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ABSTRACT Single-molecule tracking can extract quantitative kinetic information and identify possible state transitions of
diffusing molecules (such as switching between binding and unbinding) in the in vivo environment of living cells. Confined diffu-
sion, caused by the encompassing membrane boundary of the cell, results in increased uncertainties in identifying state-asso-
ciated diffusion coefficients and transition probabilities. This problem is particularly acute in bacterial cells because of their small
sizes. A standard approach to eliminating confinement errors in bacterial cells is to analyze molecule displacements only along
the long axis of the cell, where molecules experience the least confinement, and hence turn three-dimensional tracking into a
one-dimensional problem. However, this approach dramatically decreases the amount of data usable for statistical analysis
and leads to increased uncertainties in identifying different states. Here, we present a simple algorithm, termed single-particle
tracking improvement with confinement error reduction (SPICER), which significantly decreases confinement errors by selec-
tively incorporating data not only from the long axis but also from the short axes of the cell. We validate SPICER using both re-
action-diffusion simulations and experimental single-molecule tracking (SMT) data of RNA polymerase in live Escherichia coli
cells. SPICER is easy to implement with existing SMT analysis routines and should find broad applications in SMT analysis.
INTRODUCTION
Single-molecule tracking (SMT) is a powerful technique for
probing possible functional states of biomolecules in living
cells (1–3). In a typical SMT experiment, a molecule’s
cellular positions are recorded by acquiring its fluorescent
images consecutively at defined time intervals. From these
images, an SMT trajectory, a time series of corresponding
spatial coordinates of the molecule in reference to the cell,
is extracted. From the statistical analysis of these SMT tra-
jectories, different diffusive states of the molecule, each
characterized by a different diffusion coefficient, D, can
be obtained. These diffusive states and the associated popu-
lation percentages can provide valuable information
regarding possible functional states of the molecule. Recent
SMT in bacterial cells have indeed shed light on the working
mechanisms of transcription factors (4,5), RNA polymerase
(6–8), DNA polymerase (9), ribosomes (10), cytoskeletal
proteins (11,12), and more (13,14).

In addition to measuring a molecule’s diffusion coeffi-
cients, SMT experiments offer another significant advan-
tage, which is to obtain transition probabilities of
molecules between different diffusive states. These transi-
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tion probabilities provide crucial information regarding
the kinetics of state switching, such as the binding and un-
binding rates of a protein molecule to its target site and
the lifetime of a particular functional state of the molecule
(15,16). Such information is often difficult to obtain in
live cells by other means.

Various algorithms based on the statistical analyses of a
large number of SMT trajectories have been developed to
obtain the transition probabilities and associated diffusive
states from SMT experiments. Among them, the vbSPT al-
gorithm developed by Persson et al. (16) has proven robust.
vbSPT assumes a hidden Markov model (HMM) in which
diffusing molecules make a memoryless jump in states
defined by different diffusion coefficients, and uses a varia-
tional Bayesian approach to identify individual states and
their associated kinetics (16).

Successful application of analysis methods like vbSPT re-
quires the correct identification of different diffusive states,
which are characterized by unique diffusion coefficients.
However, in bacterial cells, the small cell size (1–2 mm)
spatially confines a molecule’s diffusion such that the
measured apparent diffusion coefficient, Dapp, of a molecule
appears smaller than the actual value, leading to difficulties
in identifying the correct diffusive state. A common practice
for minimizing confinement effects is to use displacements
measured only along the long axis of the cell, where
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molecules would experience the least confinement; we refer
to this method as ‘‘1d’’ analysis throughout the work
(7,16,17). However, using information only along one
dimension rather than using all available dimensions leads
to a less accurate determination of diffusion parameters.
The reduced amount of data limits the available number
of well-defined trajectories, which is particularly important
for calculating transition probabilities (18,19).

Here, we present, to our knowledge, a new, simple algo-
rithm, termed single-particle tracking improvement with
confinement error reduction (SPICER). SPICER maintains
the full length of an SMT trajectory and maximizes the
amount of data used by calculating displacements in all di-
mensions available (2d or 3d) and only selectively switches
to 1d (along the cell’s long axis) when a molecule is likely to
experience confinement. As such, the accuracy in deter-
mining both the diffusion states and transition probabilities
is dramatically improved. We demonstrate the use of
SPICER on both simulated and experimental SMT data of
Escherichia coli RNA polymerase (RNAP). The simple im-
plementation of the SPICER algorithm in SMT analysis
should allow its wide application in probing in vivo dy-
namics of molecular events in small bacterial cells.
RESULTS

