermal Enthalpies=	-3024.768596
Sum of electronic and thermal Free Energies=	-3024.885859

CPCM (Toluene) M06/def2TZVP E = -5502.5273849

Zero-point correction=	0.011698 (Hartree/Particle)
Thermal correction to Energy=	0.015249
Thermal correction to Enthalpy=	0.016193
Thermal correction to Gibbs Free Energy=	-0.015171
Sum of electronic and zero-point Energies=	-635.844412
Sum of electronic and thermal Energies=	-635.840861
Sum of electronic and thermal Enthalpies=	-635.839917
Sum of electronic and thermal Free Energies=	-635.871281

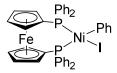
CPCM (Toluene) M06/def2TZVP = -635.97015519CPCM (THF) M06/def2TZVP E = -635.970566068


(dppf)Ni(Ph)(Cl)

 Ph_2 Ph Fe ΓĴ

0.620308 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.659080 Thermal correction to Enthalpy= 0.660024 Thermal correction to Gibbs Free Energy= 0.547509 Sum of electronic and zero-point Energies= -2980.774640 Sum of electronic and thermal Energies= -2980.735868 -2980.734924 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -2980.847439

CPCM (Toluene) M06L/def2TZVP = -5459.53062821


(dppf)Ni(Ph)(Br)

Zero-point correction=	0.619667 (Hartree/Particle)
Thermal correction to Energy=	0.658672
Thermal correction to Enthalpy=	0.659616
Thermal correction to Gibbs Free Energy=	0.546416
Sum of electronic and zero-point Energies=	-5092.035957
Sum of electronic and thermal Energies=	-5091.996951
Sum of electronic and thermal Enthalpies=	-5091.996007
Sum of electronic and thermal Free Energies=	-5092.109207

CPCM (Toluene) M06L/def2TZVP = -7573.38748299

(dppf)Ni(Ph)(I)

Zero-point correction=	0.619840 (Hartree/Particle)
Thermal correction to Energy=	0.659836
Thermal correction to Enthalpy=	0.660780
Thermal correction to Gibbs Free Energy=	0.543574
Sum of electronic and zero-point Energies=	-2532.033234
Sum of electronic and thermal Energies=	-2531.993239
Sum of electronic and thermal Enthalpies=	-2531.992295
Sum of electronic and thermal Free Energies=	-2532.109501

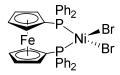
CPCM (Toluene) M06L/def2TZVP E = -5297.20322026

(dppf)Ni(Ph)₂

 Ph_2 Ph Fe Ph

0.710525 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.752431 Thermal correction to Enthalpy= 0.753375 Thermal correction to Gibbs Free Energy= 0.634654 Sum of electronic and zero-point Energies= -2752.027634 Sum of electronic and thermal Energies= -2751.985728 -2751.984783 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -2752.103505

CPCM (Toluene) M06L/def2TZVP = -5230.96728508


(dppf)Ni(Cl)₂

 Ph_2 ∠CI Ni....''Cl

Zero-point correction=	0.530181 (Hartree/Particle)
Thermal correction to Energy=	0.566395
Thermal correction to Enthalpy=	0.567339
Thermal correction to Gibbs Free Energy=	0.458453
Sum of electronic and zero-point Energies=	-3209.568649
Sum of electronic and thermal Energies=	-3209.532435
Sum of electronic and thermal Enthalpies=	-3209.531491
Sum of electronic and thermal Free Energies=	-3209.640377

CPCM (Toluene) M06L/def2TZVP E = -5688.11609826

(dppf)Ni(Br)₂

Zero-point correction=	0.529653 (Hartree/Particle)
Thermal correction to Energy=	0.566355
Thermal correction to Enthalpy=	0.567299
Thermal correction to Gibbs Free Energy=	0.456116
Sum of electronic and zero-point Energies=	-7432.085825
Sum of electronic and thermal Energies=	-7432.049123
Sum of electronic and thermal Enthalpies=	-7432.048179
Sum of electronic and thermal Free Energies=	-7432.159363

