Biophysical Journal, Volume 112

Supplemental Information

Small-Volume Effect Enables Robust, Sensitive, and Efficient Information Transfer in the Spine

Masashi Fujii, Kaoru Ohashi, Yasuaki Karasawa, Minori Hikichi, and Shinya Kuroda

Supplement to "Small-volume effect enables robust, sensitive and efficient information transfer in the spine"

Masashi Fujii,^{1,2} Kaoru Ohashi,¹ Yasuaki Karasawa,³ Minori Hikichi,¹ and Shinya Kuroda ^{1,2,4,*}

¹Molecular Genetics Research Laboratory, Graduate School of Sciences, University of Tokyo, Bunkyoku, Tokyo, Japan ²Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan ³Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan ⁴CREST, Japan Science and Technology Agency, Bunkyo-ku, Tokyo, Japan

*Corresponding author E-mail: skuroda@bs.s.u-tokyo.ac.jp (SK)

Supporting Material Figures

amplitude of PF input are indicated. In the spine volume, the distribution of Ca_{res} is divided into two distributions by the threshold $\theta = 0.157$ defined as the local minimum of the marginal distribution of Ca_{res} for Δt *s.t.* $p_c(Ca_{res}) = \int_{\Delta t} p_{in}(\tau) p_c(Ca_{res}|\tau) d\tau$. (*P–AD*) The cross-sections of (*A–O*) with $\Delta t = 0$. This distribution of Ca_{res} in the spine volume remained the same regardless of the CV_a value, whereas, that in the cell volume largely varied.

Figure S2. The efficient, robust and sensitive features of Ca2+ increase using the detailed stochastic model(23)**.** (*A*) The volume dependency of the mutual information between Δt , the PF- and CF-timing, and Ca_{res} , $Ca²⁺$ response. Total mutual information is indicated in *black*; that of the probability component is indicated in *red*; that of the amplitude component is indicated in *blue*. (*B*) The volume dependency of the mutual information per volume. (*C*) The CV of the amplitude of PF input dependency of the mutual information. (*D*) The number of PF inputs dependency of the mutual information. In the detailed stochastic model, the spine volume is $10^{-1} \mu m^3$ and the cell volume is 5 \times $10^3 \mu m^3(23)$

E, *G*, *I*) Distribution of Ca_{res} . (*B*, *D*, *F*, *H*, *J*) The cross-section of distribution of Ca_{res} at the indicated Amp_{PF} . θ (=0.157) indicates the threshold dividing the distribution into the ranges with large Ca_{res} and with small Ca_{res} (see Fig. S1). (*K*) The Amp_{PF} providing $p_c(Ca_{res}|Amp_{PF})$, the distribution of Ca_{res} with PF input alone, closest to $p_c(Ca_{res}|\Delta t)$, the distribution of Ca_{res} with PF and CF inputs with various Δt .

 Amp_{PF} .

Figure S5. The Amp_{PF} dependency of σ_c , Ca^* and P_+ . (A, B) $\sigma_c(\mu_a + x)$ can be regarded as $\sigma_c(\mu_a)$ up to the upper bound of the range of x satisfying the Eq. 21 in the main text. (*A*) Spine volume. (*B*) Cell volume. $\sigma_c(\mu_a + x)/\sigma_c(\mu_a)$ were almost within the range of 0.8 to 1.2, assuming that $\sigma_c(\mu_a + x)$ is approximated by $\sigma_c(\mu_a)$. The upper bound of the range of x satisfying Eq. 21 in the main text in the spine and cell volumes are determined by δ_{max} (see Fig. 4*A*, *B*). (*C*) The Amp_{PF} dependency of Ca^* , the mode of the distribution of Ca_{res} for $Ca_{res} > \theta$. (D) The Amp_{PF} -dependency of P_+ , the probability of $Ca_{res} > \theta$.

Figure S6. Mechanism of the sensitivity. $(A-E)$ μ_s , the average of the input distribution of (*F-J*) The Amp_{PF} dependencies of ACa_{STD}^* , the dynamic range of the distribution of Ca_{res} , (*green*) and σ_c , the standard deviation of Ca_{res} , (*blue*) for $Ca_{res} > \theta$. The volume is indicated.

Figure S7. The mutual information depends on both ΔCa^{*}_{STD} , the dynamic range, and σ_c , the **standard deviation of the distribution of the output.** In general, if the input distribution is the same, then the wider ΔCa_{STD} , the dynamic range of the output, gives more mutual information when σ_c , the standard deviation of the output, is the same (compare the *left* and *right* panels). The smaller σ_c gives more mutual information when Δ*C* a^{*}_{STD} is the same (compare the *top* and *bottom* panels).

