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Supporting Material Figures 

 
Figure S1. The ∆𝒕 -dependency of the distribution of 𝑪𝒂𝒓𝒆𝒔 . (A–O) The volume and CV of the 

amplitude of PF input are indicated. In the spine volume, the distribution of 𝐶𝑎𝑟𝑒𝑠 is divided into two 

distributions by the threshold 𝜃 =0.157 defined as the local minimum of the marginal distribution of 

𝐶𝑎𝑟𝑒𝑠  for ∆𝑡  s.t. 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠) = ∫  𝑝𝑖𝑛(𝜏)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜏)
Δ𝑡

𝑑𝜏 . (P–AD) The cross-sections of (A–O) with 

∆𝑡 = 0. This distribution of 𝐶𝑎𝑟𝑒𝑠 in the spine volume remained the same regardless of the 𝐶𝑉𝑎 value, 

whereas, that in the cell volume largely varied. 
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Figure S2. The efficient, robust and sensitive features of Ca2+ increase using the detailed 

stochastic model (23). (A) The volume dependency of the mutual information between ∆𝑡, the PF- and 

CF-timing, and 𝐶𝑎𝑟𝑒𝑠 , Ca2+ response. Total mutual information is indicated in black; that of the 

probability component is indicated in red; that of the amplitude component is indicated in blue. (B) The 

volume dependency of the mutual information per volume. (C) The CV of the amplitude of PF input 

dependency of the mutual information. (D) The number of PF inputs dependency of the mutual 

information. In the detailed stochastic model, the spine volume is 10-1 µm3 and the cell volume is 5 ×
 103 µm3 (23) 
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Figure S3. The 𝑨𝒎𝒑𝑷𝑭-dependency of the distribution of 𝑪𝒂𝒓𝒆𝒔 in the indicated volumes. (A, C, 

E, G, I) Distribution of 𝐶𝑎𝑟𝑒𝑠. (B, D, F, H, J) The cross-section of distribution of 𝐶𝑎𝑟𝑒𝑠 at the indicated 

𝐴𝑚𝑝𝑃𝐹. 𝜃(=0.157) indicates the threshold dividing the distribution into the ranges with large 𝐶𝑎𝑟𝑒𝑠 

and with small 𝐶𝑎𝑟𝑒𝑠 (see Fig. S1). (K) The 𝐴𝑚𝑝𝑃𝐹 providing 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐴𝑚𝑝𝑃𝐹), the distribution of 

𝐶𝑎𝑟𝑒𝑠 with PF input alone, closest to 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|∆𝑡), the distribution of 𝐶𝑎𝑟𝑒𝑠 with PF and CF inputs 

with various ∆𝑡. 
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Figure S4. Distributions of 𝑪𝒂𝒓𝒆𝒔 against 𝑪𝑽𝒂 with the indicated volumes and 𝝁𝒂, the average of 

𝑨𝒎𝒑𝑷𝑭. 
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Figure S5. The 𝑨𝒎𝒑𝑷𝑭  dependency of 𝝈𝒄 , 𝑪𝒂∗  and 𝑷+ . (A, B) 𝜎𝑐(𝜇𝑎 + 𝑥)  can be regarded 

as 𝜎𝑐(𝜇𝑎) up to the upper bound of the range of 𝑥 satisfying the Eq. 21 in the main text. (A) Spine 

volume. (B) Cell volume. 𝜎𝑐(𝜇𝑎 + 𝑥)/𝜎𝑐(𝜇𝑎) were almost within the range of 0.8 to 1.2, assuming that 

𝜎𝑐(𝜇𝑎 + 𝑥) is approximated by 𝜎𝑐(𝜇𝑎). The upper bound of the range of 𝑥 satisfying Eq. 21 in the 

main text in the spine and cell volumes are determined by 𝛿max (see Fig. 4A, B). (C) The 𝐴𝑚𝑝𝑃𝐹-

dependency of 𝐶𝑎∗, the mode of the distribution of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃. (D) The 𝐴𝑚𝑝𝑃𝐹-dependency 

of 𝑃+, the probability of 𝐶𝑎𝑟𝑒𝑠 > 𝜃.  
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Figure S6. Mechanism of the sensitivity. (A–E) 𝜇𝑠 , the average of the input distribution of 

𝐴𝑚𝑝𝑃𝐹, dependency of the mutual information normalized by the value of that with 𝐴𝑚𝑝𝑃𝐹 = 150. 

