Supplementary Information

Catch-and-Release of Target Cells Using Aptamer-Conjugated Electroactive Zwitterionic Oligopeptide SAM

Junko Enomoto¹, Tatsuto Kageyama¹, Tatsuya Osaki¹, Flavia Bonalumi², Francesca Marchese²,

Alfonso Gautieri², Elena Bianchi³, Gabriele Dubini³, Chiara Arrigoni⁴, Matteo Moretti^{4, 5, 6, 7}, and Junji Fukuda¹*

¹Graduate School of Engineering, Yokohama National University, Japan

²Department of Electronics, Politecnico di Milano, Italy

³Department of Chemistry, Politecnico di Milan, Italy

⁴Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Italy

⁵Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Switzerland

⁶Swiss Institute for Regenerative Medicine, Switzerland

⁷Cardiocentro Ticino, Switzerland

Correspondence and requests for materials should be addressed to J.F. (email: <u>fukuda@ynu.ac.jp</u>)

Figure S1. Dominant hydrogen bonds in self-assembly of oligopeptides. (A) SAM of oligopeptide-COOH after equilibration in explicit solvent. Two oligopeptides were highlighted with van der Waals representation. (B) Schematics of dominant interactions between two neighboring oligopeptides. The dashed lines represent major hydrogen bonds, indicating that the inter-peptide interactions are driving forces responsible for the formation of a dense molecular layer.