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1 Methods

Simulations of SMT trajectories with two states

All simulated SMT trajectories used in this work were generated by the
software provided in vbSPT using a rod-shaped cell like geometry (unless
stated specifically, cell radius = 500 nm and cell length = 2.5 µm) and a
single molecule localization error of 20nm (1). The diffusion coefficients de-
fined in this work take into account this localization error with a time step
of 5 ms. The length of individual trajectories follows an exponential dis-
tribution with a mean value of 6 steps (each step is 5 ms). The effect of
confinement is reflected in the simulation through reflective boundaries at
the cell membrane. In the two state model, we assume that State 1 and 2
are defined by two diffusion coefficients D1 and D2, and the transition prob-
abilities between them are P12 and P21, respectively. The reaction scheme
for the maximum likelihood analysis is:

D1
P12⇀↽
P21

D2. (1)

Parameters used in each simulated system in this paper are listed in each
corresponding figure.

Maximal Likelihood method to identify parameters

We first convert each SMT trajectory to a SPICER trajectory using a fixed
R-value, as defined in Figure 1. The R-value defines the confinement zone
(red), and is the distance from the membrane boundary of the cell to the
edge of the midcell region where the molecule diffuses freely and does not
experience confinement (green). We then take all the converted trajectories
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and scan the parameter space of the diffusion coefficients D1, D2 and tran-
sition probabilities P12, P21 to obtain the best fit parameters for the system
by maximizing the likelihood using a Markov Chain Monte Carlo (MCMC)
approach with a preset number of search steps (2). The MCMC approach
begins by selecting a random set of parameters D1, D2, P12 and P21, and
calculates the corresponding summed log likelihood value from all trajecto-
ries. A detailed description of the calculation can be found in the section
Calculating the Likelihood of Multiple State Trajectories. The process is
then iterated by systematically adjusting one of the parameters, chosen at
random, by a small amount and then comparing the log likelihood at the
new parameter value to the previous log likelihood. If the log likelihood is
greater at the new value, the algorithm stays at the new position in parame-
ter space. If the log likelihood is less than the old value, the algorithm takes
the difference of the log likelihoods, and two outcomes can happen: 1. If the
difference is less than the log of a uniform random number it accepts the
new position 2. If the difference is more than the log of a uniform random
number, the algorithm stays at the old position. The process repeats by ad-
justing a new randomly chosen parameter until it reaches a preset number
of steps. In all analyses used in this work the number of steps was set at
a number large enough so that all the parameters converge well before the
end of step numbers.

The stochasticity in the parameter search allows the algorithm to fluctu-
ate around parameters, defining a degree of uncertainty and avoiding local
minimums in the parameter search (2). (An example of a parameter scan
on a system is shown in Figure S2.) We used the log of the likelihood and
summed up the log likelihood of each of the individual trajectories to in-
corporate the information from multiple trajectories, see Das et al. for the
specific algorithms used in this work (2). The parameters that give the max-
imum log likelihood are identified as the best-suited parameters for the sys-
tem. The percent error in this work is defined as |Xcal−Xtrue|/Xtrue×100.

Single molecule tracking data collection and analysis

Single molecule tracking was performed on live MG1655 E .coli cells using
a photoactivatable fluorescent protein PAmCherry labeled RNA polymerase
(RNAP). The PAmCherry gene was C-terminally fused to the rpoC gene,
which encodes for the β’ subunit of RNAP. This fusion gene replaces the
endogenous copy in the chromosome, making it the sole source of β’ subunit
in the cell. Control experiments were performed to ensure that the fusion
protein was not subject to proteolytic cleavage, as had been shown previously
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(3), and that the cells grew otherwise normally as compared to wild-type
cells, indicating the functionality of the RNAP fusion (4, 5).

The RNAP fusion strain was inoculated from a freshly streaked LB plate
into 2 mL of minimal M9 media and grown overnight at room temperature,
shaking at 250 rpm. After 16 hours of growth, cells were diluted 1:200 into
fresh minimal M9 and were shaken at room temperature until they were in
mid-log phase growth (OD600 of ∼0.4). Cells were harvested by taking 1 mL
of the cells and spinning them down at 8 rcf for two minutes. Next, 900 µL
of the supernatant was removed from the tube and cells were resuspended
in the remaining 100 µL of media, to obtain an OD600 of ∼4. A small
amount of these dense cells, approximately 0.3 to 0.5 µL, was pipetted onto
a freshly-prepared 3 % agarose gel pad. Cells were immobilized onto the
gel pad by letting the cells dry in air for two minutes. After drying, the gel
pad was covered with a clean coverslip to assemble the Bioptechs imaging
chamber (Bioptechs Inc.).

