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ABSTRACT Why is the spine of a neuron so small that it can contain only small numbers of molecules and reactions inevitably
become stochastic? We previously showed that, despite such noisy conditions, the spine exhibits robust, sensitive, and efficient
features of information transfer using the probability of Ca2þ increase; however, the mechanisms are unknown. In this study, we
show that the small volume effect enables robust, sensitive, and efficient information transfer in the spine volume, but not in the
cell volume. In the spine volume, the intrinsic noise in reactions becomes larger than the extrinsic noise of input, resulting in
robust information transfer despite input fluctuation. In the spine volume, stochasticity makes the Ca2þ increase occur with a
lower intensity of input, causing higher sensitivity to lower intensity of input. The volume-dependency of information transfer in-
creases its efficiency in the spine volume. Thus, we propose that the small-volume effect is the functional reason why the spine
has to be so small.
INTRODUCTION
The spine is an extremely small structure, where afferent in-
puts from other neurons are temporally added (1,2). For
example, the volume of a spine at the parallel fiber (PF)-cer-
ebellar Purkinje cell synapse is approximately10�1–1 mm3

(3). Such volume is 104-fold smaller than the cell body
(5000 mm3) and contains merely tens or hundreds of mole-
cules (Fig. 1 A; see also Fig. 7) (4–6). Under such condi-
tions, reactions in the spine inevitably become stochastic
and inputs fluctuate because of the low number of molecules
confined in a small volume (7–11). Intuitively, such noisy
conditions are disadvantageous for information processing.
Why is the spine so small? This is one of the fundamental
questions in neuroscience and biological information
processing.

Cerebellar Purkinje cells receive two inputs. One is from
more than 100,000 PFs, which are the axons of granular
neurons, coding sensorimotor signals. The other input is a
single climbing fiber (CF) from the inferior olivary nucleus,
which is thought to code an error signal (12–14). A conjunc-
tive activation of PF and CF inputs, but not either the PF
input or CF input alone, has been shown to induce large
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Ca2þ increases by the Ca2þ inflow through voltage-gated
channels and inositol trisphosphate (IP3)-induced Ca2þ

release (IICR) (15,16), leading to long-term decreases of
synaptic strength that are known as cerebellar long-term
depression (LTD) (17), which is a tentative molecular basis
of cerebellar motor learning (18,19). It has been experimen-
tally shown that a large Ca2þ increase occurs when PF and
CF inputs are coincident within a 200-ms time window
(Fig. 1 B), and that the Ca2þ increase as a function of the
timing between PF and CF inputs shows a bell-shaped
response (Fig. 1 C) (16). We have previously developed a
detailed biochemical deterministic model of the Ca2þ in-
crease in a PF-cerebellar Purkinje cell synapse, reproducing
the PF- and CF-timing-dependent Ca2þ increases (20). In
addition, by reducing this model, we also constructed a sim-
ple deterministic model, from which we derived an essential
framework of the network for PF- and CF-timing-dependent
Ca2þ increases (21,22).

However, in the spine, the number of molecules is limited
to tens to hundreds; therefore, reactions should behave sto-
chastically rather than deterministically. It has been experi-
mentally shown that the Ca2þ increase due to the
coincidence of PF and CF inputs behaves stochastically; in
some cases, large Ca2þ increases are observed, but in other
cases they are not large (Fig. 1, B and C). In addition to the
intrinsic noise due to the stochastic fluctuation of the transient
increases of the Ca2þ concentration, the PF input has been
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FIGURE 1 Information transfer of PF- and CF-timing by probability of Ca2þ increase in the simple stochastic model. (A–C) Experimental results of Ca2þ

increase by PF and CF inputs at the spine in the cerebellar Purkinje cell (16). (A) Spines of the cerebellar Purkinje cell are shown. (B) Ca2þ responses in the

indicated spines in (A) are shown. V indicates membrane potential and DF/F0 indicates the normalized changes of the fluorescence probe of Ca2þ. The left,
middle, and right panels show the time courses with only the PF input (shaded vertical line), with the CF input (black vertical line) 60 ms before the PF input

and with the PF input 60 ms before the CF input, respectively. (C) Total integrated Ca2þ with PF and CF inputs with various timing are shown. The gray line

indicates the best fits of the raw data points to Gaussian functions. The black line indicates the box-smoothed average over three points. (D) The block di-

agram of the simple stochastic model in this study (see Materials and Methods) is provided. After Fig. 3, we set CF ¼ 0 and used only PF as the input. Ca2þ

increase in the spine volume (10�1 mm3) (E–I) and in the cell volume (103 mm3) (J–N) in the simple stochastic model. (E and J) Ca2þ increase with Dt ¼
100 ms is provided. Dt indicates the timing interval between PF and CF inputs, which is the timing of the PF input set as 0 and Dtwith the PF input before CF

input is positive, and vice versa. (E) The large Ca2þ increase (red) and small Ca2þ increase (blue) divided by q in (F) are provided. (F and K) The probability

density distribution of Cares is provided. Cares denotes the area under the curve of the time course of Ca2þ, subtracted by the basal Ca2þ concentration, shown

in (E) and (J). (F) The threshold q is defined as the local minimum of the marginal distribution for Dt, given by pcðCaresÞ ¼
R
DtpcðCares j tÞpinðtÞdt (see

Fig. S1). (G and L) The probability density distribution of Cares in the spine volume (G) and cell volume (L) are provided. (H andM) The probability compo-

nent of the distribution of Cares that exceeds the threshold q in the spine volume (s ¼ 1) (see Materials and Methods) is provided. Because the distribution of

Cares in the cell volume is unimodal distribution, for convenience, we set q¼ 0.157 in the cell volume, which is the same as that in the spine volume. (I and N)

The amplitude component of the distribution of Cares (see Materials and Methods) is provided. Images are used with permission fromWang et al. (16). To see

this figure in color, go online.
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shown to fluctuate due to the stochasticity of the glutamate
release from the presynapse (9–11), which can be regarded
as extrinsic noise. In this study, the extrinsic noise means
the PF input fluctuation rather than the different initial condi-
tions such as the molecular concentration/numbers in the in-
dividual spines. Based on the deterministic model (20), we
constructed a stochastic simulation model of the Ca2þ in-
crease depending on PF- and CF-timing incorporating the
stochastic reactions due to the small number of molecules
(23). We have previously shown that the spine uses the prob-
ability of the Ca2þ increase, rather than its amplitude, for in-
formation transfer, and that the probability of the Ca2þ

increase in the spine shows robustness against input fluctua-
tion, sensitivity to lower input numbers, and efficiency in in-
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formation transfer (23). The more detailed definitions of the
robustness, sensitivity, and efficiency were described below
in the corresponding parts (see Results). However, the robust-
ness, sensitivity, and efficiency were not characterized, and
their informatical mechanisms remain unknown.

In this study, we constructed a simple stochastic model
based on the simple deterministic model (21). Note that
the detailed stochastic model contains a large number of
molecules and reactions so that it is hard to perform the sto-
chastic simulation of the deterministic model with various
parameters, such as the amplitude of PF inputs. Using the
simple stochastic model, we define the robustness, sensi-
tivity, and efficiency of information transfer mediated by
the Ca2þ increase, and clarify their mechanisms (see



Information Transfer in Small Volume
Fig. 7). We defined the robustness as the unchanging distri-
bution of the Ca2þ increase against the fluctuation of the PF
input, which can be seen under the condition where extrinsic
noise caused by the fluctuation of the PF input is much
smaller than intrinsic noise caused by stochasticity in the
Ca2þ increase. The robustness appears against much larger
fluctuation of the PF input in the spine volume. We defined
the sensitivity as the amplitude of the PF input giving the
maximum of information transfer. In the spine volume, sto-
chasticity makes the Ca2þ increase occur with a lower inten-
sity of input, causing higher sensitivity to lower intensity of
input. We defined the efficiency as how much information
can be transferred by a unitary PF input. The volume-depen-
dency of information transfer increases its efficiency in the
spine volume. We found that the small-volume effect en-
ables robust, sensitive, and efficient information transfer in
the spine volume, but not in the cell volume. We propose
that the small-volume effect is one of the functional reasons
why the spine has to be so small.
MATERIALS AND METHODS

Simple stochastic model

The block diagram of the simple stochastic model is the same as that of the

simple deterministic model (Fig. 1 E) (21). The inputs are PF and CF. After

Fig. 3, we set CF ¼ 0, and used only PF as the input. The output is Ca,

which is the same as the output of the detailed stochastic model and remains

the value of the number of the Ca2þ ion.

The total cytosolic Ca2þ in the spine of the Purkinje cell, Ca, is derived

from the three pathways as follows:

Ca ¼ Cabasal þ CaVGCC þ CaIP3
; (1)

where Cabasal, CaVGCC, and CaIP3
denote the basal cytosolic Ca2þ, the Ca2þ

through the voltage-gated Ca2þ channel (VGCC) triggered by CF, and the

Ca2þ through the IP3 receptors of the internal Ca
2þ store triggered by PF,

respectively. Cabasal is constantly produced and described by the following:

f !Cb=tFB
Cabasal !1=tFBf; (2)

where Cb/tFB and 1/tFB denote the production and decay rate constants of

Cabasal, respectively. Hereafter, f denotes a fixed value.

CaVGCC is triggered by CF and is described by the following:

CF !1=tCFCaVGCC !1=tCFf; (3)

where 1/tCF denotes the production and decay rate constants of CaVGCC,

respectively. CF is given by AmpPF � V at t ¼ tCF, with the volume of

the system, V.