Figure S8. ∆Ca $^*_{\textit{STD}}$ **, the dynamic range, and** σ_c **, the standard deviation of the distribution of the output.** (*A*) The Amp_{PF} dependency of Ca^* , the mode of the distribution of Ca_{res} for $Ca_{res} > \theta$. We defined $\psi(V)$ for each volume of the Amp_{PF} when the Ca^* began to increase. In the spine volume, $\psi(10^{-1})$ was approximately 50, whereas, $\psi(10^{3})$ was approximately 150 in the cell volume. (*B*, C) The schematic representation of the relationship between Amp_{PF} and Ca^* in the spine volume (*B*) and in the cell volume (C). (D) The *STD* of Amp_{PF} dependency Amp^* , Amp_{PF} providing the maximum mutual information. (*E–X*) The Amp_{PF} dependencies of ΔCa_{STD} , the dynamic range of the distribution of Ca_{res} for $Ca_{res} > \theta$, (*green*) and σ_c , the standard deviation of the distribution of Ca_{res} (*blue*). The volume and STD are indicated.

Supporting Material Tables

Parameters	Values
τ_{PF} [msec]	120
τ_{CF} [msec]	10
τ_{FB} [msec]	80
$Amp_{G_{IP_3R}}$	1291.6667
$k \lceil 1/\mu m^3 \rceil$	626.3027
K $[1/\mu m^3]$	626.3027
n_{IP_2R}	2.7
C_b [1/ μ m ³]	25.052108
V [μ m ³]	$10^{-1} - 10^{3}$

Table S1. Parameters of the simple stochastic model in this study.

Parameters	Values	
	PF and CF input (Figs. 1 and 2)	PF input alone (Figs. $3, 4, 5,$ and 6)
Amp_{CF} [1/µm ³]	361.328	None
Amp_{PF} [1/ μ m ³]	30.11×5 times	Variable×1 time
t_{CF} [msec]	variable	None
t_{PF} [msec]	$\{0, 10, 20, 30, 40\}$	
CV of PF input	Variable	0 (in simulation)

Table S2. Parameters that are different between the cases with various PF- and CF-timing and with single PF input alone.

Note that the simple deterministic model shows the same results as those of the detailed deterministic model; however, with reduction of the model, the PF and CF inputs were non-dimensional values. With the loss of the dimension of the number of molecules, we could not perform the stochastic simulation. Therefore, we re-determined the numbers of PF and CF inputs as follows: The PF input becomes smaller than 1 in the spine volume $(10^{-1} \mu m^3)$, but the PF input needs to be the positive integer. We increased the PF input 6-fold of the simple deterministic model so that the amount of IP₃, the mediator of PF input, is the same as that of the detailed stochastic model, resulting in the amplitude of a PF input in the spine volume of 3 $(Amp_{PF} \times V = 30.11 \times 10^{-1} = 3.011 \approx 3)$. We reduced the reaction rate constant of the Ca²⁺ release by binding IP₃ and IP₃R to one sixth to compensate for Ca_{IP_3} . The CF input increased 6-fold so that the amount of Ca^{2+} via the CF input in the simple stochastic model became the same as that in the detailed stochastic model.

Supporting Material Text

Derivation: The necessary and sufficient condition for robustness is satisfied when $\Delta Ca^* \ll \sigma_c$

We tried to examine the upper bound of the range of x where Eq. 21 in the main text is satisfied and showed that the upper bound of the range of x in the spine volume is larger than that in the cell volume. Hereafter, each distribution of Ca_{res} for $Ca_{res} > \theta$ and $Ca_{res} \leq \theta$ is approximated by the Gaussian distribution. We examined Eq. 21 in the main text as satisfied when σ_c , the standard deviation of Ca_{res} , is larger than ΔCa^* , the gap of the gap of the mode of the distribution of Ca_{res} , with $Amp_{PF} = \mu_a + x$ and $Amp_{PF} = \mu_a - x$. Here, we considered the small gap of Amp'_{PF} , therefore, for simplicity, $\sigma_c(\mu_a +$ x) and $\sigma_c(\mu_a - x)$, the standard deviations of Ca_{res} with $Amp_{PF} = \mu_a + x$ and $Amp_{PF} = \mu_a - x$, were regarded as $\sigma_c(\mu_a)$, the standard deviation of Ca_{res} with $Amp_{PF} = \mu_a$, up to the upper bound of the range of x satisfying Eq. 21 in the main text (see Fig. S5A, B in the Supporting Material).