Once immobilized on the agarose gel pad, we stochastically activated
RNAP-PAmCherry molecules using 0.1 mW of 405 nm light, which converts
the PAmCherry molecule from a dark state to a red-emitting state, used 50
mW of 568 nm light to excite individual RNAP-PAmCherry molecules and
tracked their cellular positions at a frame rate of approximately 150 Hz (5
ms exposure, 6.74 ms per frame). At this imaging speed, we were able to
capture RNAP-PAmCherry molecules up to a diffusion coefficient of 3 µm2/s
with accuracy in the cellular position of the molecule of approximately 30
nm. Cellular positions and lengths were determined through the software
U-Track (6) and screened based on their intensities and position within the
field of view. Trajectories were re-cut into multiple subtrajectories consisting
of only consecutive frames of molecular localizations (gaps in localizations
are due to the inherent blinking properties of all fluorescent proteins). These
subtrajectories are used in the analyses detailed below.

2 Applying SPICER to 2d tracking data.

An example of a 2d SMT trajectory modified by SPICER is shown in Figure
S1, with the confinement zone shown in red and the freely diffusing region
in green. Intuitively, the operational principle of SPICER is still justified
for 2d tracking data as displacements in the center of the cell (green) will
have a higher probability to belong to true localizations outside the confined
R-region. This is because a rod-shaped bacterial cell is isotropic along the
short axis of the cell. By having a large number of trajectories sampling all
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Figure S1: An example 2d SMT trajectory of a molecule in a bacterial
cell. The purple circles are localizations inside the confinement-free region
(green), and displacements calculated using these localizations as initial po-
sitions utilize their full 2d coordinates. Yellow circles are localizations inside
the R-region and experience confinement (red). Displacements calculated
using these localizations as initial positions only utilize coordinates along
the x (long) axis of the cell. Both purple and yellow localizations are 2d
projections of molecule positions in 3d, and hence it is possible that a local-
ization that appears to be outside theR-region is actually inside the R-region
and experiences confinement (yellow hollow circle), but its full coordinates
are used.

possible positions, localizations in the periphery and center of the cell will
still have high probabilities to be correctly identified as inside or outside
of the R-region. The use of SPICER on 2d tracking data is confirmed by
applying SPICER to a variety of different systems of 2d tracking data; these
results are illustrated in Figure S3, S5 and S6.

It is important to note that while applicable to 2d SMT, the use of
SPICER on 2d tracking data is at a disadvantage when compared to 3d
tracking, due to the lack of information along the third dimension. The
uncertainty in the third dimension creates a chance that a small percentage
of the displacements selected by SPICER as having no confinement will
possess some confinement error, as indicated by the circled spot in Figure
S1. Hence, the application of SPICER to 2d data results in a less significant
improvement in the calculation of the different parameters when compared
to the 3d tracking data.
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3 Varying dimensions within the trajectory:

To illustrate that d can be varied throughout a trajectory, we assume that a
molecule has a trajectory w of N displacements, and spends v displacements
within the R region and k displacements outside of the R region, with v+k =
N . In the simplest scenario where the molecule exists only in one state, the
likelihood of the molecule having a D value given the trajectory is:

L(D|w,R) =
1

((4πDτ)1/2)v
e
∑v
i −

∆x2
i

4Dτ × 1

((4πDτ)2/2)k
e
∑k
j −

∆x2
j+∆y2

j
4Dτ (2)

The log of the likelihood can be expressed as:

l(D|w,R) = −(k +
v

2
) log(D4πτ)−

v∑
i

∆x2i
4Dτ

−
k∑
j

∆x2j + ∆y2j
4Dτ

(3)

Simplifying by substituting with v = N-k results in:

l(D|w,R) = −(
k +N

2
) log(D4πτ)−

N∑
i

∆x2i
4Dτ

−
k∑
j

∆y2j
4Dτ

(4)

Maximize the log of the likelihood L with respect to D by taking the
derivative results in:

D =

∑N
i ∆x2i +

∑k
j ∆y2j

2τ(N + k)
(5)

Which can be further converted to the mean squared displacement of
each dimension by

D =
〈∆x2〉+ 〈∆y2〉 × k/N

2τ(1 + k/N)
(6)

Equation 6 holds true irrespective of the value of k, be k=0 or N . For
0 < k < N , the diffusion coefficient D that best fits the system is the
proportioned combination of the two mean squared displacements. Equation
5 further emphasizes that changing the value of d in a trajectory has no
effect on the parameters obtained by maximizing the likelihood as long as
the R-value, and hence the number of v or k displacements, is kept constant.
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Equation 6 demonstrates that including a proportion of non-confined
displacements along the short axis in the likelihood calculation will increase
the calculated diffusion coefficient if there is confinement experienced by
〈∆x2〉. This is why SPICER is able to outperform even the 1d analysis. For
example if there was no confinement 〈∆x2〉 and 〈∆y2〉 would be equal, but
because the 1d analysis still experiences confinement in the cell poles, 〈∆x2〉
is smaller than expected. By including data along the short axis with no
confinement, outside the R region (〈∆y2〉 > 〈∆x2〉), the calculated diffusion
coefficient rises when the likelihood is maximized, see Eq. 6.