CaIP3
is produced as follows. Briefly, PF produces IP3. Ca has positive

feedback (FB) through the activation of the IP3 receptor ðGIP3RÞ. IP3 and

GIP3R synergistically induce Ca release through IP3R ðCaIP3
Þ and IP3 is trig-

gered by PF as follows:

PF !1=tPFIP3 !1=tPFf; (4)

where 1/tCF denotes the production and decay rate constants of IP3. PF is

given by AmpPF � V at t ¼ tCF.
The time-delay variable FB is described by the following:

Ca !1=tFBFB !1=tFBf; (5)

where 1/tFB denotes the production and decay rate constants of FB. This

decay rate constant also determines the degradation rate of CaIP3
.

The IP3 receptor coupled with Ca2þ, GIP3R, is mediated by the positive

and negative feedback from FB and is given by the nonlinear function,

described by the following:

GIP3R ¼ AmpGIP3R

�
k � FB

ðk þ FBÞðK þ FBÞ
�nGIP3R

; (6)

where AmpGIP3R
, k, K, and nGIP3R

denote the amplitude of feedback, thresh-

olds of FB for the positive and negative feedback, and nonlinearity of feed-

back, respectively.

The Ca released from IP3R, CaIP3
, is described by the following:

CaIP3
¼ IP3 � GIP3R

V
: (7)

These reactions are simulated by the use of Gillespie’s method and the

t-leap method (24). For example, in the reaction described by Eq. 3, the

number of the Ca2þ from VGCC, CaVGCC (t þ t), is described as follows:

CaVGCCðt þ tÞ ¼ CaVGCCðtÞ þ Rin � Rout; (8)

where Rin and Rout indicate the number of reactions of inflow and outflow,

which occur in the time interval between t and t þ t, generated to obey the

Poisson distribution, Rin ~ Poisson (CF � t/tCF) and Rout ~ Poisson

(CaVGCC � t/tCF), respectively. Similarly, the probability of reactions is

based on the law of mass action. The appropriate t is calculated in accor-

dance with by Gillespie et al. (25), which shows good approximation for

first-order reactions.

Note that, under normal circumstances, the reactions by membrane mol-

ecules on the membrane, such as receptors, and those by cytosolic

molecules, such as Ca2þ and IP3, should be considered as separate mecha-

nisms and compartments, which may be affected by the ratio between sur-

face area and volume. In general, the surface area of the membrane is

proportional to the order of the square of length, whereas the cell volume

is proportional to the cube of that, which means that, as a system size in-

creases, the increasing rate of the number of membrane molecules becomes

smaller than that in the cytoplasm. Hence, in the cases of larger systems

than the spine, the number of membrane molecules that can activate the

cytosolic molecules is so small that most of substrates are not activated

by the stimulation. Actually, when a volume was 8- or 125-fold larger

than a spine volume, large Ca2þ increases did not occur any more at any

PF-CF intervals. To uncover the simple influences of the smallness of a

spine and the number of molecules, it is required that the effect of the stim-

ulation to the cytosolic molecules through the membrane protein for a cell is

the same as that for the spine. Therefore, we assumed that the number of

membrane proteins is proportional to the volume, i.e., the cube of length,

throughout this study.

We defined Cares as the area under the curve of the time course of Ca2þ,
given by the following:

Cares ¼
Z
T

f½Ca�ðtÞ � Cbgdt; (9)

where Cb denotes the basal concentration of Ca2þ, which is 41.6 nM. Note

that Koumura et al. (23) defined Cares as the logarithmic area under the

curve, which is different from that in this study; however, the results of

this study qualitatively show the same results.
Biophysical Journal 112, 813–826, February 28, 2017 815
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The values of the parameters in the simple stochastic model are shown in

Tables S1 and S2. The parameters excluding the following are the same as

those of the simple deterministic model (23).
Mutual information between PF- and CF-timing
and Ca2D increase

We measured the input timing information coded by the Ca2þ response to

mutual information between the Cares and the PF–CF timing interval

Dt ¼ tCF � tPF, given by the following:

IðCares;DtÞ ¼
Z
Dt

pinðtÞ

�
0
@ Z

Cares

pcðc j tÞlog2
pcðc j tÞR

Dt
pinðtÞpcðc j tÞdt dc

1
Adt:

(10)

Here, the pin (Dt) follows the uniform distribution. To remove the bias

caused by the bin width of Cares, the mutual information was calculated

by the method introduced by Cheong et al. (26). The mutual information

remains almost constant for the bin width between 10�2 and 10�3.5

(pM min). Therefore, we fixed the bin width of Cares as 10
�2 (pM min)

in the analysis and for drawing the histogram.

We also measured the information coded by the probability of the large

Ca2þ increase and by the amplitude of the Ca2þ increase, denoted as the

mutual information of the probability component and of the amplitude

component, respectively. We defined q as the Cares representing the local

minimum value of the marginal distribution pc (Cares) (Fig. 1 F) and s as

the logical value, whether Cares > q is satisfied or not.

The mutual information coded with the probability component, which in-

dicates the information transfer coded by the probability whether the large

Ca2þ increase occurs or not, is defined as follows:

IprobðCares;DtÞ ¼
Z
Dt

pinðtÞ

�
0
@ Z

Cares

pcðc j tÞlog2
pcðc j tÞ

p�probðc j tÞ dc
1
Adt;

(11)
IðCares;AmpPFÞ ¼
Z

AmpPF

psða jms; STDÞ
0
@ Z

Cares

pcðc j aÞlog2
pcðc j aÞR

AmpPF
psða jms; STDÞpcðc j aÞda

dc

1
Ada (16)
and

p�probðCares jDtÞ ¼
X

s˛f0;1g
PðsÞpcðCares j s;DtÞ; (12)
where p�prob (CaresjDt) denotes the distribution of Cares without the prob-

ability component, which was calculated by marginalizing Dt out of the

probability component P (sjDt) in pc (CaresjDt).
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The mutual information coded by the amplitude component, which indi-

cates the information transfer coded by the amplitude of the Ca2þ increase,

is defined as follows:

IampðCares;DtÞ ¼
Z
Dt

pinðtÞ

�
0
@ Z

Cares

pcðc j tÞlog2
pcðc j tÞ

p�ampðc j tÞ dc
1
Adt;

(13)

and

p�ampðCares jDtÞ ¼
X

s˛f0;1g
Pðs jDtÞpcðCares j sÞ; (14)

where p�amp (CaresjDt) denotes the distribution of Cares without the ampli-

tude component, which was calculated by marginalizing Dt out of the

amplitude component P (sjDt) in pcðCares jDtÞ. This information satisfies

the following:

IðCares;DtÞ ¼ IprobðCares;DtÞ þ IampðCares;DtÞ: (15)

Note that Iprob mathematically indicates the information transfer coded

by the probability of the large Ca2þ increase, i.e., the probability compo-

nent, whereas Iamp actually indicates the information transfer coded by

other than the probability of the large Ca2þ increase, including the

amplitude of the Ca2þ increase, i.e., the amplitude component. However,

the amplitude component seems to be dominant component in that

expect for the probability component. Thus, we defined Iprob and Iamp
as the information coded with probability and amplitude components,

respectively.
Mutual information between the amplitude of PF
input and Ca2D increase

We also calculated the mutual information between Cares and AmpPF by

assuming the input distribution as the Gaussian distribution with ms, the

average, and STD, the SD, given by the following:
where

psðAmpPFjms; STDÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pSTD2

p exp

"
� ðAmpPF � msÞ2

2STD2

#
:

(17)

Note that below in Results, we defined pa as the probability density distri-

bution of the PF input fluctuation and is assumed as a Gaussian distribution.
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Therefore, ps and pa have AmpPF as the variable and are assumed as a

Gaussian distribution. However, these distributions mean different features:

ps means the input distribution of the mutual information, and pa means the

distribution of amplitude of the PF input under the fluctuation of amplitude

of the PF input.
Fitted function of the volume-dependency of
mutual information

Themutual information per the PF input against the volumewas fitted by the

functionsa log2 (bþ c�V) and 1/2 log2 (1þ c�V)/V (see Fig. 6B) by using of

the nonlinear least squares method with the Marquadt-Levenberg algo-

rithm. We obtained the fitting line, a log2 (b þ c�V), with the best fit of

a ¼ 0.3924651, b ¼ 1.049141, and c ¼ 1.330285 and the channel capacity

of the Gaussian channel, 1/2 log2 (1 þ c�V), with the best fit parameter of

c ¼ 0.5128671.
I(Cares; Δt)
Iprob(Cares; Δt)
Iamp(Cares; Δt)

A B

C

FIGURE 2 The efficient and robust features in the simple stochastic

model. (A) The volume-dependency of the mutual information between

the PF- and CF-timing and Cares is provided. Black, red, and blue lines indi-

cate the mutual information of the total distribution of Cares, of the proba-

bility component, and of the amplitude component, respectively. (B) The

volume-dependency of the mutual information per volume. (C) CV of

amplitude of the PF input-dependency of the mutual information. The ratio

of information was obtained by setting mutual information with CV¼ 0 for

each volume at 1. To see this figure in color, go online.
RESULTS

Development of the simple stochastic model

To reduce the complexity and computational cost of the
detailed stochastic model (23), we constructed the simple
stochastic model based on the simple deterministic model
(Fig. 1 D) (21). We set the parameters according to the PF
and CF inputs of the simple deterministic model to repro-
duce the PF- and CF-timing dependent Ca2þ responses of
the detailed stochastic model (23) (Fig. 1; see Materials
and Methods; Tables S1 and S2). Thereafter, we denoted
10�1 mm3 as the spine volume, and 103 mm3 as the cell vol-
ume. In the spine volume, coincident PF and CF inputs with
Dt ¼ 100 ms induced a large Ca2þ increase (Fig. 1 E, red),
but they sometimes failed to induce a large Ca2þ increase
(Fig. 1 E, blue). We defined Cares as the temporal integration
of the Ca2þ concentration, subtracted by the basal Ca2þ con-
centration. The distribution of Cares showed a bimodal dis-
tribution (Fig. 1 F). The distribution of Cares always showed
a bimodal distribution regardless of the timing between the
PF and CF inputs, and probability of a large Ca2þ increase
changed depending on the timing between the PF and CF in-
puts (Fig. 1 G). We divided the distribution of Cares into the
probability component (Fig. 1 H) and the amplitude compo-
nent (Fig. 1 I) (see Materials and Methods). The probability
component, but not the amplitude component, showed a
bell-shaped time window, indicating that the timing infor-
mation between the PF and CF inputs is coded by the prob-
ability of a large Ca2þ increase, rather than by the amplitude
of the Ca2þ increase in the spine volume. In contrast, in the
cell volume, the coincident PF and CF inputs with Dt ¼
100 ms always induced a large Ca2þ increase without failure
(Fig. 1 J) and Cares showed a unimodal distribution (Fig. 1
K) (see Materials and Methods). The distribution of Cares al-
ways showed a unimodal distribution regardless of the
timing between the PF and CF inputs (Fig. 1 L), and only
the amplitude of Cares (Fig. 1 N), not the probability
(Fig. 1 M), showed a bell-shaped time window, indicating
that the timing information between the PF and CF inputs
is coded by the amplitude of the Ca2þ increase, rather
than the probability of a large Ca2þ increase in the cell vol-
ume. These results are consistent with our previous study
using the detailed stochastic model (23).