First, we considered $p_c(Ca_{res}| Ca_{res} > \theta, \mu_a + x)$, the distribution of Ca_{res} , for $Ca_{res} > \theta$ in the spine and cell volumes and we approximated the distribution of Ca_{res} for $Ca_{res} > \theta$ by the Gaussian distribution, given by

$$
p_c(Ca_{res}|Ca_{res} > \theta, \mu_a + x) \simeq \frac{1}{\sqrt{2\pi\sigma_c^2}} \exp\left[-\frac{(Ca_{res} - Ca^*(\mu_a + x))^2}{2\sigma_c^2}\right].
$$
\n(S1)

 Ca^* indicates the mode of the distribution of Ca_{res} , given by

$$
Ca^*(a) = \arg\max_{Ca_{res}} p_c(Ca_{res}|Ca_{res} > \theta, a).
$$
\n(S2)

As mentioned, we assumed $\sigma_c \equiv \sigma_c (\mu_a \pm x) = \sigma_c (\mu_a)$.

Then, for $Ca_{res} > \theta$, we substituted Eqs. 26 in the main text and S1 in right side of Eq. 25 in the main text, and obtained

$$
\frac{1}{2} [p_c(Ca_{res}|\mu_a + x) + p_c(Ca_{res}|\mu_a - x)]
$$

\n
$$
\approx \frac{1}{2} \left\{ \frac{p_+(\mu_a + x)}{\sqrt{2\pi \sigma_c^2}} exp\left[-\frac{(Ca_{res} - Ca^*(\mu_a + x))^2}{2\sigma_c^2} \right] + \frac{p_+(\mu_a - x)}{\sqrt{2\pi \sigma_c^2}} exp\left[-\frac{(Ca_{res} - Ca^*(\mu_a - x))^2}{2\sigma_c^2} \right] \right\}.
$$
\n(S3)

Here, we considered Ca^* . Ca^* for $Ca_{res} > \theta$ linearly increased from approximately $Amp_{PF} = 50$ in the spine volume (Fig. 4*A*, black line). In the spine volume, Ca^* for $Ca_{res} > \theta$ linearly increased with the increase in Amp_{PF} for $150 \leq Amp_{PF} \leq 215$, which corresponds to the range of the PF-CF input timing. Thus, regarding Ca^* for $Ca_{res} > \theta$, we could assume

$$
Ca^*(\mu_a \pm x) \simeq Ca^*(\mu_a) \pm \Delta Ca^*(x).
$$

(S4) Equation S4 indicates that the difference of Ca^* with $Amp_{PF} = \mu_a + x$ and with $Amp_{PF} = \mu_a$ is the same as that with $Amp_{PF} = \mu_a$ and with $Amp_{PF} = \mu_a - x$, where ΔCa^* indicates the difference of Ca^* with $Amp_{PF} = \mu_a \pm x$ and with $Amp_{PF} = \mu_a$. In contrast to the spine volume, in the cell volume, Ca^* abruptly increased at $Amp_{PF} = 150$, and gradually increased with the increase in Amp_{PF} (Fig. S5*C* in the Supporting Material, yellow line). Therefore, in the cell volume, Eq. S4 is not satisfied at $Amp_{PF} = 150$, but it is almost satisfied for $150 < Amp_{PF} \le 215$. Then, we substituted Eq. S4 in the Eq. S3, and obtained

$$
\approx \frac{1}{2} \left\{ \frac{P_{+}(\mu_{a} + x)}{\sqrt{2\pi\sigma_{c}^{2}}} \exp\left[-\frac{\left(Ca_{res} - Ca^{*}(\mu_{a}) - \Delta Ca^{*}(x)\right)^{2}}{2\sigma_{c}^{2}}\right] \right\}
$$

+
$$
\frac{P_{+}(\mu_{a} - x)}{\sqrt{2\pi\sigma_{c}^{2}}} \exp\left[-\frac{\left(Ca_{res} - Ca^{*}(\mu_{a}) + \Delta Ca^{*}(x)\right)^{2}}{2\sigma_{c}^{2}}\right]\right\}
$$

=
$$
\frac{1}{2\sqrt{2\pi\sigma_{c}^{2}}} \exp\left[-\frac{\left(Ca_{res} - Ca^{*}(\mu_{a})\right)^{2}}{2\sigma_{c}^{2}}\right] \exp\left[-\frac{\Delta Ca^{*}(x)^{2}}{2\sigma_{c}^{2}}\right]
$$

$$
\times \left\{P_{+}(\mu_{a} + x) \exp\left[\frac{\left(Ca_{res} - Ca^{*}(\mu_{a})\right)\Delta Ca^{*}(x)}{\sigma_{c}^{2}}\right]\right\}
$$