CPCM (Toluene) M06L/def2TZVP E = -9915.82440917

(*dppf*)Ni(I)₂

 Ph_2 Fe

0.529459 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.566372 Thermal correction to Enthalpy= 0.567317 Thermal correction to Gibbs Free Energy= 0.453669 Sum of electronic and zero-point Energies= -2312.071896 Sum of electronic and thermal Energies= -2312.034983 Sum of electronic and thermal Enthalpies= -2312.034039 Sum of electronic and thermal Free Energies= -2312.147687

CPCM (Toluene) M06L/def2TZVP = -5363.45083194

(dppf)NiCl

 Ph_2 Ni—Cl Fe

Zero-point correction=	0.527940 (Hartree/Particle)
Thermal correction to Energy=	0.562598
Thermal correction to Enthalpy=	0.563542
Thermal correction to Gibbs Free Energy=	0.455804
Sum of electronic and zero-point Energies=	-2749.342480
Sum of electronic and thermal Energies=	-2749.307822
Sum of electronic and thermal Enthalpies=	-2749.306878
Sum of electronic and thermal Free Energies=	-2749.414616

CPCM (Toluene) M06L/def2TZVP = -5227.85718500

(dppf)NiBr

 Ph_2 √i—Br

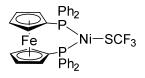
Zero-point correction=	0.527769 (Hartree/Particle)
Thermal correction to Energy=	0.562598
Thermal correction to Enthalpy=	0.563543
Thermal correction to Gibbs Free Energy=	0.454749
Sum of electronic and zero-point Energies=	-4860.602976
Sum of electronic and thermal Energies=	-4860.568147
Sum of electronic and thermal Enthalpies=	-4860.567202
Sum of electronic and thermal Free Energies=	-4860.675996

CPCM (Toluene) M06L/def2TZVP E = -7341.71262698

(dppf)NiI

 Ph_2 Fe

0.527389 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.562338 Thermal correction to Enthalpy= 0.563282 Thermal correction to Gibbs Free Energy= 0.454906 Sum of electronic and zero-point Energies= -2300.600091 -2300.565141 Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= -2300.564197 Sum of electronic and thermal Free Energies= -2300.672574


CPCM (Toluene) M06L/def2TZVP = -5065.52607106

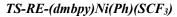
Ph-Ph

Zero-point correction= 0.184206 (Hartree/Particle) 0.192989 Thermal correction to Energy= Thermal correction to Enthalpy= 0.193933 Thermal correction to Gibbs Free Energy= 0.150365 Sum of electronic and zero-point Energies= -462.953471 Sum of electronic and thermal Energies= -462.944689 Sum of electronic and thermal Enthalpies= -462.943744 Sum of electronic and thermal Free Energies= -462.987312

CPCM (Toluene) M06L/def2TZVP E = -463.400094216

TS-OA-PhI-(dppf)Ni(SCF3)

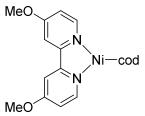
Zero-point correction=	0.637088 (Hartree/Particle)
Thermal correction to Energy=	0.682119
Thermal correction to Enthalpy=	0.683063
Thermal correction to Gibbs Free Energy=	0.556454
Sum of electronic and zero-point Energies=	-3267.712570
Sum of electronic and thermal Energies=	-3267.667540
Sum of electronic and thermal Enthalpies=	-3267.666596
Sum of electronic and thermal Free Energies=	-3267.793204
CPCM (Toluene) M06/def2TZVP E = -6031.84687603	


0.091513 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.097310 Thermal correction to Enthalpy= 0.098254 Thermal correction to Gibbs Free Energy= 0.060505 Sum of electronic and zero-point Energies= -242.888371 Sum of electronic and thermal Energies= -242.882573 -242.881629 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -242.919379 CPCM (Toluene) M06/def2TZVP E = -529.309413CPCM (THF) M06/def2TZVP E = -529.310339402

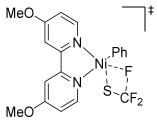
(dmbpy)Ni(Ph)(SCF₃)