The simple stochastic model also showed similar proper-
ties, such as efficiency, robustness, and sensitivity in the
detailed stochastic model (Fig. 2; see Fig. S2). Mutual infor-
mation is a nonlinear measure of correlation that takes into
account entire probability distributions rather than simply
second-order correlations, and a quantitative measure of
how much information is transferred from input to output
(27). We used mutual information as a measure of how
much information is transferred from the PF- and CF-timing
to Cares. The mutual information between the PF- and
CF-timing and Cares increased with the increase in volume
(Fig. 2 A). In the spine volume, the probability component
of the mutual information was larger than the amplitude
component of the mutual information (Fig. 2 A, inset),
and the amplitude component of the mutual information
became larger than the probability component of the mutual
information with increase in the volume. Mutual informa-
tion per volume became highest at the spine volume, and
it decreased with the increase in volume (Fig. 2 B), indi-
cating that the most-efficient information coding per volume
is achieved at the spine volume. In the spine volume, the
mutual information did not decrease; it remained constant
regardless of the coefficient of variation (CV) of the PF
input (Fig. 2 C, black line), whereas that in the cell volume
decreased with the increase in CVof the PF input (Fig. 2 C,
yellow line; see Fig. S1), indicating that the information
Biophysical Journal 112, 813–826, February 28, 2017 817
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transfer by Cares is robust against fluctuation of the PF input
in the spine volume only, but not in the larger volume
including the cell volume. The detailed stochastic model
showed higher sensitivity to the lower numbers of the PF
input in the spine volume rather than that in the cell volume
(see Fig. S2 D) (23). We showed that the higher sensitivity
to lower PF input can be seen in the spine volume, but not in
the larger volume including the cell volume (see below).
These results of the simple stochastic model are also
consistent with those of the detailed stochastic model (see
Fig. S2) (23).

These results indicate that the simple stochastic model
can retain the essential properties of the Ca2þ response,
such as robust, sensitive, and efficient features. Using this
simple stochastic model, we next defined the robustness,
sensitivity, and efficiency, and clarified their mechanisms
in the spine volume.
The mechanism of robustness

In this section, we define the robustness and clarify the
mechanism of the robustness. The amplitudes of the Ca2þ

increase by conjunctive PF and CF inputs is compatible
with those by strong PF input alone (see Fig. S3 K) (20).
Consistently, strong PF input alone has experimentally
been shown to induce a large Ca2þ increase (28). Therefore,
we hereafter used the PF input alone for simplicity. First, we
showed that robustness is provided by the unchanging distri-
bution of Cares against the fluctuation of the PF input. We
obtained the necessary and sufficient condition for robust-
ness, where the intrinsic noise is much larger than the
extrinsic noise. We showed that the range of the PF input
fluctuation satisfying the conditions for robustness is
much larger in the spine volume than in the cell volume,
indicating that the distribution of Cares against the fluctua-
tion of the PF input in the spine volume is more robust
than in the cell volume against the fluctuation of the PF
input.

Hereafter, we used only the PF input alone instead of
PF and CF inputs. AmpPF, the amplitude of the PF input,
was set to be between 150 and 215 because the range of
amplitude of the PF input alone corresponds to the range
of amplitude of the PF- and CF-timing dependent inputs
(see Fig. S3 K). Therefore, with the appropriate distribu-
tion of the PF input as the input distribution of the ampli-
tude of the PF input, the mutual information between the
PF- and CF-timing interval and Cares could be calculated
from the AmpPF-dependent distributions of the Cares. We
performed the stochastic simulation 104 times per each
amplitude of the PF input, which is defined as AmpPF,
and obtained pc (CaresjAmpPF), the probability density
distribution of Cares. Using pc (CaresjAmpPF), we
examined the mechanism of robustness. In the spine vol-
ume, the distribution of Cares, pc (CaresjAmpPF), became
bimodal when AmpPF exceeded ~50 (Fig. 3 A; Fig. S3,
818 Biophysical Journal 112, 813–826, February 28, 2017
A and B). In contrast, in the cell volume, the distribution
of Cares always showed unimodal distribution regardless
of AmpPF, and its average monotonically increased along
AmpPF when AmpPF exceeded ~150 (Fig. 3 B; Fig. S3, I
and J).

The robustness is given by the unchanging distribution of
Cares against the fluctuation of PF input

We have shown that the distribution of Cares for each Dt was
unchanged regardless of CVof the PF input in the spine vol-
ume, but not in the cell volume (see Fig. S1) (23), suggest-
ing that the unchanging distribution of Cares against the
fluctuation of the PF input is a key to the robustness of the
information transfer. Therefore, we examined whether the
distribution of Cares with the PF input alone is also un-
changed regardless of CV of the PF input in the spine vol-
ume, but not in the cell volume.

Experimentally, it has been reported that the distribution
of the amplitude of the PF input in the Purkinje cell
can be approximated by a Gaussian distribution (11). We
set pa (AmpPF j ma, sa), the probability density distribution
of AmpPF, as the Gaussian distribution given by
NðAmpPF jma; s

2
aÞ, where ma and sa denote the average of

AmpPF and the SD of AmpPF b, respectively. We used sa,
the SD of AmpPF, as the magnitude of fluctuation of AmpPF
because the sa is proportional to CVa, the CVof AmpPF, with
the fixed ma, given by CVa ¼ sa/ma. When the PF input is
given by pa (AmpPF j ma, sa), pac (Cares j ma, sa), the distri-
bution of Careswith the fluctuation of AmpPF, is given by the
following:

pacðCares jma; saÞ ¼
Z
AmpPF

paða jma; saÞpcðCares j aÞda

¼
Z
AmpPF

N �
a jma; s

2
a

�
pcðCares j aÞda;

(18)

where pc (Caresja) for each a ˛ AmpPF, i.e., pc
(CaresjAmpPF), was obtained by the stochastic simulation.
In the spine volume, the distributions of Cares always ex-
hibited similar bimodal distributions regardless of CVa and
did not change even if the CVa became larger (Fig. 3, C–
E). In contrast, in the cell volume, the distributions of Cares
exhibited unimodal distribution with CVa ¼ 0; with the in-
crease in CVa, the distributions of Cares changed and became
bimodal (Fig. 3, F–H). These properties remained the same
regardless of ma, the average of AmpPF (see Fig. S4). Similar
results were obtained when both PF and CF inputs were
used (see Fig. S1).

Taken together, in the spine volume, the distribution of
Cares remained almost unchanged against the fluctuation
of AmpPF, whereas, in the cell volume, the distribution of
Cares largely varied against the fluctuation of AmpPF. These
results indicate that the unchanging distribution of Cares
against the fluctuation of AmpPF causes robustness. Note
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FIGURE 3 Unchanging distributions of Cares against fluctuation of the PF input gives robustness in the spine volume. The AmpPF-dependency of

pc (CaresjAmpPF) and the distributions of Cares in the spine volume (A) and in the cell volume (B) are shown. (C–H) The distributions of Cares against

the PF input fluctuation with the indicated CVa with ma ¼ 180 in the spine volume (C–E) and in the cell volume (F–H), respectively, are shown. q indicates

the threshold dividing the distribution into the ranges with large Cares and with small Cares (see Fig. S1). (I) The CVa-dependency of c2 distance of distri-

butions between pac (Cares j ma, ma � CVa) and pac (Cares j ma, 0) with ma ¼ 180. (J) The input distribution of AmpPF is given by the Gaussian distributionN
(ma, sa

2). The distribution of Cares with AmpPF ¼ ma (black), AmpPF ¼ ma þ x (blue), and AmpPF ¼ ma � x (red) in the spine volume (left) and in the cell

volume (right). The averaged distribution with AmpPF ¼ ma þ x and with AmpPF ¼ ma � x (green). To see this figure in color, go online.
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that, in general, the robustness appears not only when the
distribution of output does not change by the fluctuation,
but also when the distribution drastically changes if the
same mutual information can be represented by completely
different distributions. However, in the biological systems, it
is reasonable to assume that the distribution of the output
continuously changes and varies with the increase in the
fluctuation of input. Therefore, we did not considered the
latter case but considered the robustness only with the un-
changing distribution of Cares against the fluctuation of
AmpPF.