Operational principle of SPICER

To illustrate the operational principle of SPICER, we show
in Fig. 1 a schematic 3d SMT trajectory of a diffusing
molecule in a typical rod-shaped bacterial cell with two
cross sections along the long, x (top), and short, y (bottom)
axes of the cell. The parameter R defines the confinement
zone (red) and is the distance from the membrane boundary
of the cell to the edge of the midcell region where the
molecule diffuses freely and does not experience confine-
ment (green).
FIGURE 1 An example 3d SMT trajectory of a molecule in a rod-shaped

bacterial cell. The purple solid circles are localizations of the molecule in-

side the confinement-free region (green). Displacements using these local-

izations as initial positions, i.e., displacements 2, 4, and 5, are calculated

using their full 3d coordinates. Yellow solid circles are localizations of

the molecule inside the R-region, where the molecule experiences confine-

ment (red). Displacements using these localizations as initial positions, e.g.,

displacements 1, 3, and 6, are calculated using only 1d coordinates along

the x (long) axis of the cell.
In previous studies, to avoid confinement, only displace-
ments along the cell’s long axis were used for HMM
analysis. We refer to this method as ‘‘1d’’ analysis in this
work (7,16,17). Consequently, in the 1d analysis, the
available data in the trajectory u shown in Fig. 1,
represented by a series of single-step displacements,
u ¼ ðDr3d1 ;Dr3d2 ;Dr3d3 ;Dr3d4 ;Dr3d5 ; r3d6 Þ and containing
information in all three dimensions (3d),
ðr3dj Þ2 ¼ Dx2j þ Dy2j þ Dz2j , is reduced to a third of the orig-
inal amount of data, ðr1dj Þ2 ¼ Dx2j . SPICER increases the
amount of data available and reduces the proportion of
data that experiences confinement by analyzing a modified
trajectory, w0 ¼ ðDr1d1 ;Dr3d2 ;Dr1d3 ;Dr3d4 ;Dr3d5 ;Dr1d6 Þ, where
displacements Dr21;3;6 are calculated in 1d along the long
axis of the cell to avoid confinement in the R region,
whereas Dr22;4;5, are calculated in 3d, as the initial positions
of these displacements are in the midcell and outside of the
R region. As such, the full length of the trajectory is main-
tained, there is an increase of data being utilized with coor-
dinates of all available dimensions, and there is a decrease in
the proportion of data experiencing confinement. Note here
that the same principle can be applied to 2d tracking exper-
iments because of the symmetry of rod-shaped bacterial
cells along the short axis. An example and associated dis-
cussion are provided in the Supporting Material.

Next, we demonstrate that switching dimensions within
an SMT trajectory as described above does not modify the
ability of SPICER to identify a set of most suitable param-
eters (diffusion coefficients, D, and transition probabilities,
P) describing the trajectory using the maximum likelihood
method (Supporting Material) (15).

The likelihood of having a diffusion coefficient, D, given
a single displacement in d dimensions, LðD ��DrjÞ, is propor-
tional to the probability of having that displacement given
the diffusion coefficient, PðDrj

��DÞ, and is defined by the
equation

L
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whereDr2j ¼ Dx2j for d¼ 1,Dr2j ¼ Dx2j þ Dy2j for d¼ 2, and
Dr2j ¼ Dx2j þ Dy2j þ Dz2j for d ¼ 3; D is the corresponding
diffusion coefficient and t is the time interval for each
displacement. Equation 2 is the direct result of solving the
diffusion equation with no barriers. If a molecule stays in
one state, as defined by a single diffusion coefficient,
D, the likelihood of having a particular trajectory specified
by a series of experimentally measured displacements,
w, will be
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Maximizing the likelihood, L, with respect to D results in
the well-known relation hr2i ¼ 2Dt for d ¼ 1, hr2i ¼ 4Dt
for d ¼ 2, and so on (15). In previous studies, the value
d is set constant for all displacements in a trajectory. How-
ever, note here that the true diffusion coefficient, D, is inde-
pendent of the d value used, that the probability of each
displacement is independent of the other displacements at
each time point, and that the likelihood, L, is an arbitrary
multiplicative constant with no significance in its absolute
value in isolation. Therefore, varying d values along a tra-
jectory does not prevent maximizing the likelihood to find
the best-fit parameter D. In the Supporting Material, we pro-
vide a further validation of this concept.
FIGURE 2 (a and b) Construction of a lookup table for finding the

optimal R-value in a 3d tracking system. (a) Approximation percentage

ðDapp=DtrueÞ of five simulated systems at different R-values, withDtrue vary-

ing from 0.4 to 4 mm2/s. (b) Optimal R-values at different diffusion coeffi-

cients are identified from (a) as the R-value at which the maximal

Dapp=Dtrue is reached. (c and d) Comparison of the performance of SPICER

and conventional 1d and 3d analyses in identifying the diffusion coefficients

(c) and transition probabilities (d) in a two-state system with D1 ¼ 1 mm2/s,

D2 ¼ 0:7 mm2/s, and P12 ¼ P21 ¼ 0:0244: The percentage error is defined

as ððjX � Xtrue j Þ=XtrueÞ � 100:
Selection of an optimal R value

Before one can analyze SMT data with SPICER, an optimal
R-value for a given experimental system must be identified.
The R-value defines the size of the confinement zone, within
which the displacements of a trajectory are calculated using
only 1d coordinates along the long axis. Displacements
outside of the R region, toward the center of the cell, are
computed using the full coordinates available in 2d or 3d,
depending on the experimental setup.