(F–J) The 𝐴𝑚𝑝𝑃𝐹 dependencies of 𝛥𝐶𝑎𝑆𝑇𝐷
∗ , the dynamic range of the distribution of 𝐶𝑎𝑟𝑒𝑠, (green) 

and 𝜎𝑐, the standard deviation of 𝐶𝑎𝑟𝑒𝑠, (blue) for 𝐶𝑎𝑟𝑒𝑠 > 𝜃. The volume is indicated. 
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Figure S7. The mutual information depends on both ∆𝑪𝒂𝑺𝑻𝑫

∗ , the dynamic range, and 𝝈𝒄, the 

standard deviation of the distribution of the output. In general, if the input distribution is the same, 

then the wider ∆𝐶𝑎𝑆𝑇𝐷
∗ , the dynamic range of the output, gives more mutual information when 𝜎𝑐, the 

standard deviation of the output, is the same (compare the left and right panels). The smaller 𝜎𝑐 gives 

more mutual information when ∆𝐶𝑎𝑆𝑇𝐷
∗  is the same (compare the top and bottom panels). 
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Figure S8. ∆𝑪𝒂𝑺𝑻𝑫

∗ , the dynamic range, and 𝝈𝒄, the standard deviation of the distribution of the 

output. (A) The 𝐴𝑚𝑝𝑃𝐹 dependency of 𝐶𝑎∗, the mode of the distribution of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃. We 

defined 𝜓(𝑉) for each volume of the 𝐴𝑚𝑝𝑃𝐹 when the 𝐶𝑎∗ began to increase. In the spine volume, 

𝜓(10-1) was approximately 50, whereas, 𝜓(103) was approximately 150 in the cell volume. (B, C) The 

schematic representation of the relationship between 𝐴𝑚𝑝𝑃𝐹 and 𝐶𝑎∗ in the spine volume (B) and in 

the cell volume (C). (D) The 𝑆𝑇𝐷  of 𝐴𝑚𝑝𝑃𝐹  dependency 𝐴𝑚𝑝∗ , 𝐴𝑚𝑝𝑃𝐹  providing the maximum 

mutual information. (E–X) The 𝐴𝑚𝑝𝑃𝐹 dependencies of ∆𝐶𝑎𝑆𝑇𝐷
∗ , the dynamic range of the distribution 

of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, (green) and 𝜎𝑐, the standard deviation of the distribution of 𝐶𝑎𝑟𝑒𝑠 (blue). The 

volume and 𝑆𝑇𝐷 are indicated. 
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Supporting Material Tables 

Table S1. Parameters of the simple stochastic model in this study. 

Parameters Values 

𝜏𝑃𝐹 [msec] 120 

𝜏𝐶𝐹 [msec] 10 

𝜏𝐹𝐵 [msec] 80 

𝐴𝑚𝑝𝐺𝐼𝑃3𝑅
 1291.6667 

𝑘 [1/μm3] 626.3027 

𝐾 [1/μm3] 626.3027 

𝑛𝐼𝑃3𝑅 2.7 

𝐶𝑏 [1/μm3] 25.052108 

𝑉 [μm3] 10-1–103 
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Table S2. Parameters that are different between the cases with various PF- and CF-timing and 

with single PF input alone.  

Parameters 
Values 

PF and CF input (Figs. 1 and 2) PF input alone (Figs. 3, 4, 5, and 6) 

𝐴𝑚𝑝𝐶𝐹 [1/μm3] 361.328 None 

𝐴𝑚𝑝𝑃𝐹 [1/μm3] 30.11×5 times Variable×1 time 

𝑡𝐶𝐹 [msec] variable None 

𝑡𝑃𝐹 [msec] {0, 10, 20, 30,40} 0 

CV of PF input Variable 0 (in simulation) 

Note that the simple deterministic model shows the same results as those of the detailed deterministic 

model; however, with reduction of the model, the PF and CF inputs were non-dimensional values. With 

the loss of the dimension of the number of molecules, we could not perform the stochastic simulation. 

Therefore, we re-determined the numbers of PF and CF inputs as follows: The PF input becomes 

smaller than 1 in the spine volume (10-1 μm3), but the PF input needs to be the positive integer. We 

increased the PF input 6-fold of the simple deterministic model so that the amount of IP3, the mediator 

of PF input, is the same as that of the detailed stochastic model, resulting in the amplitude of a PF input 

in the spine volume of 3 (𝐴𝑚𝑝𝑃𝐹 × 𝑉 =  30.11 ×  10-1 =  3.011 ≃  3). We reduced the reaction rate 

constant of the Ca2+ release by binding IP3 and IP3R to one sixth to compensate for 𝐶𝑎𝐼𝑃3
. The CF input 

increased 6-fold so that the amount of Ca2+ via the CF input in the simple stochastic model became the 

same as that in the detailed stochastic model. 
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Supporting Material Text 

Derivation: The necessary and sufficient condition for robustness is satisfied when 𝚫𝑪𝒂∗ ≪ 𝝈𝒄 

We tried to examine the upper bound of the range of 𝑥 where Eq. 21 in the main text is satisfied and 

showed that the upper bound of the range of 𝑥 in the spine volume is larger than that in the cell volume. 