We quantitated the change of the distributions of Cares
with the increase in CVa by the c2 distance against the dis-
tributions of Cares with CVa ¼ 0. Note that, in general, the
distance between two distributions is calculated by other
distance functions, such as KL-divergence, Hellinger dis-
tance, etc. However, the c2 distance can also reproduce
the distance between two distributions, does not diverge,
and clearly shows whether the distributions are the same
or not. The c2 distance becomes 0 when the distribution
of Cares with CVa is the same as that with CVa ¼ 0, and
the c2 distance becomes 1 when two distributions are
completely different. In the spine volume, the c2 distance
remained almost 0 regardless of CVa, whereas in the cell
volume the c2 distance abruptly increased with the increase
in CVa and became close to 1 (Fig. 3 I), indicating that the
distribution of Cares in the spine volume does not change
with the increase in CVa but that in the cell volume largely
changes even with a small increase in CVa. This is the reason
why the robustness can be seen only in the spine volume but
not in the cell volume.

The necessary and sufficient condition for the robustness

Next, we clarified how the distribution of Cares in the spine
volume does not change with the increase in CVa, and how
that in the cell volume largely changes even with a small
Biophysical Journal 112, 813–826, February 28, 2017 819
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increase in CVa. We obtained the necessary and sufficient
conditions for robustness: unchanging distribution of Cares
regardless of CVa. We considered pac (Cares j ma, sa), the dis-
tribution of Cares with the fluctuation of AmpPF, with the in-
crease in CVa. Note that CVa ¼ sa/ma). Because
NðAmpPF jma; s

2
aÞ is symmetric with respect to ma, i.e.,

ca ˛ AmpPF, Nða jma; s
2
aÞ ¼ N ð2ma � a jma; s

2
aÞ, Eq. 18

was changed as follows:
pacðCares jma;saÞ ¼
Z N

ma

N �
a jma; s

2
a

�
pcðCares j aÞdaþ

Z ma

�N

N �
a jma; s

2
a

�
pcðCares j aÞda

¼
Z N

ma

N �
a jma; s

2
a

�
pcðCares j aÞdaþ

Z N

ma

N �
2ma � a jma; s

2
a

�
pcðCares j 2ma � aÞda

¼
Z N

ma

�N �
a jma; s

2
a

�
pcðCares j aÞ þ N �

a jma; s
2
a

�
pcðCares j 2ma � aÞ�da

¼
Z N

ma

N �
a jma; s

2
a

�½pcðCares j aÞ þ pcðCares j 2ma � aÞ�da: (19)
Because the distribution of AmpPF is the Gaussian distribu-
tion,NðAmpPF jma; s

2
aÞ, the probability density of AmpPF ¼

a decreases as the difference between a and ma becomes
larger. In particular, the probability that AmpPF ¼ a is
included in the range ma � 3sa % a%ma þ 3sa is given
by

R maþ3sa
ma�3sa

Nða jma; s
2
aÞda ¼ 0.9974., i.e., almost 1.

Thus, the probability of a>ma þ 3sa or a<ma � 3sa is
quite small and almost negligible. Therefore, satisfying
Eq. 19 in the range ma � 3sa % a%ma þ 3sa is enough to
satisfy Eq. 19 for almost all ranges of AmpPF. This means
that right side of Eq. 19 in the range a>ma þ 3sa can be ne-
glected, and pac (Cares j ma, sa) is given by the following:
pacðCares jma; saÞ ¼
Zmaþ3sa

ma

N �
a jma; s

2
a

�½pcðCares j aÞ
þ pcðCares j 2ma � aÞ�da:

(20)

Here, we considered the case whereby the averaged distribu-
tion between the distributions of Cares with the AmpPF ¼ a
shifted j a – maj from ma, the average of AmpPF, i.e.,
1=2½pcðCares j aÞ þ pcðCares j 2ma � aÞ�, is almost the same
as the distribution of Cares with AmpPF ¼ ma, pc (Caresjma)
up to a ¼ ma þ 3sa, given by the following:

ca<ma þ 3sa : pcðCares jmaÞx
1

2
½pcðCares j aÞ

þ pcðCares j 2ma � aÞ�: (21)
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When the conditions where Eq. 21 is satisfied, we obtained
the condition where pacðCares jma; saÞ, the distribution of
Cares with the fluctuation of AmpPF, does not change
regarding sa, the magnitude of fluctuation of AmpPF. This
condition means that the distribution of Cares remained
the same with fluctuation of AmpPF. Substituting Eq. 21
for Eq. 20, we obtained the following:
pacðCares jma; saÞx2

Z maþ3sa

ma

N �
a jma; s

2
a

�
pcðCaresjmaÞda

¼ 2pcðCares jmaÞ
Z maþ3sa

ma

N �
a jma; s

2
a

�
da

xpcðCares jmaÞ:
(22)
The left side of Eq. 22 indicates the distribution of Cares
with fluctuation of Amp . The left side is almost the
PF

same with the right side of the equation, which is the distri-
bution of Cares without fluctuation of AmpPF. Note that sa
does not directly appear in Eq. 21; however, sa determines
the upper bound of the range of a – ma satisfying Eq. 21.
This means that if Eq. 22 is satisfied for sa ¼ s�a, then Eq.
22 is also satisfied for sa <s�a. Namely, the upper bound
of range a – ma satisfying Eq. 21 is larger, and Eq. 22 is satis-
fied for larger sa, i.e., CVa. Therefore, Eq. 21 is the condition
sufficient to allow the distribution of Cares not to change
against the fluctuation of AmpPF.

Taken together, Eq. 21 is a necessary and sufficient con-
dition in which the distribution of Cares remains the same
against the fluctuation of AmpPF. If a – ma, the effective
AmpPFwith fluctuation of AmpPF, satisfying Eq. 21 is larger,
then the distribution of Cares does not change, even with the
larger fluctuation of AmpPF. Therefore, the upper bound of
range a – ma satisfying Eq. 21 determines the maximum
of sa, where the distribution of Cares does not change.
Next, we examined the upper bounds of range a – ma satis-
fying Eq. 21 in the spine volume and in the cell volume. We
also demonstrated that the upper bound of range a – ma



Information Transfer in Small Volume
satisfying Eq. 21 in the spine volume is much larger than
that in the cell volume; therefore, information transfer by
Cares in the spine volume is much more robust than that in
the cell volume against fluctuation of AmpPF.

The necessary and sufficient condition for robustness are
satisfied in the range in which the intrinsic noise is larger than
the extrinsic noise

We next show that the upper bound of the range of AmpPF
satisfying Eq. 21 is determined by the upper bound of the
range of AmpPF, where the intrinsic noise is larger than
the extrinsic noise. We first provide an intuitive interpreta-
tion of this proposition using schematic representation of
the distribution of Cares with the indicated AmpPF in the
spine volume and cell volume (Fig. 3 J; see Fig. S3), which
then we prove. The distribution of Cares in the spine volume
is divided into two distributions by threshold q (Fig. 3 J; see
Fig. S3). Note that because of the unimodal distribution of
Cares in the cell volume, we set q ¼ �N in the cell volume.
This means that Eq. 21 was divided into the forms given by
the following:

pcðCares jAmpPFÞ¼ PþðAmpPFÞpcðCares jCares > q;AmpPFÞ
þ P�ðAmpPFÞpcðCaress jCares% q;AmpPFÞ;

(23)

and
 8>><
>>:

PþðAmpPFÞh
Z N

q

pcðc jAmpPFÞdc

P�ðAmpPFÞh
Z q

�N

pcðc jAmpPFÞdc
; (24)

where Pþ and P� denote the probabilities of Cares > q and
Cares % q with AmpPF ¼ a, respectively. We separately
considered the first term and second term of the right side.
It should be noted that because q in the cell volume was
set at�N, Pþ in the cell volume is always 1 for any AmpPF.
Furthermore, we defined x¼ AmpPF – ma, the relative ampli-
tude of the PF input, as the difference of AmpPF compared
with ma, the average of AmpPF. Then, Eqs. 21 and 23 were
rewritten, respectively, as follows:

pcðCares jmaÞ ¼ 1

2
½pcðCares jma þ xÞ þ pcðCares jma � xÞ�

(25)

and

pcðCares jma þ xÞ¼ Pþðma þ xÞpcðCares jCares > q;ma þ xÞ
þ P�ðma þ xÞpcðCaress jCares%q;ma þ xÞ:

(26)

In the spine volume, the distributions of Cares above the
threshold q with AmpPF ¼ ma þ x (Fig. 3 J, blue in the left
panel) and with AmpPF ¼ ma – x (Fig. 3 J, left panel, red
line) had scðma5xÞ, the SD of Cares, which is larger than
DCa*, the gap of the mode of the distribution of Cares,
and these distributions widely overlapped each other.
Then, the averaged distribution of these two distributions
of Cares with AmpPF ¼ ma 5 x became the unimodal and in-
termediate distribution (Fig. 3 J, green dashed line in left
panel), and became almost the same as the distribution of
Cares above threshold q with AmpPF ¼ ma (Fig. 3 J, black
line in the left panel). Also, the distributions of Cares below
threshold q exhibited similar unimodal distribution. Thus,
the averaged distribution of these two distributions below
threshold q (Fig. 3 J, green dashed line in left panel) became
almost the same as the distribution of Cares below the
threshold q with AmpPF ¼ ma (Fig. 3 J, black line in left
panel). Therefore, in the spine volume, for the distributions
of Cares above and below the threshold q, the averaged dis-
tributions of the distributions of Cares with AmpPF ¼ ma 5 x
were the same as that with AmpPF ¼ ma, indicating that Eq.
21 is satisfied. This also means that any symmetrical distri-
bution of x other than the Gaussian distribution can give the
same result. In contrast, in the cell volume, the distributions
of Cares with AmpPF ¼ ma þ x (Fig. 3 J, red line in right
panel) and AmpPF ¼ ma � x (Fig. 3 J, blue line in right
panel) had the SDs that are smaller than DCa*, the gap of
the mode of the distribution of Cares, and did not overlap
each other. Then, the averaged distribution of these two dis-
tributions (Fig. 3 J, green dashed line in right panel) became
bimodal and did not conform to the distribution of Cares
with AmpPF ¼ ma (Fig. 3 J, black line in right panel), indi-
cating that Eq. 21 is not satisfied. Therefore, the symmetry
of the distribution of AmpPF and large sc, the SDs of the dis-
tribution of Cares, in comparison with DCa*, the gap of the
mode of the distribution of Cares, can provide conformation
to the averaged distribution of the two distributions of Cares
with AmpPF ¼ ma 5 x to the distribution with AmpPF ¼ ma.
Then, we proved this proposition. For this purpose, we
derived the upper bound of the range of x where Eq. 21 is
satisfied, and showed that this upper bound in the spine vol-
ume is larger than that in the cell volume.