Intuitively, the size of the confinement zone, or the
R-value, is primarily dependent on how fast themolecule dif-
fuses. Molecules diffusing quickly require a large R-value to
avoid confinement, whereas molecules diffusing slowly do
not. Therefore, for a mixed population of molecules, the
optimalR-value,Ropt; should be set formolecules that diffuse
the fastest. Consequently, it follows that at a given imaging
speed, one can construct a lookup table so that each estimated
Dmax value of a system corresponds to an optimal R-value.

To create the lookup table, we simulated five sets of
3d SMT experiments in a rod-shaped cell with radius
r ¼ 500 nm and length l ¼ 2 mm; each set contains
10,000 single-state SMT trajectories with a fixed Dtrue

ranging from 0.4 to 4 mm2/s, tracked with an imaging speed
of 200 f/s. For each data set, we varied the R-value system-
atically from 50 to 500 nm at 50-nm intervals and used
SPICER to identify the corresponding apparent D value
ðDappÞ at each R-value. We then plotted the approximation
percentage ðDapp=DtrueÞ of the data set at different R values
(Fig. 2 A). The optimal R-value was then identified as the
one at which the approximation percentage reaches a
maximum. The reasoning is that if an R-value is correctly
selected, Dapp should contain the least confinement error
in SPICER, hence approaching maximally the Dtrue value.

As shown in Fig. 2 A, data sets with small diffusion coef-
ficients reach their maximal apparent diffusion coefficients,
Dapp, at small R values, consistent with the notion that
slowly diffusing molecules experience less confinement
and hence the R-region would be small. However, for the
data set that has a D ¼ 4 mm2/s, Ropt ¼ 450 nm, indicating
570 Biophysical Journal 112, 568–574, February 28, 2017
that for molecules diffusing faster than 4 mm2/s, the small
size of a bacterial cell itself confines diffusion, regardless
of how far away from the membrane the molecule is. In
Fig. 2 B, we plotted the optimal R-value for each simulated
Dtrue value. It can be seen that Ropt monotonically increases
with D. Note here that although this lookup table is coarse-
grained, with the R-value changing in 50-nm increments and
the D-value changing in ~1-mm2/s increments, finer grains
on the order of 5 nm and 0.1 mm2/s are not necessary. The
typical spatial resolution in an SMT experiment in live bac-
terial cells is in the range 30–50 nm, and a change of
0.1 mm2/s in D does not lead to a significant change in the
corresponding R-value within the 50-nm increment. There-
fore, to use this lookup table, one can first estimate the
largest diffusion coefficient of a given system using the
1d analysis, which approximates the true D value by elimi-
nating confinement error along the cell long axis, and then
use Fig. 2 B to estimate the Ropt value. A similar simulation
and lookup table using 2d SMT data are shown in Fig. S3.
A particular note here is that the lookup table is also related
to the imaging speed, so that a fast-diffusing molecule
imaged at a slow speed (long time intervals between subse-
quent acquisitions) will naturally require a larger R-value to
accommodate the longer distance it travels during the time.
Therefore, it is important to construct the lookup table based
on the actual imaging condition, as we described above.

Next, we verified whether the utilization of an optimal
R-value in SPICER indeed improves SMT analysis
when molecules exist in two different diffusive states. We
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simulated 25,000 trajectories of a two-state system. The two
diffusion coefficients areD1 ¼ 1 mm2/s andD2 ¼ 0:7 mm2/s,
and the transition probabilities P12 ¼ P21 ¼ 0:0244; which
corresponds to a transition rate of ~5 s�1. We then analyzed
this data set using 1d (only displacements along the cell long
axis), 3d (using all displacements in three dimensions), or
SPICER, in which the Ropt was chosen to be 200 nm (the
larger D1 at 1 mm2/s) according to Fig. 2 B.

In Fig. 2, C and D, we plotted the percent error in each of
the four parameters analyzed using the three methods.
Clearly, 3d analysis led to the highest amount of error for
all the four parameters, consistent with the presence of sig-
nificant confinement errors when displacements in all three
dimensions were used under this condition. The 1d analysis
showed improvement compared to the 3d analysis, espe-
cially in the identification of D, but it was significantly out-
performed by SPICER, in which the percentage errors in all
four parameters were the smallest. Note that localizations in
the R-region of cell poles are still confined in SPICER, even
though only their displacements along the cell’s long axis
are used, just as in 1d analysis. Nevertheless, SPICER out-
performs the 1d analysis, because in SPICER, the full coor-
dinates of localizations outside of the R-region are given
more weight than their corresponding 1d coordinates in
the search for optimal parameters. We further verified that
the same trend holds for a variety of systems with different
diffusive parameters (Fig. S4 Table S1). These results
demonstrate that by increasing the proportion of data con-
taining full coordinates, SPICER, with an optimal R-value
identified from the lookup table (Fig. 2 B), indeed improves
the accuracy in determining both diffusion coefficients and
transition probabilities of a diffusive system.
FIGURE 3 Comparison of the averaged percent errors in identifying

