Biophysical Journal, Volume 112

Supplemental Information

Small-Volume Effect Enables Robust, Sensitive, and Efficient Information Transfer in the Spine

Masashi Fujii, Kaoru Ohashi, Yasuaki Karasawa, Minori Hikichi, and Shinya Kuroda

Supplement to "Small-volume effect enables robust, sensitive and efficient information transfer in the spine"

Masashi Fujii,^{1,2} Kaoru Ohashi,¹ Yasuaki Karasawa,³ Minori Hikichi,¹ and Shinya Kuroda ^{1,2,4,*}

¹Molecular Genetics Research Laboratory, Graduate School of Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
 ²Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
 ³Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
 ⁴CREST, Japan Science and Technology Agency, Bunkyo-ku, Tokyo, Japan

*Corresponding author E-mail: skuroda@bs.s.u-tokyo.ac.jp (SK)

Supporting Material Figures

Figure S1. The Δt -dependency of the distribution of Ca_{res} . (A–O) The volume and CV of the amplitude of PF input are indicated. In the spine volume, the distribution of Ca_{res} is divided into two distributions by the threshold $\theta = 0.157$ defined as the local minimum of the marginal distribution of Ca_{res} for $\Delta t \ s.t. \ p_c(Ca_{res}) = \int_{\Delta t} p_{in}(\tau)p_c(Ca_{res}|\tau) d\tau$. (P–AD) The cross-sections of (A–O) with $\Delta t = 0$. This distribution of Ca_{res} in the spine volume remained the same regardless of the CV_a value, whereas, that in the cell volume largely varied.

Figure S2. The efficient, robust and sensitive features of Ca^{2+} increase using the detailed stochastic model (23). (A) The volume dependency of the mutual information between Δt , the PF- and CF-timing, and Ca_{res} , Ca^{2+} response. Total mutual information is indicated in *black*; that of the probability component is indicated in *red*; that of the amplitude component is indicated in *blue*. (B) The volume dependency of the mutual information per volume. (C) The CV of the amplitude of PF input dependency of the mutual information. (D) The number of PF inputs dependency of the mutual information. In the detailed stochastic model, the spine volume is $10^{-1} \,\mu\text{m}^3$ and the cell volume is $5 \times 10^3 \,\mu\text{m}^3(23)$

Figure S3. The Amp_{PF} -dependency of the distribution of Ca_{res} in the indicated volumes. (A, C, E, G, I) Distribution of Ca_{res} . (B, D, F, H, J) The cross-section of distribution of Ca_{res} at the indicated Amp_{PF} . θ (=0.157) indicates the threshold dividing the distribution into the ranges with large Ca_{res} and with small Ca_{res} (see Fig. S1). (K) The Amp_{PF} providing $p_c(Ca_{res}|Amp_{PF})$, the distribution of Ca_{res} with PF input alone, closest to $p_c(Ca_{res}|\Delta t)$, the distribution of Ca_{res} with PF and CF inputs with various Δt .

Figure S4. Distributions of Ca_{res} against CV_a with the indicated volumes and μ_a , the average of Amp_{PF} .

Figure S5. The Amp_{PF} dependency of σ_c , Ca^* and P_+ . $(A, B) \sigma_c(\mu_a + x)$ can be regarded as $\sigma_c(\mu_a)$ up to the upper bound of the range of x satisfying the Eq. 21 in the main text. (A) Spine volume. (B) Cell volume. $\sigma_c(\mu_a + x)/\sigma_c(\mu_a)$ were almost within the range of 0.8 to 1.2, assuming that $\sigma_c(\mu_a + x)$ is approximated by $\sigma_c(\mu_a)$. The upper bound of the range of x satisfying Eq. 21 in the main text in the spine and cell volumes are determined by δ_{max} (see Fig. 4A, B). (C) The Amp_{PF} dependency of Ca^* , the mode of the distribution of Ca_{res} for $Ca_{res} > \theta$. (D) The Amp_{PF} -dependency of P_+ , the probability of $Ca_{res} > \theta$.

Figure S6. Mechanism of the sensitivity. (A-E) μ_s , the average of the input distribution of Amp_{PF} , dependency of the mutual information normalized by the value of that with $Amp_{PF} = 150$. (F-J) The Amp_{PF} dependencies of ΔCa_{STD}^* , the dynamic range of the distribution of Ca_{res} , (green) and σ_c , the standard deviation of Ca_{res} , (*blue*) for $Ca_{res} > \theta$. The volume is indicated.