We examined Eq. 21 as satisfied when sc, the SD of Cares,
is larger than DCa*; the gap of Ca*, the mode of the distri-
bution of Cares; with AmpPF ¼ ma þ x and AmpPF ¼ ma � x
(see Supporting Material). We approximately showed that,
if Ca* and Pþ linearly increase with the increase in AmpPF,
whenDCa*� sc, then Eq. 21 was satisfied. This means that
the necessary and sufficient condition for robustness is satis-
fied in the range where the intrinsic noise, sc, is larger than
the extrinsic noise, DCa*.

The range of the fluctuation of PF input satisfying the condi-
tions for robustness is larger in the spine volume than in the
cell volume

We next examined the range of the fluctuation of the PF
input satisfying the condition for robustness. In the spine
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volume in the range considered (150% AmpPF% 215), Ca*
and Pþ always linearly increase with the increase in AmpPF.
Thus, the range of AmpPF where the distribution of Cares re-
mains the same regardless of CVa in the spine volume was
determined by the range satisfying DCa*� sc. In the spine
volume, DCa*/sc � 1 when x was small and DCa*/sc
increased with the increase in x, and exceeded 1 at x ¼
110 (Fig. 4 A). In contrast, in the cell volume, DCa*/sc ex-
ceeded 1 even at x ¼ 2 (Fig. 4 B). We defined dmax as x that
givesDCa*/sc¼ 1. dmax relatively provides the upper bound
of x where DCa*/sc � 1. Thus, we used dmax as the index of
the range of x for robustness (Fig. 4 C). The larger dmax
means more robustness. dmax was highest at the spine vol-
ume and decreased with the increase in volume (Fig. 4 C),
indicating that the spine volume gives the highest robust-
ness. Because dmax in the spine volume was much larger
than that in the cell volume, the upper bound of x where
DCa�=sc � 1 in the spine volume is much larger than
that in the cell volume. Here, x denoted the relative
amplitude of the PF input as the displacement of AmpPF
from ma, the average of AmpPF, given by x ¼
Amp0PF ¼ AmpPF � ma, i.e., a larger x corresponds to a larger
CVa. Therefore, in the spine volume, in the range 150 <
AmpPF % 215, because DCa*/sc was smaller than 1 even
with a larger x, information transfer by Cares is robust
with a larger CVa. In contrast, in the cell volume, because
DCa*/sc was larger than 1 even with a small x, information
transfer by Cares is not robust, even with a small CVa.

Next, we confirmed that, when DCa*/sc is smaller than 1,
the distribution of Cares with AmpPF ¼ ma and the averaged
A B

C D

FIGURE 4 The ratio between extrinsic and intrinsic noise, DCa*/sc, de-

termines the range of robustness. (A and B) the relative amplitude of the PF

input, x, dependency ofDCa*/sc with ma ¼ 180 in the spine volume (A) and

in the cell volume (B) are provided. The robustness index dmax is defined as

x giving DCa*/sc ¼ 1. (C) The volume-dependency of dmax for ma ¼ 180 is

provided. (D) The relationship between DCa*/sc and the c2 distance be-

tween the averaged distribution of the distributions of Cares with

AmpPF ¼ ma 5 x and the distribution of Cares with AmpPF ¼ ma are pro-

vided. The red points, blue points, and gray dots indicate the value obtained

in the spine volume, the cell volume, and the intermediate volumes, respec-

tively. To see this figure in color, go online.
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distribution of Cares for AmpPF¼ ma5 x becomes the same.
We quantified the similarities between the two distributions
of Cares by the c2 distance. In the spine volume (Fig. 4 D,
red), most of the DCa*/sc were smaller than 1, and the c2

distance were also small, indicating that DCa*/sc is smaller
than 1 and the two distributions of Cares are quite similar in
the spine volume. In contrast, in the cell volume (Fig. 4 D,
blue), most of theDCa*/scwere larger than 1 and the c

2 dis-
tance were almost 1, indicating that DCa*/sc is larger
than 1, and the two distributions of Cares are quite different.
Therefore, whenDCa*, the gap of two distributions of Cares,
is smaller than sc, the SD of the distribution of Cares, then
the distribution of Cares does not change and becomes robust
against fluctuation of the PF input.

In summary, in the spine volume, sc, the SD of the
distribution of Cares, is larger than DCa*, the gap of the
mode of the distribution of Cares, which reflects the fluctu-
ation of AmpPF, indicating that the range of x satisfying
DCa* � sc is wider. This means that the distribution of
Cares with fluctuation of amplitude of the PF input conforms
to that without fluctuation of amplitude of the PF input.
Moreover, DCa* � sc indicates that the distribution of
Cares caused by extrinsic noise, DCa*, is much smaller
than that caused by intrinsic noise, sc. Hence, the informa-
tion transfer by Cares becomes robust against the fluctuation
of the amplitude of the PF input. In contrast, in the cell vol-
ume, the SD of the distribution of Cares without fluctuation
of the amplitude of the PF input is small, and the averaged
distribution of Cares with fluctuation of the amplitude of the
PF input does not conform to that without fluctuation of the
amplitude of the PF input. Moreover, DCa* > sc indicates
that the distribution gap of Cares caused by extrinsic noise,
DCa*, is larger than that caused by intrinsic noise, sc.
Hence, the information transfer by Cares is not robust
against fluctuation of amplitude of the PF input.
The mechanism of sensitivity

In the detailed stochastic model, the Ca2þ response was
more sensitive to lower numbers of PF inputs in the spine
volume than the cell volume (23). We tried to examine the
sensitivity in the simple stochastic model and defined the
‘‘sensitivity’’ as follows. For each volume, the PF input
was given by the Gaussian distribution with the fixed SD,
and the average amplitude of the PF input was varied (see
Materials and Methods). Amp* was defined as an index of
sensitivity for each volume, with the average amplitude,
ms, giving the maximum of mutual information. Smaller
Amp* indicates higher sensitivity to the lower amplitude
of the PF input.

In the spine volume, the mutual information exhibited the
bell-shaped response, where Amp* ¼ 100 gives the
maximum mutual information (Fig. 5 A, black line and
the white triangle; Fig. 5 B; see Fig. S6, A and F). With
the increase in volume, Amp* shifted to ~220 (Fig. 5 A,
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FIGURE 5 The mechanism of sensitivity. (A) ms, the average of the input

distribution of AmpPF, dependency of the mutual information is provided.

The mutual information is normalized by the value of that with ms ¼ 150.

The brighter color indicates the larger volume. The white and black trian-

gles denote Amp*, the amplitude of the PF input realizing the maximum

of the mutual information, in the spine volume and in the cell volume,

respectively. Amp* ¼ 100 in the spine volume and Amp* ¼ 235 in the

cell volume. The input distribution of AmpPF is utilized as the Gaussian dis-

tribution with STD¼ 40, SD. (B) The volume-dependency of the amplitude

of the PF input realizing the maximum of the mutual information, Amp* is

provided. (C and D) The AmpPF dependencies of DCa�STD, the dynamic

range of the distribution of Cares for Cares > q (green), and sc, the SD of

the distribution of Cares (blue). STD ¼ 40 was used. The white and black

triangles denote Amp* in the spine volume and in the cell volume, respec-

tively. To see this figure in color, go online.
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orange line and black triangle; Fig. 5 B; see Fig. S6, E and
J). This result indicates that the spine volume shows higher
sensitivity to the lower amplitude of the PF input than the
larger volume including the cell volume.

We considered the mechanism that the spine shows higher
sensitivity to the lower amplitude of the PF input. When the
SD of the PF input distribution is the same, the mutual infor-
mation depends onDCa�STD, the dynamic range of the output,
and sc, the SD of the output (Fig. S7). For example, when the
dynamic range of the output is the same, the smaller SD of
the output gives more mutual information. When the SD of
the output is the same, the broader dynamic range gives
more mutual information. For simplicity, the window width
of the input distribution of AmpPF was set as the finite range
defined as the average 5 SD of the input distribution of
AmpPF, i.e., ms 5 STD, and the dynamic range was denoted
as the gap of mode of the distribution of Cares between the
upper bound (AmpPF ¼ ms þ STD) and lower bound
(AmpPF ¼ ms – STD) of the input distribution of AmpPF,
i.e., DCa�STD ¼ Ca�ðms þ STDÞ � Ca�ðms � STDÞ.

First, we considered DCa�STD, the dynamic range of the
output. We defined jðVÞ for each volume of AmpPF as the
smallest amplitude of the PF input where the Cares of
some trials exceed q (see Fig. S8 A). In the spine volume,
Ca* linearly increased along AmpPF for AmpPF >jðVÞ
(Figs. S5 C and S8 A); hence, DCa�STD was largely variable
and independent of AmpPF (Fig. 5 C; see Fig. S8, B and E–
H). In contrast, in the cell volume, DCa�STD was bell-shaped
curve with the maximum at AmpPF ¼ 200 (Fig. 5 D; see
Fig. S8, C and U–X).

Next, we considered sc, the SD of Cares for Cares > q. In
the spine volume, sc gradually increased with the increase in
AmpPF for AmpPF >jð10�1Þx50 (Fig. 5 C, blue line). In
contrast, in the cell volume, sc became largest at
AmpPF ¼ ~150 and gradually decreased with the increase
in AmpPF (Fig. 5 D, blue line).