diffusion coefficients (a) and transition probabilities (b) of systems with

varying separations ðDDÞ between the diffusion coefficients of the two

states using SPICER, 1d, or 3d analysis. The larger D is fixed at 1 mm2/s,

with the smaller D varying between 0.8 and 0.2 mm2/s. The average percent

error is calculated as ðð��D1 � Dtrue
1

�� =Dtrue
1 Þ þ ð��D2 � Dtrue

2

�� =Dtrue
2 ÞÞ � 50

or ðð��P12 � Ptrue
12

�� =Ptrue
12 Þ þ ð��P21 � Ptrue

21

�� =Ptrue
21 ÞÞ � 50: The shaded region

indicates the uncertainty in the parameter and is defined as the standard de-

viation of the parameter during the Markov chain Monte Carlo approach.
SPICER improves accuracy in identifying states
with close diffusion coefficients

One important criterion used by theHMMto identify different
diffusive states is the difference betweendiffusion coefficients
associated with each state. If the diffusion coefficients of the
two states are close to each other, the considerable overlap
of the displacement distributions will lead to difficulties in
determining the associated state of a displacement, and conse-
quently to large errors in identifying corresponding transition
probabilities. SPICER should be especially useful in
improving data analysis under this circumstance, as it can
effectively eliminate confinement error without significantly
reducing the available data.

To compare the performance of SPICER with traditional
1d and 3d analyses under these scenarios, we simulated
eight different systems with 50,000 trajectories each, with
P12 and P21 set to 0.0224 (k ¼ 5 s�1), D1 to 1 mm2/s, and
D2 varied between 0.8 and 0.2 mm2/s. We analyzed these
systems as described in the Supporting Material and plotted
the average percentage errors in D and P for the three
methods (Fig. 3).
Consistent with what we expected, when DD decreases,
the percentage errors in D and P increase for all three
methods, but SPICER consistently outperforms the 1d and
3d analyses, in particular with smaller DD values. Only at
larger values, DD > 0.6 mm2/s, is the improvement less dra-
matic. These results thus demonstrate SPICER’s unique
advantage in systems where the diffusion coefficients of
two states are closely spaced relative to each other.
SPICER requires fewer trajectories compared to
1d or 3d analysis to achieve the same level of
error reduction

SMTanalysis usually requires a large number of trajectories
(on the order of 104 if the average length of trajectories is
Biophysical Journal 112, 568–574, February 28, 2017 571
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short (16)), so that diffusion coefficients and state transitions
can be determined with statistical significance. However,
experimentally, it is time-consuming to collect tens of thou-
sands of SMT trajectories. To investigate whether SPICER
helps in lowering this requirement, we used the same two-
state system analyzed in Fig. 2 and varied the number of tra-
jectories used in the analysis. In Fig. 4, we show that for all
three methods (1d, 3d, and SPICER) the averaged percent
error in D plateaus when the number of trajectories is
>5000; the averaged percent error in P plateaus when the
number is greater than 10,000, as accurate determination
of P requires a higher number of trajectories. However,
FIGURE 4 Comparison of the averaged percent errors in identifying

diffusion coefficients (a) and transition probabilities (b) of the two-state

system with a varying number of trajectories, shown in Fig. 2, c and d, using

SPICER, 1d, and 3d analyses. The averaged percent error and shaded region

are calculated the same way as for Fig. 3. The solid lines are the 10-point

moving averages of raw data (scattered dots), and the shaded areas are

the moving averages of the standard deviations of the parameters during

the Markov chain Monte Carlo approach.
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even at a low number of trajectories (~3000), averaged
percent errors of D and P in SPICER are substantially lower
than those in 1d and 3d analyses, approaching the level that
would be achieved by 10,000 trajectories with the 1d ana-
lyses. Note here that the decreases in the total error are
mainly brought about by the minimization of confinement
error in SPICER, which compensates for errors caused by
an insufficient number of trajectories, as that occurs in 1d
and 3d analyses. These results demonstrate that increasing
the number of trajectories used will not improve the error
in the calculated parameters when confinement error is pre-
sent in the commonly used 1d and 3d analyses. The applica-
tion of SPICER raises the proportion of data without
confinement and leads to the least amount of error in deter-
mining the diffusion coefficients and transition probabilities
in these systems.
Validating SPICER using experimental RNAP
tracking data

To further validate SPICER with experimentally obtained
data, we performed 2d SMT on RNA polymerase (RNAP)
in live E. coli cells. RNAP is primarily found within the
nucleoid; because of its frequent interactions with chromo-
somal DNA, it has relatively small diffusion coefficients (6).
Thus, RNAP would experience less confinement from the
membrane than would other freely diffusing protein mole-
cules in cells, and it can serve as a control system with negli-
gible confinement to validate the SPICER algorithm.