Hereafter, each distribution of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 and 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃 is approximated by the Gaussian 

distribution. We examined Eq. 21 in the main text as satisfied when 𝜎𝑐, the standard deviation of 𝐶𝑎𝑟𝑒𝑠, 

is larger than ∆𝐶𝑎∗, the gap of the gap of the mode of the distribution of 𝐶𝑎𝑟𝑒𝑠, with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 + 𝑥 

and 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 − 𝑥. Here, we considered the small gap of 𝐴𝑚𝑝𝑃𝐹
′ , therefore, for simplicity, 𝜎𝑐(𝜇𝑎 +

𝑥)  and 𝜎𝑐(𝜇𝑎 − 𝑥) , the standard deviations of 𝐶𝑎𝑟𝑒𝑠  with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 + 𝑥  and 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 − 𝑥 , 

were regarded as 𝜎𝑐(𝜇𝑎), the standard deviation of 𝐶𝑎𝑟𝑒𝑠 with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎, up to the upper bound of 

the range of 𝑥 satisfying Eq. 21 in the main text (see Fig. S5A, B in the Supporting Material). 

First, we considered 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 > 𝜃, 𝜇𝑎 + 𝑥), the distribution of 𝐶𝑎𝑟𝑒𝑠, for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 in the 

spine and cell volumes and we approximated the distribution of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 by the Gaussian 

distribution, given by 

𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 > 𝜃, 𝜇𝑎 + 𝑥) ≃
1

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎 + 𝑥))

2

2𝜎𝑐
2

]. 

(S1)  

𝐶𝑎∗ indicates the mode of the distribution of 𝐶𝑎𝑟𝑒𝑠, given by 

𝐶𝑎∗(𝑎) = arg max
𝐶𝑎𝑟𝑒𝑠

𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 > 𝜃, 𝑎). 

(S2)  

As mentioned, we assumed 𝜎𝑐 ≡ 𝜎𝑐(𝜇𝑎 ± 𝑥)  =  𝜎𝑐(𝜇𝑎). 

Then, for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, we substituted Eqs. 26 in the main text and S1 in right side of Eq. 25 in the 

main text, and obtained  
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1

2
[𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 + 𝑥) + 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 − 𝑥)] 

≃
1

2
{
𝑃+(𝜇𝑎 + 𝑥)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎 + 𝑥))

2

2𝜎𝑐
2

]

+
𝑃+(𝜇𝑎 − 𝑥)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎 − 𝑥))

2

2𝜎𝑐
2

]}.  

(S3)  

Here, we considered 𝐶𝑎∗. 𝐶𝑎∗ for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 linearly increased from approximately 𝐴𝑚𝑝𝑃𝐹 = 50 in 

the spine volume (Fig. 4A, black line). In the spine volume, 𝐶𝑎∗ for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 linearly increased with 

the increase in 𝐴𝑚𝑝𝑃𝐹 for 150 ≤  𝐴𝑚𝑝𝑃𝐹 ≤ 215, which corresponds to the range of the PF-CF input 

timing. Thus, regarding 𝐶𝑎∗ for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, we could assume 

𝐶𝑎∗(𝜇𝑎 ± 𝑥) ≃ 𝐶𝑎∗(𝜇𝑎) ± ∆𝐶𝑎∗(𝑥).  
(S4)  

Equation S4 indicates that the difference of Ca∗ with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 + 𝑥 and with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 is the 

same as that with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎  and with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 − 𝑥 , where ∆𝐶𝑎∗  indicates the difference of 

𝐶𝑎∗ with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 ± 𝑥 and with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎. In contrast to the spine volume, in the cell volume, 

𝐶𝑎∗  abruptly increased at 𝐴𝑚𝑝𝑃𝐹 =  150, and gradually increased with the increase in 𝐴𝑚𝑝𝑃𝐹  (Fig. 

S5C in the Supporting Material, yellow line). Therefore, in the cell volume, Eq. S4 is not satisfied at 

𝐴𝑚𝑝𝑃𝐹 = 150, but it is almost satisfied for 150 < 𝐴𝑚𝑝𝑃𝐹 ≤ 215. Then, we substituted Eq. S4 in the 

Eq. S3, and obtained 
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≃
1

2
{
𝑃+(𝜇𝑎 + 𝑥)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎) − 𝛥𝐶𝑎∗(𝑥))

2

2𝜎𝑐
2

]

+
𝑃+(𝜇𝑎 − 𝑥)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎) + 𝛥𝐶𝑎∗(𝑥))

2

2𝜎𝑐
2

]} 

=
1

2√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))

2

2𝜎𝑐
2

] exp [−
𝛥𝐶𝑎∗(𝑥)2

2𝜎𝑐
2

] 

× {𝑃+(𝜇𝑎 + 𝑥)exp [
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))𝛥𝐶𝑎∗(𝑥)

𝜎𝑐
2

]

+ 𝑃+(𝜇𝑎 − 𝑥) exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))𝛥𝐶𝑎∗(𝑥)

𝜎𝑐
2

]}.  