In the spine volume, DCa�STD was almost constant for
AmpPF > 60 and sc increased along AmpPF; therefore, the
mutual information became maximum at approximately
AmpPF ¼ 60 (see Fig. S8, E–H, black dashed line; also
see Fig. S6, A and F). In contrast, in the cell volume, the
mutual information became maximum at AmpPF ¼ 235,
which is greater than AmpPF ¼ 200, giving the maximum
of DCa�STD (Fig. 5, A and D; see Fig. S8, U–X, black dashed
line; also see Fig. S6, E and J). This is because, that despite
the higherDCa�STD, the scwas larger and the loss of informa-
tion became large. Decreasing sc resulted in increase of
mutual information.

Thus, the mutual information becomes maximum at
AmpPF ¼ 60 in the spine volume and at AmpPF ¼ 250 in
the cell volume, indicating the higher sensitivity to lower
amplitude of the PF input in the spine volume.
The mechanism of efficiency

We defined the efficiency as the mutual information per PF
input. The average of the PF input was given by ms � V,
whose dimension is equal to number of molecules. Effi-
ciency means how much information can be transferred by
a unitary PF input. Higher mutual information per PF input
indicates higher efficiency. The mutual information mono-
tonically increased with the increase in volume, and the
rate of the increase of the mutual information decreased
with the increase in volume (Fig. 6 A, black); therefore,
the mutual information per PF input monotonically
decreased (Fig. 6 B, black line), indicating that the mutual
information per PF input, i.e., the efficiency, was larger in
the spine volume and decreased as the volume increased
to the cell volume (Fig. 6 B, black line).

Next, we examined the mechanism of the volume-depen-
dency of the mutual information. The slope of the mutual in-
formation decreased with the increase in volume and
became close to a logarithmic increase in the larger volume
(Fig. 6 A, black). Then, we assumed that the volume-depen-
dent increase of the mutual information is approximated
with constants, a, b, and c (see Materials and Methods), as
given by the following:

IðCares;DtÞxa log2ðbþ c � VÞ: (27)
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FIGURE 6 The mechanism of efficiency. (A) The volume-dependency of

the mutual information between AmpPF and Cares is provided. (B) The vol-

ume-dependency of the mutual information per PF input, i.e., the efficiency

is shown. The total mutual information is shown in black; the fitted curve of

the total mutual information with the a log2 (bþ c�V) with a¼ 0.3924651,

b ¼ 1.049141, and c ¼ 1.330285, is shown in red; the channel capacity of

the Gaussian channel, 1/2 log2 (1 þ cV) with c ¼ 0.5128671, is shown in

blue (see Materials and Methods). We assume the input distribution of

AmpPF as the Gaussian distribution with ms¼ 150, the average of the ampli-

tude of the distribution of the PF input, and STD ¼ 40 as the SD of the dis-

tribution of the PF input. To see this figure in color, go online.

Fujii et al.
This function fits well with the volume-dependent mutual
information (Fig. 6 A, red line) and the mutual information
per PF input (Fig. 6 B, red line), indicating that this function
captures the features of the volume-dependency of the
mutual information in the spine volume and the larger
volume.

We also considered the Gaussian channel, which is a sim-
ple linear transmission system. For input X, when the system
noise Z obeys the Gaussian distribution, the output Y ¼ X þ
Z also obeys the Gaussian distribution. In this case, under
the constraint E[X2] < F, the mutual information (channel
capacity) between the input, X, and the output, Y, is simply
described as follows:

IðY;XÞ ¼ 1

2
log2

	
1þ F

s2
Z



(28)

where F denotes the power constraint of input and sZ de-
notes the SD of the noise intensity. Here, F is regarded as
a constant value because the input distribution for calcu-
lating IðCares;DtÞ in Eq. 28 (Fig. 6, blue line) is assumed
to be unchanged. It has been shown that the SD of reactions
is proportional to the power of the number of molecules, i.e.,
volume, so that the fluctuation of the number of molecules
can be approximated as s02ZfV (29). Then, the fluctuation
of concentration of the molecules can be approximated by
s2Z ¼ ðs0Z=VÞ2fV�1. Therefore, the mutual information
for the Gaussian channel is given by the following:

IðCares;DtÞx1

2
log2ð1þ c � VÞ (29)

(Fig. 6, A and B, blue lines). Equations 27 and 29 indicate
the same volume-dependency of the mutual information.
However, in the smaller volume including the spine volume,
the mutual information per PF input of the Ca2þ response
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was larger than that of the Gaussian channel (Fig. 6 B).
This difference in the volume-dependency is likely to be
caused by the different values of the parameters, which
were a¼ 0.3924651 and b¼ 1.049141 in the fitted function,
whereas 1/2 and 1 in the Gaussian channel, respectively.
There were other differences in both systems; the noise of
the system in this study is not exactly a Gaussian noise,
and the input-output relation is nonlinear. Despite such dif-
ferences, both systems exhibited similar volume-depen-
dency of the mutual information, suggesting that the more
efficient information transfer in the smaller volume is a
universal property in the general information transduction
systems.
DISCUSSION

In this study, we constructed the simple stochastic model of
the Ca2þ increase in the spine of PF-cerebellar Purkinje cell
synapse. The simple stochastic model reproduces consistent
properties of information transfer with the detailed stochas-
tic model, indicating that these properties are not lost by the
simplification of the model. We clarified the mechanisms of
robustness, sensitivity, and efficiency, and we showed that
these properties become prominent in the spine volume
(Fig. 7). The robustness appears in condition where the
SD of the distribution of the Ca2þ response, intrinsic noise,
is larger than the fluctuation of the distribution of the Ca2þ

response caused by the PF input fluctuation, extrinsic noise.
Higher sensitivity to a lower amplitude of the PF input re-

quires the wider dynamic range of the Ca2þ response and the
smaller SD of the distribution of the Ca2þ response in the
range of the lower amplitude of the PF input. In the spine
volume, because of the stochasticity in reactions, even the
weak PF input can induce a large Ca2þ increase, resulting
in a wider dynamic range of the Ca2þ response for the lower
amplitude of the PF input in the spine volume than in the cell
volume. Moreover, the SD of the distribution of the Ca2þ

response in the range of the lower amplitude of the PF input
was small. In the larger volume than the spine volume, the
sensitivity abruptly decreased because stronger PF input
was required for compensating the large SD of the distribu-
tion of the Ca2þ response.

The highest efficiency in the spine volume is derived from
the nature of the volume-dependency of mutual information;
the rate of increase of the mutual information monotonically
decreased with the increase in volume. Then, the mutual in-
formation per PF input, efficiency, becomes larger in the
smaller volume. This result indicates that the spine utilizes
the limit of the smallness to acquire the highest efficiency.

Robustness appears when intrinsic noise is larger than
extrinsic noise. Sensitivity appears because of the stochas-
ticity in the Ca2þ increase. Efficiency appears because of
the nature of the volume-dependency of information trans-
fer. These characteristics and the underlying mechanisms
emerge from the effect of the small volume of the spine,



FIGURE 7 Summarizing figure. The small-volume effect enables the spine to have robust, sensitive, and efficient information transfer. Robustness appears

when intrinsic noise is larger than extrinsic noise. Sensitivity appears because of the stochasticity in Ca2þ increase. Note that, as index for the sensitivity in

this figure, the inverse of Amp* (Fig. 5 B) is used. Efficiency appears because of the nature of the volume-dependency of information transfer. To see this

figure in color, go online.

Information Transfer in Small Volume
which we denote ‘‘the small-volume effect.’’ The small-vol-
ume effect enables the spine to have robust, sensitive, and
efficient information transfer. The small-volume effect
may be seen not only in spines but also in other small intra-
cellular organelles; it comprises the general strategy for bio-
logical information transfer. The small-volume effect is one
of the reasons why the spine has to be so small. The small-
volume effect is also equivalent to the effect of small
numbers of molecules, with the small-number effect sug-
gesting that the robustness, sensitivity, and efficiency can
also be seen under the conditions where numbers of mole-
cules are limited even in a larger volume. Naturally, the
reasons why the spine is so small are not only the above-
mentioned small-volume effect, but also to obtain the
extremely small diffusion space, to increase the surface
area in limited volume, to compartmentalize the biochem-
ical reaction field, etc. However, regarding the informatic
advantage, the smallness of the spine provides the robust,
sensitive, and efficient information transfer.

In addition, the information transfer in the spine volume
is much less than 1 bit, indicating that the information
transfer in a spine is insufficient to reliably determine
even a binary decision. Despite the low reliability of a single
spine, summation of the Ca2þ response in many spines may
overcome the amplitude of the Ca2þ in a cell in terms of the
reliability of information transfer. Thus, the smallness and
numerosity of spines may be a unique strategy to realize
robust, sensitive, and efficient information transfer in neu-
rons. Furthermore, the information transfer by numerous
spines can be reliable to realize the motor control and cere-
bellar learning through the long-term depression (LTD)
(13,14).

It has been known that in most excitatory synapses, the
Ca2þ increase in the spine, evoked by glutamate released
from the presynaptic fiber, is mainly mediated by
N-methyl-D-aspartate receptors (NMDAR), another gluta-
mate-gated ion channel that, in contrast to the receptors of
the PF-Purkinje cell synapse, such as AMPA and metabo-
tropic glutamate receptors (mGluR1), are endowed with a
high Ca2þ permeability (30,31). In the future, we will
analyze whether the Ca2þ increase mediated by NMDAR
in the spine also shows robustness, sensitivity, and efficiency
and study whether such properties are receptor-type-specific
or are conserved among different varieties of spine regard-
less of the type of the receptors.