We used a functional RNAP-PAmCherry fusion (gift
from Dr. D. J. Jin of the National Cancer Institute) that is in-
tegrated into the E. coli chromosome, replacing the endog-
enous rpoC gene, which encodes the b0 subunit of RNAP
(Supporting Material). Under our imaging conditions, we
collected a total of ~25,000 trajectories, with the average
trajectory length at ~3, in RNAP-PAmCherry-expressing
cells grown in minimal M9 medium with a 5-ms exposure
time. We first used conventional 1d and 2d analyses to deter-
mine that under this condition, the best model describing the
diffusive behaviors of RNAP is a two-state model. The two
D values from 1d and 2d analyses are similar to each other
(D1 ¼ 0.38 mm2/s and D2 ¼ 0.1 mm2/s; Fig. 5 A) and are
consistent with values from previous SMT studies of
RNAP (6). However, transition probabilities obtained from
the 1d analysis are significantly lower than those obtained
from the 2d analysis (Fig. 5 B). The lower transition proba-
bilities of the 1d analysis are most likely due to short trajec-
tory lengths (with around three displacements) combined
with the reduced amount of data in the 1d analysis, which
makes it difficult to observe rare transitions between states.
Using simulations, we further verified that indeed at this
slow-diffusion condition, 2d analysis describes the system
more accurately than 1d analysis (Fig. 5, C and D).

Next, we applied SPICER using an R-value of 200 nm,
identified as optimal using the procedure described in the
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FIGURE 5 Validation of SPICER using experimentally acquired 2d SMT

data of RNAP in live E. coli cells. (a and b) Comparison of the identified

D1 and D2 (a) and P12 and P21 (b) values using SPICER, 1d, and 2d ana-

lyses. (c and d) Simulation of a similar system showing the same trend,

that 2d and SPICER analyses are significantly more accurate than the

1d analysis, with SPICER reflecting the true values most closely. The

true values for the simulation are shown as horizontal black lines.

SPICER
previous section (Fig. S3), and obtained a new set of D1, D2,
P12, and P21. As shown in Fig. 5 A, diffusion coefficients ob-
tained using the three methods are similar to each other, sug-
gesting that at this slow diffusing rate the confinement error
is low, and that all the methods are capable of identifying
D sufficiently well with the acquired number of trajectories.
However, transition probabilities from SPICER and the
2d analysis are similar to each other and are both signifi-
cantly higher than those obtained from the 1d analysis
(Fig. 5 B). These results further demonstrate that SPICER
can be used to analyze experimental SMT data with high
accuracy.
CONCLUSIONS

In this work, we present a simple algorithm, SPICER, to
reduce the confinement error in SMT analysis in small bac-
terial cells. SPICER calculates displacements in all dimen-
sions available (2d or 3d) and only selectively switches to
1d (along the cell’s long axis) when a molecule is within a
pre-defined R-region where it likely experiences confine-
ment. We provided lookup tables and experimental guide-
lines for finding an optimal R-value. The complete
package of SPICER is available for download at https://
github.com/XiaoLabJHU/SPICER.git. Using simulations,
we compared SPICER with commonly used SMT analyses
and show that SPICER consistently improves the accuracy
in determining diffusion coefficients and state-transition
probabilities in SMT analyses. Even when compared to
the 1d analysis, the traditional method used to relieve
confinement in multistate systems, the confinement in the
poles of the cells allows SPICER to outperform the 1d anal-
ysis. This improvement is achieved by increasing the overall
proportion of molecules experiencing free diffusion during
the maximization of the likelihood. Furthermore, SPICER
performs significantly better than previous methods
when the separation between diffusion coefficients of two
different states is small, and when the acquired number of
SMT trajectories is low (< 3000). We further validated
SPICER using experimentally obtained SMT trajectories
of RNAP in live E. coli cells. SPICER should be particularly
useful for comparing SMT results in bacterial cell size mu-
tants, as the influence of confinement in cells of different
sizes can be easily accounted for with SPICER. Further-
more, the central concept of SPICER can be generalized
to other cell geometries as long as localizations in the R-re-
gion can be used along a particular dimension in which the
molecule experiences the least confinement.
SUPPORTING MATERIAL

SupportingMaterials andMethods, six figures, and one table are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30043-7.
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1 Methods

Simulations of SMT trajectories with two states

All simulated SMT trajectories used in this work were generated by the
software provided in vbSPT using a rod-shaped cell like geometry (unless
stated specifically, cell radius = 500 nm and cell length = 2.5 µm) and a
single molecule localization error of 20nm (1). The diffusion coefficients de-
fined in this work take into account this localization error with a time step
of 5 ms. The length of individual trajectories follows an exponential dis-
tribution with a mean value of 6 steps (each step is 5 ms). The effect of
confinement is reflected in the simulation through reflective boundaries at
the cell membrane. In the two state model, we assume that State 1 and 2
are defined by two diffusion coefficients D1 and D2, and the transition prob-
abilities between them are P12 and P21, respectively. The reaction scheme
for the maximum likelihood analysis is:

D1
P12⇀↽
P21

D2. (1)

Parameters used in each simulated system in this paper are listed in each
corresponding figure.