(S5)  

Here, we considered the range of 𝐶𝑎𝑟𝑒𝑠  where |𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝑥)| ≤ 3𝜎𝑐(𝑥)  is almost satisfied. 

Hence, if ∆𝐶𝑎∗(𝑥) ≪ 𝜎𝑐(𝑥), then, we could approximate 

≃
1

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))

2

2𝜎𝑐
2

] {
𝑃+(𝜇𝑎 + 𝑥) + 𝑃+(𝜇𝑎 − 𝑥)

2
}.  

(S6)  

Note that, the upper bound of the range of 𝑥 where ∆𝐶𝑎∗ ≪ 𝜎𝑐 determines the upper bound of the range 

where Eq. 21 in the main text is satisfied. This means that the larger upper bound of the range of 𝑥 

where ∆𝐶𝑎∗ ≪ 𝜎𝑐 corresponds to the maximum of 𝐶𝑉𝑎 with which the distribution of 𝐶𝑎𝑟𝑒𝑠 does not 

change. 

Here, we considered the probability that 𝐶𝑎𝑟𝑒𝑠  exceeds the threshold 𝜃, 𝑃+. In the spine volume, 𝑃+ 

gradually increased from 𝐴𝑚𝑝𝑃𝐹 = 50 and linearly increased for 100 ≤ 𝐴𝑚𝑝𝑃𝐹 ≤ 250 (Fig. S5D in 

the Supporting Material, black line). Therefore, in the spine volume, 𝑃+ linearly increased with the 

increase in 𝐴𝑚𝑝𝑃𝐹 for 150 ≤ 𝐴𝑚𝑝𝑃𝐹 ≤ 215, which corresponds to the range of the PF-CF input timing. 

Thus, regarding 𝑃+, we could assume 

1

2
[𝑃+(𝜇𝑎 + 𝑥) + 𝑃+(𝜇𝑎 − 𝑥)] = 𝑃+(𝜇𝑎).  

(S7)  
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This equation indicates that the average of the probabilities that 𝐶𝑎𝑟𝑒𝑠 exceeds the threshold 𝜃 with 

𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 + 𝑥 and 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 − 𝑥 is the same as the probability that 𝐶𝑎𝑟𝑒𝑠 exceeds the threshold 

𝜃  with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 . In the cell volume, the distribution of 𝐶𝑎𝑟𝑒𝑠  was unimodal, and 𝜃 = −∞  was 

assumed; therefore, 𝑃+ was always 1 and Eq. S7 was always satisfied. Therefore, we substituted Eq. 

S7 in the Eq. S6 and obtained 

1

2
[𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 + 𝑥) + 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 − 𝑥)] ≃

𝑃+(𝜇𝑎)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))

2

2𝜎𝑐
2

]

= 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎) 

(S8)  

for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, i.e., Eq. 21 in the main text for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 is satisfied. 

However, for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃 , because 𝐶𝑎∗  for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃  was almost constant, the distribution 𝐶𝑎𝑟𝑒𝑠 

was mainly characterized only by 𝑃− of the distribution of 𝐶𝑎𝑟𝑒𝑠, indicating 

𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎) = 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎 ± 𝑥). 

(S9)  

Then, using Eq. 21 in the main text for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, similar to the case for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, we obtained 

1

2
[𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 + 𝑥) + 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 − 𝑥)] 

≃
1

2
[𝑃−(𝜇𝑎 + 𝑥)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎 + 𝑥)

+ 𝑃−(𝜇𝑎 − 𝑥)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎 − 𝑥)] 

=
1

2
[𝑃−(𝜇𝑎 + 𝑥)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎) + 𝑃−(𝜇𝑎 − 𝑥)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎)] 

≃
1

2
[𝑃−(𝜇𝑎 + 𝑥) + 𝑃−(𝜇𝑎 − 𝑥)]𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎) 

= 𝑃−(𝜇𝑎)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎) = 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎) 

 

(S10)  

for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, i.e., Eq. 21 in the main text for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃 is also satisfied. Therefore, from Eqs. S8 and 

S10, we derived Eq. 21 in the main text. Thus, we approximately showed that if 𝐶𝑎∗ and 𝑃+ linearly 
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increase with the increase in 𝐴𝑚𝑝𝑃𝐹 and ∆𝐶𝑎∗ ≪ 𝜎𝑐, then Eq. 21 in the main text was satisfied. This 

means that the necessary and sufficient condition for robustness is satisfied in the range where the 

intrinsic noise, 𝜎𝑐, is larger than the extrinsic noise, ∆𝐶𝑎∗. 

 


