
Supplementary Information 3: Simulations
Clumping of individuals
To assess how much our inference method is affected by clumping, we simulated
four scenarios of two different kinds of clumping. Simulations were always done
on a torus grid with axial length 96, with Laplace dispersal along each axis,
dispersal distance set such that σ = 1 and assuming a constant population size.

Regular Clumping

First, in four scenarios, a total number of 576 samples (150 cM chromosomes)
were clustered on regular grids:

• Scenario 1: Samples are evenly spaced 4 distance units apart.
• Scenario 2: Samples are clustered into 2 × 2 clusters 8 distance units apart
(along each axis).

• Scenario 3: Samples are clustered into 3 × 3 clusters 12 distance units
apart (along each axis).

• Scenario 4: Samples are clustered into 4 × 4 clusters 16 distance units
apart (along each axis).

This sampling scheme is visualized in the following picture:
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We simulated block sharing until t = 200 generations back. Our inference
scheme applied to blocks 4–20 cM simulated under 20 replicates of each of these
scenarios yielded the following parameter estimates and 95% confidence intervals:
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The inference method was very robust with respect to clumping, neither the
bias nor the uncertainty of estimates differed substantially between the sampling
scenarios considered here.

Irregular Clumping

We then also assessed the effect of more irregular and asymmetric clumping.
In four scenarios, a total number of 576 samples (150 cM chromosomes) were
clustered to different degrees:

• Scenario 1: Samples are evenly spaced 4 distance units apart on a regular
grid.

• Scenario 2: Every sample is independently drawn from all grid positions.
• Scenario 3: Randomly clustered samples are simulated in three steps. First,

centers of clusters are drawn at random. Then, for every center a random
number is drawn from a geometric distribution with mean 5 to determine
the number of samples per cluster. Last, for each individual sample, the
offset by the mean is determined by a discretized Gaussian with standard
deviation σ = 5 along each axis. Individual samples are drawn until the
total number of 576 samples is reached.

• Scenario 4: Same as in Scenario 3, but now the number of samples in every
cluster is geometrically distributed with mean 50.

Single realizations of the random clustering schemes described above are
visualized in the following picture:
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For each scenarios, we did 20 replicates. In Scenario 2 − 4, the sample
positions were generated independently for every replicate, and in each case we
simulated block sharing until t = 200 generations back. Our inference scheme
applied to blocks of length 4–20 cM yielded the following parameter estimates
and 95% confidence intervals:
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Overall, irregular clumping did not severely affect estimates. However,
dispersal estimates became slightly biased upwards with increasing degree of
clumping. This weak effect is likely due to clusters of individuals on very small
spatial scales; since for geographically close samples the diffusion approximation
is not expected to accurately predict block sharing for the here simulated
leptokurtic single generation dispersal kernel. This hypothesis is supported by
the fact that the bias vanishes if spatial size of the sample clusters is increased
(data not shown).

Edge effects
To assess the effect of nearby habitat edges on our inference method, we simulated
finite rectangular habitats. For simulations, we utilized our node model, as above
with axial Laplace dispersal such that σ = 2. We assumed that lineages get
reflected each time they would trace back beyond an edge. That is, if in a
single generation back a lineage would have migrated a certain distance beyond
the habitat boundary, that lineage moves to a location an equally far distance
from the boundary, but inside the habitat. We simulated four scenarios, where
reflective boundaries were surrounding a 12 × 12 array of samples (150 cM
chromosomes) spaced two σ apart.

• Scenario 1: The reflective boundary was at a distance 10 σ.
• Scenario 2: The reflective boundary was at a distance 5 σ.
• Scenario 3: The reflective boundary was at a distance 1 σ.
• Scenario 4: The reflective boundary was at a distance 0.5 σ.

This sampling scheme is illustrated in the following figure:
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We simulated block sharing until t = 200 generations back. Our inference
scheme applied to blocks 4–20 cM simulated under 20 replicates of each of these
scenarios yielded the following parameter estimates and 95% confidence intervals:
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Both dispersal and density estimates got noticeably biased downwards as
soon as range boundaries got closer, but remained right on orders of magnitude.

Limited habitat size
To assess the effect of limited habitat size compared to dispersal width σ, we
simulated a finite rectangular habitat. Similarly, we utilized our grid model
with reflective boundaries, and a Laplace dispersal kernel along each axis. We
simulated four scenarios, where the samples were distributed on a fixed 15 × 15
grid two distance units apart from each other within a total habitat of axial
width 60. Dispersal was set to various values:

• Scenario 1: σ = 1 (habitat width is 60 σ).
• Scenario 2: σ = 2 (habitat width is 30 σ).
• Scenario 3: σ = 5 (habitat width is 12 σ).
• Scenario 4: σ = 10 (habitat width is 6 σ).

These sampling schemes and width of σ are illustrated in the following figure:

We simulated block sharing until t = 200 generations back. Our inference
scheme applied to blocks 4–20 cM simulated under 20 replicates of each of these
scenarios yielded the following parameter estimates and 95% confidence intervals:
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For habitats of width ≈ 10 σ and smaller the inference method gave markedly
downward biased estimates for σ and De, with particularly large bias for De.
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