Maximal Likelihood method to identify parameters

We first convert each SMT trajectory to a SPICER trajectory using a fixed
R-value, as defined in Figure 1. The R-value defines the confinement zone
(red), and is the distance from the membrane boundary of the cell to the
edge of the midcell region where the molecule diffuses freely and does not
experience confinement (green). We then take all the converted trajectories
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and scan the parameter space of the diffusion coefficients D1, D2 and tran-
sition probabilities P12, P21 to obtain the best fit parameters for the system
by maximizing the likelihood using a Markov Chain Monte Carlo (MCMC)
approach with a preset number of search steps (2). The MCMC approach
begins by selecting a random set of parameters D1, D2, P12 and P21, and
calculates the corresponding summed log likelihood value from all trajecto-
ries. A detailed description of the calculation can be found in the section
Calculating the Likelihood of Multiple State Trajectories. The process is
then iterated by systematically adjusting one of the parameters, chosen at
random, by a small amount and then comparing the log likelihood at the
new parameter value to the previous log likelihood. If the log likelihood is
greater at the new value, the algorithm stays at the new position in parame-
ter space. If the log likelihood is less than the old value, the algorithm takes
the difference of the log likelihoods, and two outcomes can happen: 1. If the
difference is less than the log of a uniform random number it accepts the
new position 2. If the difference is more than the log of a uniform random
number, the algorithm stays at the old position. The process repeats by ad-
justing a new randomly chosen parameter until it reaches a preset number
of steps. In all analyses used in this work the number of steps was set at
a number large enough so that all the parameters converge well before the
end of step numbers.

The stochasticity in the parameter search allows the algorithm to fluctu-
ate around parameters, defining a degree of uncertainty and avoiding local
minimums in the parameter search (2). (An example of a parameter scan
on a system is shown in Figure S2.) We used the log of the likelihood and
summed up the log likelihood of each of the individual trajectories to in-
corporate the information from multiple trajectories, see Das et al. for the
specific algorithms used in this work (2). The parameters that give the max-
imum log likelihood are identified as the best-suited parameters for the sys-
tem. The percent error in this work is defined as |Xcal−Xtrue|/Xtrue×100.

Single molecule tracking data collection and analysis

Single molecule tracking was performed on live MG1655 E .coli cells using
a photoactivatable fluorescent protein PAmCherry labeled RNA polymerase
(RNAP). The PAmCherry gene was C-terminally fused to the rpoC gene,
which encodes for the β’ subunit of RNAP. This fusion gene replaces the
endogenous copy in the chromosome, making it the sole source of β’ subunit
in the cell. Control experiments were performed to ensure that the fusion
protein was not subject to proteolytic cleavage, as had been shown previously
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(3), and that the cells grew otherwise normally as compared to wild-type
cells, indicating the functionality of the RNAP fusion (4, 5).

The RNAP fusion strain was inoculated from a freshly streaked LB plate
into 2 mL of minimal M9 media and grown overnight at room temperature,
shaking at 250 rpm. After 16 hours of growth, cells were diluted 1:200 into
fresh minimal M9 and were shaken at room temperature until they were in
mid-log phase growth (OD600 of ∼0.4). Cells were harvested by taking 1 mL
of the cells and spinning them down at 8 rcf for two minutes. Next, 900 µL
of the supernatant was removed from the tube and cells were resuspended
in the remaining 100 µL of media, to obtain an OD600 of ∼4. A small
amount of these dense cells, approximately 0.3 to 0.5 µL, was pipetted onto
a freshly-prepared 3 % agarose gel pad. Cells were immobilized onto the
gel pad by letting the cells dry in air for two minutes. After drying, the gel
pad was covered with a clean coverslip to assemble the Bioptechs imaging
chamber (Bioptechs Inc.).

Once immobilized on the agarose gel pad, we stochastically activated
RNAP-PAmCherry molecules using 0.1 mW of 405 nm light, which converts
the PAmCherry molecule from a dark state to a red-emitting state, used 50
mW of 568 nm light to excite individual RNAP-PAmCherry molecules and
tracked their cellular positions at a frame rate of approximately 150 Hz (5
ms exposure, 6.74 ms per frame). At this imaging speed, we were able to
capture RNAP-PAmCherry molecules up to a diffusion coefficient of 3 µm2/s
with accuracy in the cellular position of the molecule of approximately 30
nm. Cellular positions and lengths were determined through the software
U-Track (6) and screened based on their intensities and position within the
field of view. Trajectories were re-cut into multiple subtrajectories consisting
of only consecutive frames of molecular localizations (gaps in localizations
are due to the inherent blinking properties of all fluorescent proteins). These
subtrajectories are used in the analyses detailed below.