MeO Ph Ni SCF₃ MeO

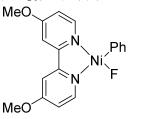
Zero-point correction=	0.3
Thermal correction to Energy=	0.
Thermal correction to Enthalpy=	Ο.
Thermal correction to Gibbs Free Energy=	Ο.
Sum of electronic and zero-point Energies=	
Sum of electronic and thermal Energies=	
Sum of electronic and thermal Enthalpies=	
Sum of electronic and thermal Free Energies=	
CPCM (THF) M06/def2TZVP E = -3199.99227758	


0.338518 (Hartree/Particle)
0.363609
0.364553
0.282062
-1862.130925
-1862.105834
-1862.104889
-1862.187381

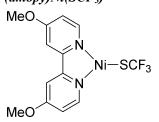
Zero-point correction= 0.335985 (Hartree/Particle) Thermal correction to Energy= 0.361540 Thermal correction to Enthalpy= 0.362484 Thermal correction to Gibbs Free Energy= 0.278418 Sum of electronic and zero-point Energies= -1862.067215 Sum of electronic and thermal Energies= -1862.041660 Sum of electronic and thermal Enthalpies= -1862.040716 Sum of electronic and thermal Free Energies= -1862.124782 CPCM (THF) M06/def2TZVP E = -3199.93580732


(dmbpy)Ni(cod)

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= CPCM (THF) M06/def2TZVP E = -2544.45197474

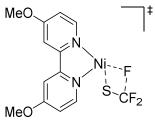

0.411979 (Hartree/Particle) 0.435055 0.435999 0.359302 -1206.691394 -1206.668319 -1206.667374 -1206.744072

TS-βF-elim-(dmbpy)Ni(Ph)(SCF₃)

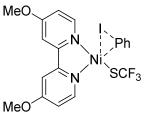

Zero-point correction=	0.336813 (Hartree/Particle)
Thermal correction to Energy=	0.362610
Thermal correction to Enthalpy=	0.363554
Thermal correction to Gibbs Free Energy=	0.278627
Sum of electronic and zero-point Energies=	-1862.098271
Sum of electronic and thermal Energies=	-1862.072474
Sum of electronic and thermal Enthalpies=	-1862.071529
Sum of electronic and thermal Free Energies=	-1862.156457
CPCM (THF) M06/def2TZVP E = -3199.95069403	

(dmbpy)Ni(Ph)(F)

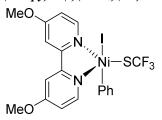
Zero-point correction=	0.323499 (Hartree/Particle)
Thermal correction to Energy=	0.345305
Thermal correction to Enthalpy=	0.346249
Thermal correction to Gibbs Free Energy=	0.270156
Sum of electronic and zero-point Energies=	-1226.242231
Sum of electronic and thermal Energies=	-1226.220425
Sum of electronic and thermal Enthalpies=	-1226.219481
Sum of electronic and thermal Free Energies=	-1226.295573
CPCM (THF) M06/def2TZVP E = -2563.98163656	


(dmbpy)Ni(SCF₃)

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= CPCM (THF) M06/def2TZVP E = -2968.46411812


0.245467 (Hartree/Particle) 0.266804 0.267748 0.190353 -1630.677349 -1630.656012 -1630.655068 -1630.732463

TS-βF-elim-(dmbpy)Ni(SCF₃)

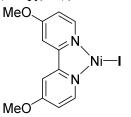

Zero-point correction=	0.242945 (Hartree/Particle)
Thermal correction to Energy=	0.264596
Thermal correction to Enthalpy=	0.265540
Thermal correction to Gibbs Free Energy=	0.186795
Sum of electronic and zero-point Energies=	-1630.639163
Sum of electronic and thermal Energies=	-1630.617512
Sum of electronic and thermal Enthalpies=	-1630.616568
Sum of electronic and thermal Free Energies=	-1630.695314
CPCM (THF) M06/def2TZVP E = -2968.42300663	

TS-OA-PhI-(dmbpy)Ni(SCF₃)