Figure S7. The mutual information depends on both ΔCa_{STD}^* , the dynamic range, and σ_c , the standard deviation of the distribution of the output. In general, if the input distribution is the same, then the wider ΔCa_{STD}^* , the dynamic range of the output, gives more mutual information when σ_c , the standard deviation of the output, is the same (compare the *left* and *right* panels). The smaller σ_c gives more mutual information when ΔCa_{STD}^* is the same (compare the *top* and *bottom* panels).

Figure S8. ΔCa_{STD}^* , the dynamic range, and σ_c , the standard deviation of the distribution of the output. (*A*) The Amp_{PF} dependency of Ca^* , the mode of the distribution of Ca_{res} for $Ca_{res} > \theta$. We defined $\psi(V)$ for each volume of the Amp_{PF} when the Ca^* began to increase. In the spine volume, $\psi(10^{-1})$ was approximately 50, whereas, $\psi(10^3)$ was approximately 150 in the cell volume. (*B*, C) The schematic representation of the relationship between Amp_{PF} and Ca^* in the spine volume (*B*) and in the cell volume (*C*). (*D*) The STD of Amp_{PF} dependencies of ΔCa_{STD}^* , the dynamic range of the distribution of Ca_{res} for $Ca_{res} > \theta$, (green) and σ_c , the standard deviation of the distribution of Ca_{res} (blue). The volume and STD are indicated.

Supporting Material Tables

Parameters	Values
τ_{PF} [msec]	120
τ_{CF} [msec]	10
τ_{FB} [msec]	80
$Amp_{G_{IP_{3}R}}$	1291.6667
$k [1/\mu m^3]$	626.3027
$K [1/\mu m^3]$	626.3027
n_{IP_3R}	2.7
$C_{b} [1/\mu m^{3}]$	25.052108
<i>V</i> [µm ³]	$10^{-1} - 10^{3}$

Table S1.	Parameters	of the	simple	stochastic	model in	this study.

Domontono	Values					
Parameters	PF and CF input (Figs. 1 and 2)	PF input alone (Figs. 3, 4, 5, and 6)				
$Amp_{CF} [1/\mu m^3]$	361.328	None				
Amp_{PF} [1/ μ m ³]	30.11×5 times	Variable×1 time				
t_{CF} [msec]	variable	None				
t_{PF} [msec]	{0, 10, 20, 30,40}	0				
CV of PF input	Variable	0 (in simulation)				

Table S2. Parameters that are different between the cases with various PF- and CF-timing and with single PF input alone.

Note that the simple deterministic model shows the same results as those of the detailed deterministic model; however, with reduction of the model, the PF and CF inputs were non-dimensional values. With the loss of the dimension of the number of molecules, we could not perform the stochastic simulation. Therefore, we re-determined the numbers of PF and CF inputs as follows: The PF input becomes smaller than 1 in the spine volume $(10^{-1} \mu m^3)$, but the PF input needs to be the positive integer. We increased the PF input 6-fold of the simple deterministic model so that the amount of IP₃, the mediator of PF input, is the same as that of the detailed stochastic model, resulting in the amplitude of a PF input in the spine volume of 3 ($Amp_{PF} \times V = 30.11 \times 10^{-1} = 3.011 \approx 3$). We reduced the reaction rate constant of the Ca²⁺ release by binding IP₃ and IP₃R to one sixth to compensate for Ca_{IP_3} . The CF input increased 6-fold so that the amount of Ca²⁺ via the CF input in the simple stochastic model became the same as that in the detailed stochastic model.

Supporting Material Text

Derivation: The necessary and sufficient condition for robustness is satisfied when $\Delta Ca^* \ll \sigma_c$

We tried to examine the upper bound of the range of x where Eq. 21 in the main text is satisfied and showed that the upper bound of the range of x in the spine volume is larger than that in the cell volume. Hereafter, each distribution of Ca_{res} for $Ca_{res} > \theta$ and $Ca_{res} \le \theta$ is approximated by the Gaussian distribution. We examined Eq. 21 in the main text as satisfied when σ_c , the standard deviation of Ca_{res} , is larger than ΔCa^* , the gap of the gap of the mode of the distribution of Ca_{res} , with $Amp_{PF} = \mu_a + x$ and $Amp_{PF} = \mu_a - x$. Here, we considered the small gap of Amp'_{PF} , therefore, for simplicity, $\sigma_c(\mu_a + x)$ and $\sigma_c(\mu_a - x)$, the standard deviations of Ca_{res} with $Amp_{PF} = \mu_a + x$ and $Amp_{PF} = \mu_a - x$, were regarded as $\sigma_c(\mu_a)$, the standard deviation of Ca_{res} with $Amp_{PF} = \mu_a$, up to the upper bound of the range of x satisfying Eq. 21 in the main text (see Fig. S5A, B in the Supporting Material).