2 Applying SPICER to 2d tracking data.

An example of a 2d SMT trajectory modified by SPICER is shown in Figure
S1, with the confinement zone shown in red and the freely diffusing region
in green. Intuitively, the operational principle of SPICER is still justified
for 2d tracking data as displacements in the center of the cell (green) will
have a higher probability to belong to true localizations outside the confined
R-region. This is because a rod-shaped bacterial cell is isotropic along the
short axis of the cell. By having a large number of trajectories sampling all
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Figure S1: An example 2d SMT trajectory of a molecule in a bacterial
cell. The purple circles are localizations inside the confinement-free region
(green), and displacements calculated using these localizations as initial po-
sitions utilize their full 2d coordinates. Yellow circles are localizations inside
the R-region and experience confinement (red). Displacements calculated
using these localizations as initial positions only utilize coordinates along
the x (long) axis of the cell. Both purple and yellow localizations are 2d
projections of molecule positions in 3d, and hence it is possible that a local-
ization that appears to be outside theR-region is actually inside the R-region
and experiences confinement (yellow hollow circle), but its full coordinates
are used.

possible positions, localizations in the periphery and center of the cell will
still have high probabilities to be correctly identified as inside or outside
of the R-region. The use of SPICER on 2d tracking data is confirmed by
applying SPICER to a variety of different systems of 2d tracking data; these
results are illustrated in Figure S3, S5 and S6.

It is important to note that while applicable to 2d SMT, the use of
SPICER on 2d tracking data is at a disadvantage when compared to 3d
tracking, due to the lack of information along the third dimension. The
uncertainty in the third dimension creates a chance that a small percentage
of the displacements selected by SPICER as having no confinement will
possess some confinement error, as indicated by the circled spot in Figure
S1. Hence, the application of SPICER to 2d data results in a less significant
improvement in the calculation of the different parameters when compared
to the 3d tracking data.
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3 Varying dimensions within the trajectory:

To illustrate that d can be varied throughout a trajectory, we assume that a
molecule has a trajectory w of N displacements, and spends v displacements
within the R region and k displacements outside of the R region, with v+k =
N . In the simplest scenario where the molecule exists only in one state, the
likelihood of the molecule having a D value given the trajectory is:

L(D|w,R) =
1

((4πDτ)1/2)v
e
∑v
i −

∆x2
i

4Dτ × 1

((4πDτ)2/2)k
e
∑k
j −

∆x2
j+∆y2

j
4Dτ (2)

The log of the likelihood can be expressed as:

l(D|w,R) = −(k +
v

2
) log(D4πτ)−

v∑
i

∆x2i
4Dτ

−
k∑
j

∆x2j + ∆y2j
4Dτ

(3)

Simplifying by substituting with v = N-k results in:

l(D|w,R) = −(
k +N

2
) log(D4πτ)−

N∑
i

∆x2i
4Dτ

−
k∑
j

∆y2j
4Dτ

(4)

Maximize the log of the likelihood L with respect to D by taking the
derivative results in:

D =

∑N
i ∆x2i +

∑k
j ∆y2j

2τ(N + k)
(5)

Which can be further converted to the mean squared displacement of
each dimension by

D =
〈∆x2〉+ 〈∆y2〉 × k/N

2τ(1 + k/N)
(6)

Equation 6 holds true irrespective of the value of k, be k=0 or N . For
0 < k < N , the diffusion coefficient D that best fits the system is the
proportioned combination of the two mean squared displacements. Equation
5 further emphasizes that changing the value of d in a trajectory has no
effect on the parameters obtained by maximizing the likelihood as long as
the R-value, and hence the number of v or k displacements, is kept constant.
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Equation 6 demonstrates that including a proportion of non-confined
displacements along the short axis in the likelihood calculation will increase
the calculated diffusion coefficient if there is confinement experienced by
〈∆x2〉. This is why SPICER is able to outperform even the 1d analysis. For
example if there was no confinement 〈∆x2〉 and 〈∆y2〉 would be equal, but
because the 1d analysis still experiences confinement in the cell poles, 〈∆x2〉
is smaller than expected. By including data along the short axis with no
confinement, outside the R region (〈∆y2〉 > 〈∆x2〉), the calculated diffusion
coefficient rises when the likelihood is maximized, see Eq. 6.

4 Calculating the Likelihood of Multiple State Tra-
jectories:

In this section we describe the methodology created by Das et al. to calculate
the likelihood of a single particle trajectory with multiple states (2). For a
two state system there are four parameters, σ = [D1, D2, P12, P21]. The like-
lihood of having a particular single particle trajectory, ω=(∆r1,∆r2, ...rN ),
is

L(σ|ω) ∝ P (ω|σ) =
∑

All(S)

P (ω|S, σ)× P (S|σ) (7)

where S is the state sequence of the particle throughout the trajectory, and
All(S) is the sum over all of the possible state sequences. The term P (S|σ)
is the probability of having a particular state sequence S given the two tran-
sition probabilities, creating a dependence upon the transition probabilities.
The term P (ω|S, σ) is only dependent upon the diffusion coefficients with
the particular diffusion coefficient defined by the state sequence S.