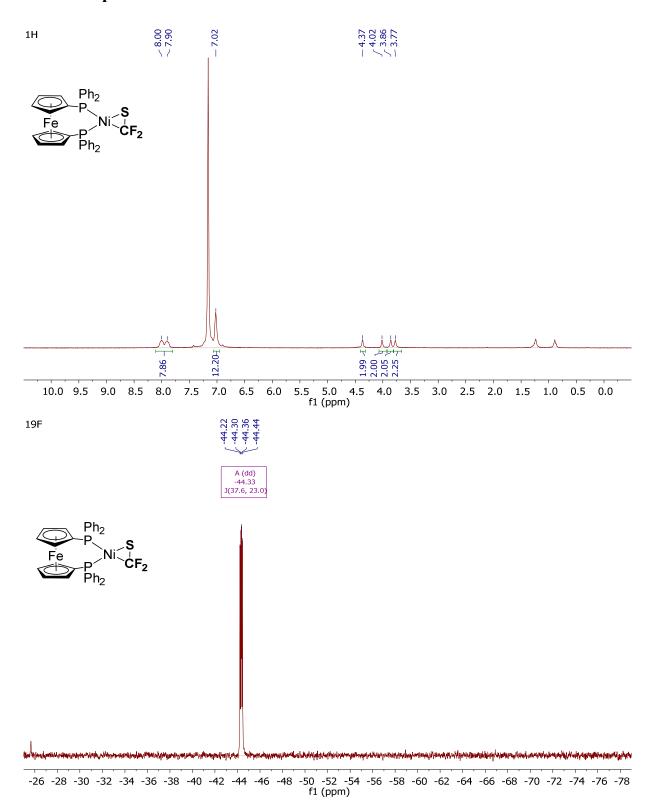
Zero-point correction=	0.336942 (Hartree/Particle)
Thermal correction to Energy=	0.365276
Thermal correction to Enthalpy=	0.366220
Thermal correction to Gibbs Free Energy=	0.272716
Sum of electronic and zero-point Energies=	-1873.572800
Sum of electronic and thermal Energies=	-1873.544466
Sum of electronic and thermal Enthalpies=	-1873.543522
Sum of electronic and thermal Free Energies=	-1873.637026
CPCM (THF) M06/def2TZVP E = -3497.77267139	

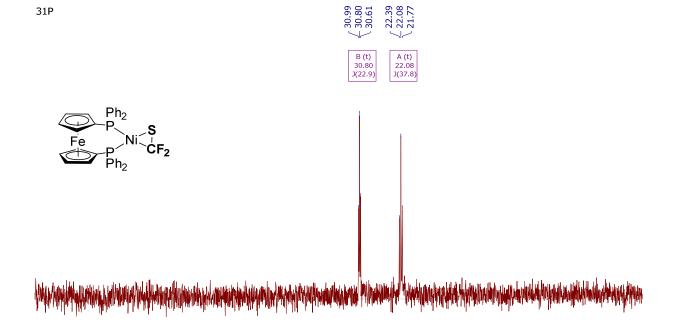

(dmbpy)Ni(I)(SCF₃)(Ph)

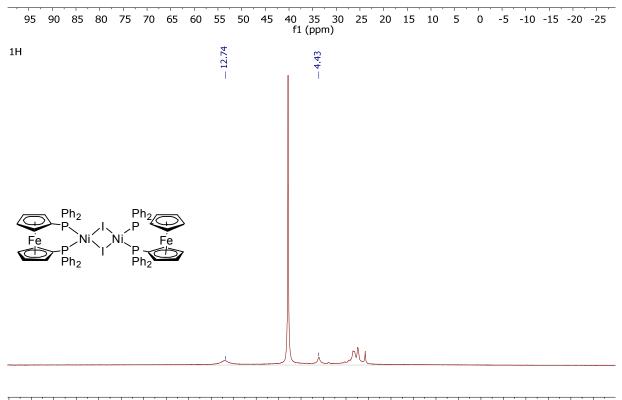
Zero-point correction=0.338628Thermal correction to Energy=0.367167Thermal correction to Enthalpy=0.368111Thermal correction to Gibbs Free Energy=0.274753Sum of electronic and zero-point Energies=-1873Sum of electronic and thermal Energies=-1873Sum of electronic and thermal Enthalpies=-1873Sum of electronic and thermal Free Energies=-1873CPCM (THF) M06/def2TZVP E = -3497.78070392-1873


