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1 Additional information about the simulations described in

the manuscript

1.1 Generating test statistics

In both settings, the test statistics corresponding to causal SNPs in the discovery study 1

were sampled, in each simulation, as z1,j ∼ N (u1j , 1) where u1j is a realization of a random

variable sampled from unif(ul, uh) distribution. When the discovery study had lower power

we set ul = 4, uh = 5. Corresponding two-sided p-values had a median p-value of 7× 10−6,

with an inter-quartile range of [2 × 10−7, 1 × 10−4]. When the discovery study had high

power we set ul = 5, uh = 6. Corresponding two-sided p-values had a median p-value

of 4 × 10−8, with an inter-quartile range of [5 × 10−10, 2 × 10−6]. The 100 test statistics

corresponding to the causal SNPs in study 2 were similarly sampled as z2,j ∼ N (u2j , 1)

where u2j ∼ unif(5, 6) when the follow-up study had high power, and u2j ∼ unif(3, 4) when

the follow-up study had low power; the latter had corresponding two-sided p-values with

a median p-value of 5 × 10−4 and an inter-quartile range of [3 × 10−5, 5 × 10−3]. Finally,

we generated inflation in both the discovery and the generalizing cohorts by sampling the
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non-causal test statistics from a Normal distribution with mean of zero and variance of

1.21, corresponding to λgc = 1.21 (Devlin and Roeder, 1999). Inflation may exist due to

ancestry confounding or low minor allele counts.

We studied additional simulation settings: a 90% overlap of the causal SNPs between

the two populations, a larger number of causal SNPs (1,000 and 10,000), and a discovery

study with u1j ∼ unif(4, 5), corresponding to two-sided p-values having a median p-value

of 7× 10−6, with an inter-quartile range of [2× 10−7, 1× 10−4], and follow-up study with

u2j ∼ unif(3, 4). Overall, our simulations covered many plausible scenarios of the power

of the discovery and follow-up studies (high, medium, and low discovery power, and high

and low follow-up study power), and reasonable assumptions on the overlap between the

genetic component of the two populations, and on the number of SNPs associated with the

trait. Finally, we also studied the effect of setting l00 to 0.9, 0.95.

1.2 Additional results

Tables S1 and S2 provide the simulation results when the discovery power was low and

the follow-up study had high power, when the goal was to control FDRg and FWERg,

respectively. Tables S3 and S4 provide similar results for the setting where the discovery

study power was high and the follow-up study had low power. In all tables we omitted

the results for the selection rules that selected SNPs for follow-up based on discovery two-

sided p-value≤ 10−7, as this resulted in “intermediate” results in terms of power between

selection rules of higher and lower p-value thresholds, and is less beneficial than other

selection rules.
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For each selection rule, the characteristics of the selected SNP sets and generalization

tests are provided, averaged across the iterations of simulations. The latter are provided

in terms of estimated power, calculated as the average proportion of generalized SNPs, out

of all generalizable SNPs in the simulation, false positives (FP) as the average number of

generalizations of SNPs that are not in fact generalizable. In addition, when the selection

rules and multiple testing adjustment methods were aimed at FDRg control (Tables S1 and

S3), we also provide false discovery proportion (FDPg), which is the average proportion of

false positives out of all generalized SNPs, and estimates FDRg, and the standard deviation

of the false discovery proportion across all the simulations, SD(FDPg). When the selection

rules and multiple testing adjustment methods were aimed at FWERg control (Tables S2

and S4), we provide the estimated FWERg, as the proportion of simulations having at

least one false positive generalization, i.e. the mean of I[V >0], the indicator function of

having at least one false generalization, i.e. V = R − S > 0, and also SD(I[V >0]). The

standard errors of all measures are also provided.

As expected throughout, the higher the p-value threshold implied by the selection rule,

the larger the number of selected SNPs, and the larger the number of true generalizable

SNPs selected. As expected by chance, 50% of the non-generalizable candidate SNPs have

different direction of estimated effects in the two studies, so the one-sided p-values from

the generalization study for these SNPs are higher than 0.5. Therefore, it is not surprising

to see fewer false positive generalizations under directional control (using one-sided p-

values). In both simulation settings and under both FDRg and FWERg control, directional

control also had higher generalization power compared to using two-sided p-values, with
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less difference when the selection rule had very low p-values, or in other words, when fewer

SNPs were under the null. In the settings in which the discovery study had high discovery

power there was consequently higher generalization power, but also slightly higher error

rates. Importantly, both FDRg and FWERg r-values always protected their target error

measures.