First, we considered $p_c(Ca_{res}|Ca_{res} > \theta, \mu_a + x)$, the distribution of Ca_{res} , for $Ca_{res} > \theta$ in the spine and cell volumes and we approximated the distribution of Ca_{res} for $Ca_{res} > \theta$ by the Gaussian distribution, given by

$$p_c(Ca_{res}|Ca_{res} > \theta, \mu_a + x) \simeq \frac{1}{\sqrt{2\pi\sigma_c^2}} \exp\left[-\frac{\left(Ca_{res} - Ca^*(\mu_a + x)\right)^2}{2\sigma_c^2}\right].$$
(S1)

 Ca^* indicates the mode of the distribution of Ca_{res} , given by

$$Ca^*(a) = \arg\max_{Ca_{res}} p_c(Ca_{res} | Ca_{res} > \theta, a).$$
(S2)

As mentioned, we assumed $\sigma_c \equiv \sigma_c(\mu_a \pm x) = \sigma_c(\mu_a)$.

Then, for $Ca_{res} > \theta$, we substituted Eqs. 26 in the main text and S1 in right side of Eq. 25 in the main text, and obtained

$$\frac{1}{2} [p_c(Ca_{res}|\mu_a + x) + p_c(Ca_{res}|\mu_a - x)]$$

$$\approx \frac{1}{2} \left\{ \frac{P_+(\mu_a + x)}{\sqrt{2\pi\sigma_c^2}} \exp\left[-\frac{(Ca_{res} - Ca^*(\mu_a + x))^2}{2\sigma_c^2} \right] + \frac{P_+(\mu_a - x)}{\sqrt{2\pi\sigma_c^2}} \exp\left[-\frac{(Ca_{res} - Ca^*(\mu_a - x))^2}{2\sigma_c^2} \right] \right\}.$$
(S3)

Here, we considered Ca^* . Ca^* for $Ca_{res} > \theta$ linearly increased from approximately $Amp_{PF} = 50$ in the spine volume (Fig. 4*A*, black line). In the spine volume, Ca^* for $Ca_{res} > \theta$ linearly increased with the increase in Amp_{PF} for $150 \le Amp_{PF} \le 215$, which corresponds to the range of the PF-CF input timing. Thus, regarding Ca^* for $Ca_{res} > \theta$, we could assume

$$Ca^*(\mu_a \pm x) \simeq Ca^*(\mu_a) \pm \Delta Ca^*(x).$$

(S4) Equation S4 indicates that the difference of Ca^* with $Amp_{PF} = \mu_a + x$ and with $Amp_{PF} = \mu_a$ is the same as that with $Amp_{PF} = \mu_a$ and with $Amp_{PF} = \mu_a - x$, where ΔCa^* indicates the difference of Ca^* with $Amp_{PF} = \mu_a \pm x$ and with $Amp_{PF} = \mu_a$. In contrast to the spine volume, in the cell volume, Ca^* abruptly increased at $Amp_{PF} = 150$, and gradually increased with the increase in Amp_{PF} (Fig. S5*C* in the Supporting Material, yellow line). Therefore, in the cell volume, Eq. S4 is not satisfied at $Amp_{PF} = 150$, but it is almost satisfied for $150 < Amp_{PF} \le 215$. Then, we substituted Eq. S4 in the Eq. S3, and obtained

$$\simeq \frac{1}{2} \left\{ \frac{P_{+}(\mu_{a} + x)}{\sqrt{2\pi\sigma_{c}^{2}}} \exp\left[-\frac{\left(Ca_{res} - Ca^{*}(\mu_{a}) - \Delta Ca^{*}(x)\right)^{2}}{2\sigma_{c}^{2}} \right] + \frac{P_{+}(\mu_{a} - x)}{\sqrt{2\pi\sigma_{c}^{2}}} \exp\left[-\frac{\left(Ca_{res} - Ca^{*}(\mu_{a}) + \Delta Ca^{*}(x)\right)^{2}}{2\sigma_{c}^{2}} \right] \right\}$$

$$= \frac{1}{2\sqrt{2\pi\sigma_{c}^{2}}} \exp\left[-\frac{\left(Ca_{res} - Ca^{*}(\mu_{a})\right)^{2}}{2\sigma_{c}^{2}} \right] \exp\left[-\frac{\Delta Ca^{*}(x)^{2}}{2\sigma_{c}^{2}} \right] \times \left\{ P_{+}(\mu_{a} + x) \exp\left[\frac{\left(Ca_{res} - Ca^{*}(\mu_{a})\right)\Delta Ca^{*}(x)}{\sigma_{c}^{2}} \right] + P_{+}(\mu_{a} - x) \exp\left[-\frac{\left(Ca_{res} - Ca^{*}(\mu_{a})\right)\Delta Ca^{*}(x)}{\sigma_{c}^{2}} \right] \right\}.$$
(S5)