+
$$
P_{+}(\mu_{a} - x) \exp\left[-\frac{\left(Ca_{res} - Ca^{*}(\mu_{a})\right)\Delta Ca^{*}(x)}{\sigma_{c}^{2}}\right]\right\}.
$$
 (S5)

Here, we considered the range of Ca_{res} where $|Ca_{res} - Ca^{*}(x)| \leq 3\sigma_c(x)$ is almost satisfied. Hence, if $\Delta Ca^*(x) \ll \sigma_c(x)$, then, we could approximate

$$
\approx \frac{1}{\sqrt{2\pi \sigma_c^2}} \exp \left[-\frac{(Ca_{res} - Ca^*(\mu_a))^2}{2{\sigma_c^2}} \right] \left\{ \frac{P_+(\mu_a + x) + P_+(\mu_a - x)}{2} \right\}.
$$

Note that, the upper bound of the range of x where $\Delta Ca^* \ll \sigma_c$ determines the upper bound of the range where Eq. 21 in the main text is satisfied. This means that the larger upper bound of the range of x where $\Delta Ca^* \ll \sigma_c$ corresponds to the maximum of CV_a with which the distribution of Ca_{res} does not change.

Here, we considered the probability that Ca_{res} exceeds the threshold θ , P_+ . In the spine volume, P_+ gradually increased from $Amp_{PF} = 50$ and linearly increased for $100 \leq Amp_{PF} \leq 250$ (Fig. S5D in the Supporting Material, black line). Therefore, in the spine volume, P_+ linearly increased with the increase in Amp_{PF} for $150 \leq Amp_{PF} \leq 215$, which corresponds to the range of the PF-CF input timing. Thus, regarding P_+ , we could assume

$$
\frac{1}{2}[P_{+}(\mu_{a} + x) + P_{+}(\mu_{a} - x)] = P_{+}(\mu_{a}).
$$
\n(S7)

(S6)

This equation indicates that the average of the probabilities that Ca_{res} exceeds the threshold θ with $Amp_{PF} = \mu_a + x$ and $Amp_{PF} = \mu_a - x$ is the same as the probability that Ca_{res} exceeds the threshold θ with $Amp_{PF} = \mu_a$. In the cell volume, the distribution of Ca_{res} was unimodal, and $\theta = -\infty$ was assumed; therefore, P_+ was always 1 and Eq. S7 was always satisfied. Therefore, we substituted Eq. S7 in the Eq. S6 and obtained

$$
\frac{1}{2} [p_c(Ca_{res}|\mu_a + x) + p_c(Ca_{res}|\mu_a - x)] \simeq \frac{p_+(\mu_a)}{\sqrt{2\pi\sigma_c^2}} \exp\left[-\frac{(Ca_{res} - Ca^*(\mu_a))^2}{2\sigma_c^2}\right]
$$

$$
= p_c(Ca_{res}|\mu_a)
$$
(S8)

for $Ca_{res} > \theta$, *i.e.*, Eq. 21 in the main text for $Ca_{res} > \theta$ is satisfied.

However, for $Ca_{res} \leq \theta$, because Ca^* for $Ca_{res} \leq \theta$ was almost constant, the distribution Ca_{res} was mainly characterized only by $P_$ of the distribution of Ca_{res} , indicating

$$
p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a) = p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a \pm x). \tag{S9}
$$

Then, using Eq. 21 in the main text for $Ca_{res} \le \theta$, similar to the case for $Ca_{res} > \theta$, we obtained

$$
\frac{1}{2} [p_c(Ca_{res}|\mu_a + x) + p_c(Ca_{res}|\mu_a - x)]
$$
\n
$$
\approx \frac{1}{2} [P_{-}(\mu_a + x) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a + x) + P_{-}(\mu_a - x) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a - x)]
$$
\n
$$
= \frac{1}{2} [P_{-}(\mu_a + x) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a) + P_{-}(\mu_a - x) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a)]
$$
\n
$$
\approx \frac{1}{2} [P_{-}(\mu_a + x) + P_{-}(\mu_a - x)] p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a)
$$
\n
$$
= P_{-}(\mu_a) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a) = p_c(Ca_{res}|\mu_a)
$$

(S10) for $Ca_{res} \leq \theta$, *i.e.*, Eq. 21 in the main text for $Ca_{res} \leq \theta$ is also satisfied. Therefore, from Eqs. S8 and S10, we derived Eq. 21 in the main text. Thus, we approximately showed that if Ca^* and P_+ linearly

increase with the increase in Amp_{PF} and $\Delta Ca^* \ll \sigma_c$, then Eq. 21 in the main text was satisfied. This means that the necessary and sufficient condition for robustness is satisfied in the range where the intrinsic noise, σ_c , is larger than the extrinsic noise, ΔCa^* .