In general, most of artificial devices for information trans-
fer have physical limitations in design. For example, in
design of electrical devices, the limitations of space and
Biophysical Journal 112, 813–826, February 28, 2017 825
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power consumption critically determine the upper bound of
performance. The strategy for the information transfer in the
spine looks to be opposite to those in these devices, how-
ever, and the small-volume effect may provide the new
design principle of devices for information transfer.
SUPPORTING MATERIAL

Supporting Materials and Methods, eight figures, and two tables are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)

30037-1.
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Supporting Material Figures 

 
Figure S1. The ∆𝒕 -dependency of the distribution of 𝑪𝒂𝒓𝒆𝒔 . (A–O) The volume and CV of the 

amplitude of PF input are indicated. In the spine volume, the distribution of 𝐶𝑎𝑟𝑒𝑠 is divided into two 

distributions by the threshold 𝜃 =0.157 defined as the local minimum of the marginal distribution of 

𝐶𝑎𝑟𝑒𝑠  for ∆𝑡  s.t. 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠) = ∫  𝑝𝑖𝑛(𝜏)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜏)
Δ𝑡

𝑑𝜏 . (P–AD) The cross-sections of (A–O) with 

∆𝑡 = 0. This distribution of 𝐶𝑎𝑟𝑒𝑠 in the spine volume remained the same regardless of the 𝐶𝑉𝑎 value, 

whereas, that in the cell volume largely varied. 
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Figure S2. The efficient, robust and sensitive features of Ca2+ increase using the detailed 

stochastic model (23). (A) The volume dependency of the mutual information between ∆𝑡, the PF- and 

CF-timing, and 𝐶𝑎𝑟𝑒𝑠 , Ca2+ response. Total mutual information is indicated in black; that of the 

probability component is indicated in red; that of the amplitude component is indicated in blue. (B) The 

volume dependency of the mutual information per volume. (C) The CV of the amplitude of PF input 

dependency of the mutual information. (D) The number of PF inputs dependency of the mutual 

information. In the detailed stochastic model, the spine volume is 10-1 µm3 and the cell volume is 5 ×
 103 µm3 (23) 
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Figure S3. The 𝑨𝒎𝒑𝑷𝑭-dependency of the distribution of 𝑪𝒂𝒓𝒆𝒔 in the indicated volumes. (A, C, 

E, G, I) Distribution of 𝐶𝑎𝑟𝑒𝑠. (B, D, F, H, J) The cross-section of distribution of 𝐶𝑎𝑟𝑒𝑠 at the indicated 

𝐴𝑚𝑝𝑃𝐹. 𝜃(=0.157) indicates the threshold dividing the distribution into the ranges with large 𝐶𝑎𝑟𝑒𝑠 

and with small 𝐶𝑎𝑟𝑒𝑠 (see Fig. S1). (K) The 𝐴𝑚𝑝𝑃𝐹 providing 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐴𝑚𝑝𝑃𝐹), the distribution of 

𝐶𝑎𝑟𝑒𝑠 with PF input alone, closest to 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|∆𝑡), the distribution of 𝐶𝑎𝑟𝑒𝑠 with PF and CF inputs 

with various ∆𝑡. 
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Figure S4. Distributions of 𝑪𝒂𝒓𝒆𝒔 against 𝑪𝑽𝒂 with the indicated volumes and 𝝁𝒂, the average of 

𝑨𝒎𝒑𝑷𝑭. 
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Figure S5. The 𝑨𝒎𝒑𝑷𝑭  dependency of 𝝈𝒄 , 𝑪𝒂∗  and 𝑷+ . (A, B) 𝜎𝑐(𝜇𝑎 + 𝑥)  can be regarded 

as 𝜎𝑐(𝜇𝑎) up to the upper bound of the range of 𝑥 satisfying the Eq. 21 in the main text. (A) Spine 

volume. (B) Cell volume. 𝜎𝑐(𝜇𝑎 + 𝑥)/𝜎𝑐(𝜇𝑎) were almost within the range of 0.8 to 1.2, assuming that 

𝜎𝑐(𝜇𝑎 + 𝑥) is approximated by 𝜎𝑐(𝜇𝑎). The upper bound of the range of 𝑥 satisfying Eq. 21 in the 

main text in the spine and cell volumes are determined by 𝛿max (see Fig. 4A, B). (C) The 𝐴𝑚𝑝𝑃𝐹-

dependency of 𝐶𝑎∗, the mode of the distribution of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃. (D) The 𝐴𝑚𝑝𝑃𝐹-dependency 

of 𝑃+, the probability of 𝐶𝑎𝑟𝑒𝑠 > 𝜃.  
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Figure S6. Mechanism of the sensitivity. (A–E) 𝜇𝑠 , the average of the input distribution of 

𝐴𝑚𝑝𝑃𝐹, dependency of the mutual information normalized by the value of that with 𝐴𝑚𝑝𝑃𝐹 = 150. 

(F–J) The 𝐴𝑚𝑝𝑃𝐹 dependencies of 𝛥𝐶𝑎𝑆𝑇𝐷
∗ , the dynamic range of the distribution of 𝐶𝑎𝑟𝑒𝑠, (green) 

and 𝜎𝑐, the standard deviation of 𝐶𝑎𝑟𝑒𝑠, (blue) for 𝐶𝑎𝑟𝑒𝑠 > 𝜃. The volume is indicated. 
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Figure S7. The mutual information depends on both ∆𝑪𝒂𝑺𝑻𝑫

∗ , the dynamic range, and 𝝈𝒄, the 

standard deviation of the distribution of the output. In general, if the input distribution is the same, 

then the wider ∆𝐶𝑎𝑆𝑇𝐷
∗ , the dynamic range of the output, gives more mutual information when 𝜎𝑐, the 

standard deviation of the output, is the same (compare the left and right panels). The smaller 𝜎𝑐 gives 

more mutual information when ∆𝐶𝑎𝑆𝑇𝐷
∗  is the same (compare the top and bottom panels). 
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Figure S8. ∆𝑪𝒂𝑺𝑻𝑫

∗ , the dynamic range, and 𝝈𝒄, the standard deviation of the distribution of the 

output. (A) The 𝐴𝑚𝑝𝑃𝐹 dependency of 𝐶𝑎∗, the mode of the distribution of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃. We 

defined 𝜓(𝑉) for each volume of the 𝐴𝑚𝑝𝑃𝐹 when the 𝐶𝑎∗ began to increase. In the spine volume, 

𝜓(10-1) was approximately 50, whereas, 𝜓(103) was approximately 150 in the cell volume. (B, C) The 

schematic representation of the relationship between 𝐴𝑚𝑝𝑃𝐹 and 𝐶𝑎∗ in the spine volume (B) and in 

the cell volume (C). (D) The 𝑆𝑇𝐷  of 𝐴𝑚𝑝𝑃𝐹  dependency 𝐴𝑚𝑝∗ , 𝐴𝑚𝑝𝑃𝐹  providing the maximum 

mutual information. (E–X) The 𝐴𝑚𝑝𝑃𝐹 dependencies of ∆𝐶𝑎𝑆𝑇𝐷
∗ , the dynamic range of the distribution 

of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, (green) and 𝜎𝑐, the standard deviation of the distribution of 𝐶𝑎𝑟𝑒𝑠 (blue). The 

volume and 𝑆𝑇𝐷 are indicated. 
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Supporting Material Tables 

Table S1. Parameters of the simple stochastic model in this study. 

Parameters Values 

𝜏𝑃𝐹 [msec] 120 

𝜏𝐶𝐹 [msec] 10 

𝜏𝐹𝐵 [msec] 80 

𝐴𝑚𝑝𝐺𝐼𝑃3𝑅
 1291.6667 

𝑘 [1/μm3] 626.3027 

𝐾 [1/μm3] 626.3027 

𝑛𝐼𝑃3𝑅 2.7 

𝐶𝑏 [1/μm3] 25.052108 

𝑉 [μm3] 10-1–103 
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Table S2. Parameters that are different between the cases with various PF- and CF-timing and 

with single PF input alone.  

Parameters 
Values 

PF and CF input (Figs. 1 and 2) PF input alone (Figs. 3, 4, 5, and 6) 

𝐴𝑚𝑝𝐶𝐹 [1/μm3] 361.328 None 

𝐴𝑚𝑝𝑃𝐹 [1/μm3] 30.11×5 times Variable×1 time 

𝑡𝐶𝐹 [msec] variable None 

𝑡𝑃𝐹 [msec] {0, 10, 20, 30,40} 0 

CV of PF input Variable 0 (in simulation) 

Note that the simple deterministic model shows the same results as those of the detailed deterministic 

model; however, with reduction of the model, the PF and CF inputs were non-dimensional values. With 

the loss of the dimension of the number of molecules, we could not perform the stochastic simulation. 

Therefore, we re-determined the numbers of PF and CF inputs as follows: The PF input becomes 

smaller than 1 in the spine volume (10-1 μm3), but the PF input needs to be the positive integer. We 

increased the PF input 6-fold of the simple deterministic model so that the amount of IP3, the mediator 

of PF input, is the same as that of the detailed stochastic model, resulting in the amplitude of a PF input 

in the spine volume of 3 (𝐴𝑚𝑝𝑃𝐹 × 𝑉 =  30.11 ×  10-1 =  3.011 ≃  3). We reduced the reaction rate 

constant of the Ca2+ release by binding IP3 and IP3R to one sixth to compensate for 𝐶𝑎𝐼𝑃3
. The CF input 

increased 6-fold so that the amount of Ca2+ via the CF input in the simple stochastic model became the 

same as that in the detailed stochastic model. 
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Supporting Material Text 

Derivation: The necessary and sufficient condition for robustness is satisfied when 𝚫𝑪𝒂∗ ≪ 𝝈𝒄 

We tried to examine the upper bound of the range of 𝑥 where Eq. 21 in the main text is satisfied and 

showed that the upper bound of the range of 𝑥 in the spine volume is larger than that in the cell volume. 