4 Calculating the Likelihood of Multiple State Tra-
jectories:

In this section we describe the methodology created by Das et al. to calculate
the likelihood of a single particle trajectory with multiple states (2). For a
two state system there are four parameters, σ = [D1, D2, P12, P21]. The like-
lihood of having a particular single particle trajectory, ω=(∆r1,∆r2, ...rN ),
is

L(σ|ω) ∝ P (ω|σ) =
∑

All(S)

P (ω|S, σ)× P (S|σ) (7)

where S is the state sequence of the particle throughout the trajectory, and
All(S) is the sum over all of the possible state sequences. The term P (S|σ)
is the probability of having a particular state sequence S given the two tran-
sition probabilities, creating a dependence upon the transition probabilities.
The term P (ω|S, σ) is only dependent upon the diffusion coefficients with
the particular diffusion coefficient defined by the state sequence S.

Because the summation is over all possible state sequences, we utilize the
forward-backward algorithm to calculate the likelihood of a trajectory (2).
The forward-backward algorithm determines the likelihood of a trajectory
up to the displacement ∆rj , recursively, using the following equation

αi
j = P [∆r1,∆r2..∆rj , sj = i|σ] = [α1

j−1 ∗P1i +α2
j−1 ∗P2i]∗P (∆rj |sj = i, σ)

(8)
with



SPICER 7

P (∆rj |sj = i, σ) =
e
−

∆r2j
4Diτ

(4πDiτ)d/2
(9)

where αi
j is the forward variable, which gives the probability of observing

the trajectory and being in state i, sj = i at displacement j. The initial
forward variable is calculated from the overall probability of being in either
state 1 or 2, see Das et. al for details.

Given that the total length of the trajectory is N, the probability of having
the trajectory ω given the four parameters is

l(σ|ω) ∝ P (ω|σ) = αi=1
N + αi=2

N (10)

To account for all trajectories, we calculate the log of the likelihood
for each of the trajectories and then maximize the sum of the log of the
likelihoods with respect to the four parameters using the MCMC approach
as described in the main text.

L(σ|ωk) = log[l(σ|ωk)] (11)

L(σ|ωAll(k)) =

M∑
k=1

log[l(σ|ωk)] (12)

5 SI figures referenced in the main text

Figure S2: Parameter scan using MCMC approach
Figure S3: Determining optimal R-values for 2d tracking
Figure S4: Application of SPICER to a variety of different systems 3d
Figure S5: Application of SPICER to a variety of different systems 2d
Figure S6: Application of SPICER to systems with varying diffusion coeffi-
cients for 2d tracking data.
Table S1: Parameters of systems analyzed in Figures S4 and S5
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Figure S2: An example of a parameter scan using the MCMC approach.
The black lines in the two graphs represent the true values, D1 = 1µm2/s,
D2 = .4µm2/s, P12 = P21 = .0244 (k = 5/sec), of the two state simulation
with 50,000 trajectories.
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Figure S3: (a and b):Finding optimal R-values for 2d tracking systems (a)
Approximation percentage (Dapp/Dtrue) of five simulated systems at differ-
ent R-values with Dtrue varying from 0.4 to 4µm2/s, tracking at an imaging
speed of 200 f/s. (b) Optimal R-value lookup identified at different diffusion
coefficients from (a). (c and d): Comparison of the performance of SPICER
and conventional 1d and 2d analyses in identifying the diffusion coefficients
(c) and transition probabilities (d) in a two-state system with D1 = 1µm2/s,
D2 = .7µm2/s, and P12 = P21 = .0244. The percentage error is defined as
|X−Xtrue|

Xtrue
× 100.
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Figure S4: Percent errors in D1, D2 (left column) and P12, P21 (right col-
umn) identified using SPICER, 1d and 3d analyses for different 3d-tracking
systems listed in Table S1. Each row in the figure corresponds to the same
row in Table S1. In all the systems tested, SPICER outperforms the 1d and
3d analyses.
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Figure S5: Percent errors in D1, D2 (left column) and P12, P21 (right col-
umn) identified using SPICER, 1d and 2d analyses for different 2d-tracking
systems listed in Table S1. Each row in the figure corresponds to the same
row in Table S1. In all the systems tested, SPICER outperforms the 1d and
2d analyses.
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Figure S6: Comparison of averaged percent error in identifying diffusion
coefficients (a) and transition probabilities (b) of systems with varying sep-
arations between the diffusion coefficients of the two states (∆D) using
SPICER, 1d or 2d analysis. The larger D is fixed at 1µm2/s with the
smaller D varying between 0.8 and 0.2 µm2/s. The average percent error is

calculated as (
|D1−Dtrue

1 |
Dtrue

1
+
|D2−Dtrue

2 |
Dtrue

2
)×50 or (

|P12−P true12 |
P true12

+
|P21−P true21 |

P true21
)×50.

The shaded region indicates the uncertainty in the parameter and defined
as the standard deviation of the parameter during the MCMC approach.
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D1 D2 P12 P21 # of Traj

1 .4 .0476 (k=10/sec) .0476 35000
1 .5 .0476 (k=10/sec) .0476 35000
1 .6 .0696 (k=14/sec) .0696 35000
1 .7 .0242 (k=5/sec) .0387 (k=8/sec) 35000
1 .8 .0929 (k=20/sec) .0464 35000
1 .9 .0714 (k=15/sec) .0340 35000

Table 1: The parameters of the two state systems for the two SI figures S3
and S4.
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