Here, we considered the range of Ca_{res} where $|Ca_{res} - Ca^*(x)| \le 3\sigma_c(x)$ is almost satisfied. Hence, if $\Delta Ca^*(x) \ll \sigma_c(x)$, then, we could approximate

$$\simeq \frac{1}{\sqrt{2\pi\sigma_c^2}} \exp\left[-\frac{\left(Ca_{res} - Ca^*(\mu_a)\right)^2}{2\sigma_c^2}\right] \left\{\frac{P_+(\mu_a + x) + P_+(\mu_a - x)}{2}\right\}.$$

Note that, the upper bound of the range of x where $\Delta Ca^* \ll \sigma_c$ determines the upper bound of the range where Eq. 21 in the main text is satisfied. This means that the larger upper bound of the range of x where $\Delta Ca^* \ll \sigma_c$ corresponds to the maximum of CV_a with which the distribution of Ca_{res} does not change.

Here, we considered the probability that Ca_{res} exceeds the threshold θ , P_+ . In the spine volume, P_+ gradually increased from $Amp_{PF} = 50$ and linearly increased for $100 \le Amp_{PF} \le 250$ (Fig. S5D in the Supporting Material, black line). Therefore, in the spine volume, P_+ linearly increased with the increase in Amp_{PF} for $150 \le Amp_{PF} \le 215$, which corresponds to the range of the PF-CF input timing. Thus, regarding P_+ , we could assume

$$\frac{1}{2}[P_{+}(\mu_{a}+x)+P_{+}(\mu_{a}-x)] = P_{+}(\mu_{a}).$$
(S7)

(S6)

This equation indicates that the average of the probabilities that Ca_{res} exceeds the threshold θ with $Amp_{PF} = \mu_a + x$ and $Amp_{PF} = \mu_a - x$ is the same as the probability that Ca_{res} exceeds the threshold θ with $Amp_{PF} = \mu_a$. In the cell volume, the distribution of Ca_{res} was unimodal, and $\theta = -\infty$ was assumed; therefore, P_+ was always 1 and Eq. S7 was always satisfied. Therefore, we substituted Eq. S7 in the Eq. S6 and obtained

$$\frac{1}{2}[p_{c}(Ca_{res}|\mu_{a}+x) + p_{c}(Ca_{res}|\mu_{a}-x)] \simeq \frac{P_{+}(\mu_{a})}{\sqrt{2\pi\sigma_{c}^{2}}} \exp\left[-\frac{\left(Ca_{res}-Ca^{*}(\mu_{a})\right)^{2}}{2\sigma_{c}^{2}}\right]$$
$$= p_{c}(Ca_{res}|\mu_{a})$$
(S8)

for $Ca_{res} > \theta$, *i.e.*, Eq. 21 in the main text for $Ca_{res} > \theta$ is satisfied.

However, for $Ca_{res} \leq \theta$, because Ca^* for $Ca_{res} \leq \theta$ was almost constant, the distribution Ca_{res} was mainly characterized only by P_{-} of the distribution of Ca_{res} , indicating

$$p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a) = p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a \pm x).$$
(S9)

Then, using Eq. 21 in the main text for $Ca_{res} \le \theta$, similar to the case for $Ca_{res} > \theta$, we obtained

$$\begin{aligned} \frac{1}{2} \left[p_c(Ca_{res}|\mu_a + x) + p_c(Ca_{res}|\mu_a - x) \right] \\ &\simeq \frac{1}{2} \left[P_-(\mu_a + x) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a + x) + P_-(\mu_a - x) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a - x) \right] \\ &= \frac{1}{2} \left[P_-(\mu_a + x) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a) + P_-(\mu_a - x) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a) \right] \\ &\simeq \frac{1}{2} \left[P_-(\mu_a + x) + P_-(\mu_a - x) \right] p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a) \\ &= P_-(\mu_a) p_c(Ca_{res}|Ca_{res} \le \theta, \mu_a) = p_c(Ca_{res}|\mu_a) \end{aligned}$$

(S10) for $Ca_{res} \le \theta$, *i.e.*, Eq. 21 in the main text for $Ca_{res} \le \theta$ is also satisfied. Therefore, from Eqs. S8 and S10, we derived Eq. 21 in the main text. Thus, we approximately showed that if Ca^* and P_+ linearly increase with the increase in Amp_{PF} and $\Delta Ca^* \ll \sigma_c$, then Eq. 21 in the main text was satisfied. This means that the necessary and sufficient condition for robustness is satisfied in the range where the intrinsic noise, σ_c , is larger than the extrinsic noise, ΔCa^* .