Hereafter, each distribution of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 and 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃 is approximated by the Gaussian 

distribution. We examined Eq. 21 in the main text as satisfied when 𝜎𝑐, the standard deviation of 𝐶𝑎𝑟𝑒𝑠, 

is larger than ∆𝐶𝑎∗, the gap of the gap of the mode of the distribution of 𝐶𝑎𝑟𝑒𝑠, with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 + 𝑥 

and 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 − 𝑥. Here, we considered the small gap of 𝐴𝑚𝑝𝑃𝐹
′ , therefore, for simplicity, 𝜎𝑐(𝜇𝑎 +

𝑥)  and 𝜎𝑐(𝜇𝑎 − 𝑥) , the standard deviations of 𝐶𝑎𝑟𝑒𝑠  with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 + 𝑥  and 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 − 𝑥 , 

were regarded as 𝜎𝑐(𝜇𝑎), the standard deviation of 𝐶𝑎𝑟𝑒𝑠 with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎, up to the upper bound of 

the range of 𝑥 satisfying Eq. 21 in the main text (see Fig. S5A, B in the Supporting Material). 

First, we considered 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 > 𝜃, 𝜇𝑎 + 𝑥), the distribution of 𝐶𝑎𝑟𝑒𝑠, for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 in the 

spine and cell volumes and we approximated the distribution of 𝐶𝑎𝑟𝑒𝑠 for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 by the Gaussian 

distribution, given by 

𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 > 𝜃, 𝜇𝑎 + 𝑥) ≃
1

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎 + 𝑥))

2

2𝜎𝑐
2

]. 

(S1)  

𝐶𝑎∗ indicates the mode of the distribution of 𝐶𝑎𝑟𝑒𝑠, given by 

𝐶𝑎∗(𝑎) = arg max
𝐶𝑎𝑟𝑒𝑠

𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 > 𝜃, 𝑎). 

(S2)  

As mentioned, we assumed 𝜎𝑐 ≡ 𝜎𝑐(𝜇𝑎 ± 𝑥)  =  𝜎𝑐(𝜇𝑎). 

Then, for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, we substituted Eqs. 26 in the main text and S1 in right side of Eq. 25 in the 

main text, and obtained  
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1

2
[𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 + 𝑥) + 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 − 𝑥)] 

≃
1

2
{
𝑃+(𝜇𝑎 + 𝑥)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎 + 𝑥))

2

2𝜎𝑐
2

]

+
𝑃+(𝜇𝑎 − 𝑥)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎 − 𝑥))

2

2𝜎𝑐
2

]}.  

(S3)  

Here, we considered 𝐶𝑎∗. 𝐶𝑎∗ for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 linearly increased from approximately 𝐴𝑚𝑝𝑃𝐹 = 50 in 

the spine volume (Fig. 4A, black line). In the spine volume, 𝐶𝑎∗ for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 linearly increased with 

the increase in 𝐴𝑚𝑝𝑃𝐹 for 150 ≤  𝐴𝑚𝑝𝑃𝐹 ≤ 215, which corresponds to the range of the PF-CF input 

timing. Thus, regarding 𝐶𝑎∗ for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, we could assume 

𝐶𝑎∗(𝜇𝑎 ± 𝑥) ≃ 𝐶𝑎∗(𝜇𝑎) ± ∆𝐶𝑎∗(𝑥).  
(S4)  

Equation S4 indicates that the difference of Ca∗ with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 + 𝑥 and with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 is the 

same as that with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎  and with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 − 𝑥 , where ∆𝐶𝑎∗  indicates the difference of 

𝐶𝑎∗ with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 ± 𝑥 and with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎. In contrast to the spine volume, in the cell volume, 

𝐶𝑎∗  abruptly increased at 𝐴𝑚𝑝𝑃𝐹 =  150, and gradually increased with the increase in 𝐴𝑚𝑝𝑃𝐹  (Fig. 

S5C in the Supporting Material, yellow line). Therefore, in the cell volume, Eq. S4 is not satisfied at 

𝐴𝑚𝑝𝑃𝐹 = 150, but it is almost satisfied for 150 < 𝐴𝑚𝑝𝑃𝐹 ≤ 215. Then, we substituted Eq. S4 in the 

Eq. S3, and obtained 
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≃
1

2
{
𝑃+(𝜇𝑎 + 𝑥)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎) − 𝛥𝐶𝑎∗(𝑥))

2

2𝜎𝑐
2

]

+
𝑃+(𝜇𝑎 − 𝑥)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎) + 𝛥𝐶𝑎∗(𝑥))

2

2𝜎𝑐
2

]} 

=
1

2√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))

2

2𝜎𝑐
2

] exp [−
𝛥𝐶𝑎∗(𝑥)2

2𝜎𝑐
2

] 

× {𝑃+(𝜇𝑎 + 𝑥)exp [
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))𝛥𝐶𝑎∗(𝑥)

𝜎𝑐
2

]

+ 𝑃+(𝜇𝑎 − 𝑥) exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))𝛥𝐶𝑎∗(𝑥)

𝜎𝑐
2

]}.  

(S5)  

Here, we considered the range of 𝐶𝑎𝑟𝑒𝑠  where |𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝑥)| ≤ 3𝜎𝑐(𝑥)  is almost satisfied. 

Hence, if ∆𝐶𝑎∗(𝑥) ≪ 𝜎𝑐(𝑥), then, we could approximate 

≃
1

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))

2

2𝜎𝑐
2

] {
𝑃+(𝜇𝑎 + 𝑥) + 𝑃+(𝜇𝑎 − 𝑥)

2
}.  

(S6)  

Note that, the upper bound of the range of 𝑥 where ∆𝐶𝑎∗ ≪ 𝜎𝑐 determines the upper bound of the range 

where Eq. 21 in the main text is satisfied. This means that the larger upper bound of the range of 𝑥 

where ∆𝐶𝑎∗ ≪ 𝜎𝑐 corresponds to the maximum of 𝐶𝑉𝑎 with which the distribution of 𝐶𝑎𝑟𝑒𝑠 does not 

change. 

Here, we considered the probability that 𝐶𝑎𝑟𝑒𝑠  exceeds the threshold 𝜃, 𝑃+. In the spine volume, 𝑃+ 

gradually increased from 𝐴𝑚𝑝𝑃𝐹 = 50 and linearly increased for 100 ≤ 𝐴𝑚𝑝𝑃𝐹 ≤ 250 (Fig. S5D in 

the Supporting Material, black line). Therefore, in the spine volume, 𝑃+ linearly increased with the 

increase in 𝐴𝑚𝑝𝑃𝐹 for 150 ≤ 𝐴𝑚𝑝𝑃𝐹 ≤ 215, which corresponds to the range of the PF-CF input timing. 

Thus, regarding 𝑃+, we could assume 

1

2
[𝑃+(𝜇𝑎 + 𝑥) + 𝑃+(𝜇𝑎 − 𝑥)] = 𝑃+(𝜇𝑎).  

(S7)  
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This equation indicates that the average of the probabilities that 𝐶𝑎𝑟𝑒𝑠 exceeds the threshold 𝜃 with 

𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 + 𝑥 and 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 − 𝑥 is the same as the probability that 𝐶𝑎𝑟𝑒𝑠 exceeds the threshold 

𝜃  with 𝐴𝑚𝑝𝑃𝐹 = 𝜇𝑎 . In the cell volume, the distribution of 𝐶𝑎𝑟𝑒𝑠  was unimodal, and 𝜃 = −∞  was 

assumed; therefore, 𝑃+ was always 1 and Eq. S7 was always satisfied. Therefore, we substituted Eq. 

S7 in the Eq. S6 and obtained 

1

2
[𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 + 𝑥) + 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 − 𝑥)] ≃

𝑃+(𝜇𝑎)

√2𝜋𝜎𝑐
2

exp [−
(𝐶𝑎𝑟𝑒𝑠 − 𝐶𝑎∗(𝜇𝑎))

2

2𝜎𝑐
2

]

= 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎) 

(S8)  

for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, i.e., Eq. 21 in the main text for 𝐶𝑎𝑟𝑒𝑠 > 𝜃 is satisfied. 

However, for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃 , because 𝐶𝑎∗  for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃  was almost constant, the distribution 𝐶𝑎𝑟𝑒𝑠 

was mainly characterized only by 𝑃− of the distribution of 𝐶𝑎𝑟𝑒𝑠, indicating 

𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎) = 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎 ± 𝑥). 

(S9)  

Then, using Eq. 21 in the main text for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, similar to the case for 𝐶𝑎𝑟𝑒𝑠 > 𝜃, we obtained 

1

2
[𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 + 𝑥) + 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎 − 𝑥)] 

≃
1

2
[𝑃−(𝜇𝑎 + 𝑥)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎 + 𝑥)

+ 𝑃−(𝜇𝑎 − 𝑥)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎 − 𝑥)] 

=
1

2
[𝑃−(𝜇𝑎 + 𝑥)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎) + 𝑃−(𝜇𝑎 − 𝑥)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎)] 

≃
1

2
[𝑃−(𝜇𝑎 + 𝑥) + 𝑃−(𝜇𝑎 − 𝑥)]𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎) 

= 𝑃−(𝜇𝑎)𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, 𝜇𝑎) = 𝑝𝑐(𝐶𝑎𝑟𝑒𝑠|𝜇𝑎) 

 

(S10)  

for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃, i.e., Eq. 21 in the main text for 𝐶𝑎𝑟𝑒𝑠 ≤ 𝜃 is also satisfied. Therefore, from Eqs. S8 and 

S10, we derived Eq. 21 in the main text. Thus, we approximately showed that if 𝐶𝑎∗ and 𝑃+ linearly 
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increase with the increase in 𝐴𝑚𝑝𝑃𝐹 and ∆𝐶𝑎∗ ≪ 𝜎𝑐, then Eq. 21 in the main text was satisfied. This 

means that the necessary and sufficient condition for robustness is satisfied in the range where the 

intrinsic noise, 𝜎𝑐, is larger than the extrinsic noise, ∆𝐶𝑎∗. 
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