0.338628 (Hartree/Particle) 0.367167 0.368111 0.274753 -1873.590197 -1873.561658 -1873.560714 -1873.654072

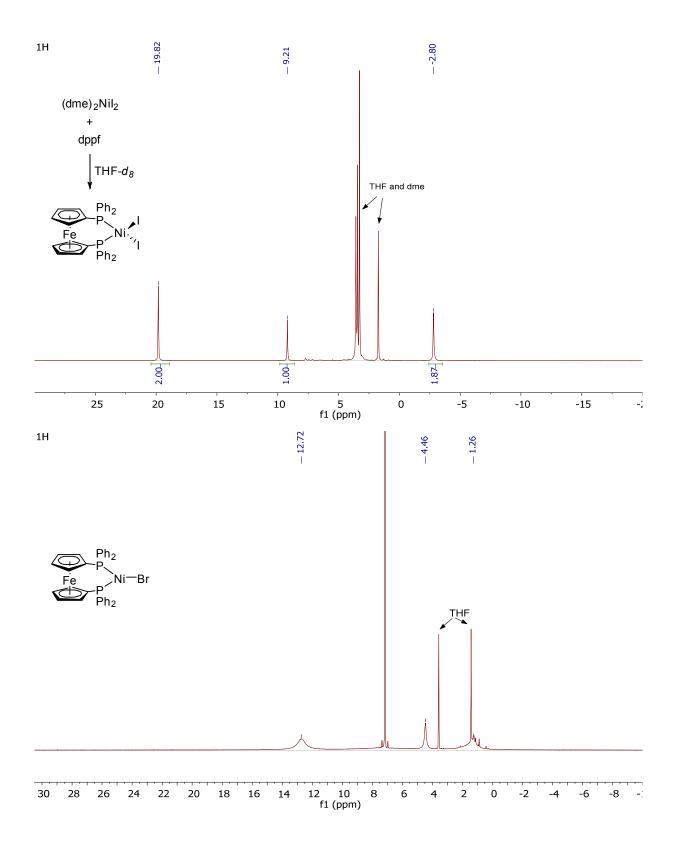
TS-RE-(dmbpy)Ni(I)(Ph-SCF₃)


Zero-point correction=	0.338029 (Hartree/Particle)
Thermal correction to Energy=	0.366007
Thermal correction to Enthalpy=	0.366951
Thermal correction to Gibbs Free Energy=	0.275230
Sum of electronic and zero-point Energies=	-1873.582866
Sum of electronic and thermal Energies=	-1873.554889
Sum of electronic and thermal Enthalpies=	-1873.553945
Sum of electronic and thermal Free Energies=	-1873.645665
CPCM (THF) M06/def2TZVP E = -3497.77016884	


(dmbpy)Ni(I)


Zero-point correction=	0.228570 (Hartree/Particle)
Thermal correction to Energy=	0.244779
Thermal correction to Enthalpy=	0.245723
Thermal correction to Gibbs Free Energy=	0.180999
Sum of electronic and zero-point Energies=	-906.436669
Sum of electronic and thermal Energies=	-906.420460
Sum of electronic and thermal Enthalpies=	-906.419516
Sum of electronic and thermal Free Energies=	-906.484240
CPCM (THF) M06/def2TZVP E = -2530.39541558	

5. NMR spectra



31P

6 4 f1 (ppm) 32 30 28 26 24 22 20 18 16 14 12 10 8 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20

6. References

(1) Yin, G.; Kalvet, I.; Schoenebeck, F. Angew. Chem. Int. Ed. 2015, 54, 6809-6813.

(2) Yin, G.; Kalvet, I.; Englert, U.; Schoenebeck, F. J. Am. Chem. Soc. 2015, 137, 4164-4172.

(3) Crochet, A.; Fromm, Katharina M. Z. Anorg. Allg. Chem. 2010, 636, 1484-1496.

(4) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

(5) C. J. Cramer, Essentials of Computational Chemistry: Theories and Models; 2nd ed.; Wiley: New York, USA, 2004.