Because the summation is over all possible state sequences, we utilize the
forward-backward algorithm to calculate the likelihood of a trajectory (2).
The forward-backward algorithm determines the likelihood of a trajectory
up to the displacement ∆rj , recursively, using the following equation

αi
j = P [∆r1,∆r2..∆rj , sj = i|σ] = [α1

j−1 ∗P1i +α2
j−1 ∗P2i]∗P (∆rj |sj = i, σ)

(8)
with
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P (∆rj |sj = i, σ) =
e
−

∆r2j
4Diτ

(4πDiτ)d/2
(9)

where αi
j is the forward variable, which gives the probability of observing

the trajectory and being in state i, sj = i at displacement j. The initial
forward variable is calculated from the overall probability of being in either
state 1 or 2, see Das et. al for details.

Given that the total length of the trajectory is N, the probability of having
the trajectory ω given the four parameters is

l(σ|ω) ∝ P (ω|σ) = αi=1
N + αi=2

N (10)

To account for all trajectories, we calculate the log of the likelihood
for each of the trajectories and then maximize the sum of the log of the
likelihoods with respect to the four parameters using the MCMC approach
as described in the main text.

L(σ|ωk) = log[l(σ|ωk)] (11)

L(σ|ωAll(k)) =

M∑
k=1

log[l(σ|ωk)] (12)

5 SI figures referenced in the main text

Figure S2: Parameter scan using MCMC approach
Figure S3: Determining optimal R-values for 2d tracking
Figure S4: Application of SPICER to a variety of different systems 3d
Figure S5: Application of SPICER to a variety of different systems 2d
Figure S6: Application of SPICER to systems with varying diffusion coeffi-
cients for 2d tracking data.
Table S1: Parameters of systems analyzed in Figures S4 and S5
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Figure S2: An example of a parameter scan using the MCMC approach.
The black lines in the two graphs represent the true values, D1 = 1µm2/s,
D2 = .4µm2/s, P12 = P21 = .0244 (k = 5/sec), of the two state simulation
with 50,000 trajectories.
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Figure S3: (a and b):Finding optimal R-values for 2d tracking systems (a)
Approximation percentage (Dapp/Dtrue) of five simulated systems at differ-
ent R-values with Dtrue varying from 0.4 to 4µm2/s, tracking at an imaging
speed of 200 f/s. (b) Optimal R-value lookup identified at different diffusion
coefficients from (a). (c and d): Comparison of the performance of SPICER
and conventional 1d and 2d analyses in identifying the diffusion coefficients
(c) and transition probabilities (d) in a two-state system with D1 = 1µm2/s,
D2 = .7µm2/s, and P12 = P21 = .0244. The percentage error is defined as
|X−Xtrue|

Xtrue
× 100.
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Figure S4: Percent errors in D1, D2 (left column) and P12, P21 (right col-
umn) identified using SPICER, 1d and 3d analyses for different 3d-tracking
systems listed in Table S1. Each row in the figure corresponds to the same
row in Table S1. In all the systems tested, SPICER outperforms the 1d and
3d analyses.
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Figure S5: Percent errors in D1, D2 (left column) and P12, P21 (right col-
umn) identified using SPICER, 1d and 2d analyses for different 2d-tracking
systems listed in Table S1. Each row in the figure corresponds to the same
row in Table S1. In all the systems tested, SPICER outperforms the 1d and
2d analyses.
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Figure S6: Comparison of averaged percent error in identifying diffusion
coefficients (a) and transition probabilities (b) of systems with varying sep-
arations between the diffusion coefficients of the two states (∆D) using
SPICER, 1d or 2d analysis. The larger D is fixed at 1µm2/s with the
smaller D varying between 0.8 and 0.2 µm2/s. The average percent error is

calculated as (
|D1−Dtrue

1 |
Dtrue

1
+
|D2−Dtrue

2 |
Dtrue

2
)×50 or (

|P12−P true12 |
P true12

+
|P21−P true21 |

P true21
)×50.

The shaded region indicates the uncertainty in the parameter and defined
as the standard deviation of the parameter during the MCMC approach.
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D1 D2 P12 P21 # of Traj

1 .4 .0476 (k=10/sec) .0476 35000
1 .5 .0476 (k=10/sec) .0476 35000
1 .6 .0696 (k=14/sec) .0696 35000
1 .7 .0242 (k=5/sec) .0387 (k=8/sec) 35000
1 .8 .0929 (k=20/sec) .0464 35000
1 .9 .0714 (k=15/sec) .0340 35000

Table 1: The parameters of the two state systems for the two SI figures S3
and S4.
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