1.3 Conclusions from unreported simulations

We studied additional simulation settings: a 90% overlap of the causal SNPs between

the two populations, a larger number of causal SNPs (1,000 and 10,000), and a discovery

study with u1j ∼ unif(4, 5), corresponding to two-sided p-values having a median p-value

of 7× 10−6, with an inter-quartile range of [2× 10−7, 1× 10−4], and follow-up study with

u2j ∼ unif(3, 4). Overall, our simulations covered many plausible scenarios of the power

of the discovery and follow-up studies (high, medium, and low discovery power, and high

and low follow-up study power), and reasonable assumptions on the overlap between the

genetic component of the two populations, and on the number of SNPs associated with the

trait. Finally, we also studied the effect of setting l00 to 0.9, 0.95.

These simulations revealed the same pattern of results, overall suggesting that selection

rule 1 applied on two-sided p-values is the most powerful for FDRg control, and selection

rule 2 applied on one-sided p-values is the most powerful for FWERg control. Setting l00 to

higher values {0.9, 0.95} had almost no effect on the results when selection rules with two-

side discovery p-values≤ 10−6 (or lower) were used, and had mixed effects on power when

selection rule 1 was used (beneficial in the low discovery power setting, but less powerful
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in the high discovery power setting).

2 Additional simulation study: simulating diverse cohorts

2.1 Simulation set-up

Using Hapgen2 (Su et al., 2011), we simulated two populations, one of 20,000 Europeans,

derived from the CEU Hapmap (Gibbs et al., 2003) sample, that represented the discovery

cohort, and one of 10,000 Mexicans derived from the MEX Hapmap sample that represented

the generalizing cohort. The smaller MEX population size reflects the fact that often,

cohorts of diverse ethnicities are smaller than those of Europeans. For each population,

we simulated 90 causal SNPs affecting a quantitative outcome, of which 45 overlapped,

in 5 different simulation scenarios. The 5 simulation scenarios differed only by the list of

causal SNPs, to allow for potential differences in generalization power due to difference in

LD structure. The MAFs of the causal SNPs in the CEU ranged between 0.04 to 0.49,

and were different in the MEX for the same SNPs, since they were the Hapmap MAFs for

these populations. The outcome model was ypi = gTpiβp + εpi, with gpi being the vector of

90 allelic counts of individual i in population p, corresponding to the causal SNPs in this

population. βp was the vector of SNP effects of population p, and εpi ∼ N (0, 1) was the

residual error. The median simulated βj in CEU was 0.07, and the largest effect sizes were

0.20 and 0.25. Of the 45 simulated causal SNPs that overlapped between populations, 12

had the same effect size in CEU and MEX so that βCEU,k = βMEX,k for k = 1, . . . , 12, and

33 had effect sizes in MEX sampled from a uniform distribution around the CEU effect, so
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that βMEX,k ∼ unif(0.2× βCEU,k, 1.8× βCEU,k).

From each of the 5 simulation settings we generated 20 simulations, to a total of 100

simulations of GWAS in two cohorts. In each simulation, we tested about 800,000 SNPs

were tested for association with the simulated outcome. According to the GWAS results

in the discovery population (either CEU or MEX), we performed a look-up of results in

the follow-up population (either MEX or CEU). For the two combinations of discovery and

follow-up populations, we report two sets of results. In the first analysis, SNPs that were

followed up were pruned, so that no two SNPs closer than 1M base pairs to each other were

followed-up (i.e. we follow-up for generalization testing only lead SNPs). We determined if

the SNPs was a “true signal” if the correlation (due to LD) between the detected SNP and

any simulated causal SNP was higher than 0.5. In the second set of results, we follow-up

all SNPs satisfying the selection rules and tested all. We then determined how many loci

generalized by defining loci as regions of 1M SNPs (here we did not use LD information,

to reduce computations).

2.2 Results - generalization testing of CEU results in MEX

To study the instance in which the first stage of the study performs a GWAS in a large study

of European individuals, and the follow-up study is a smaller study of Hispanic/Latino in-

dividuals, we provide generalization testing results for the case were the GWAS in the

CEU is treated as the discovery study, and the GWAS in the MEX population as the

follow-up. Results are given in Tables S5-S8. To summarize the conclusions from these

simulations, FDRg and FWERg r-values provide better control agains false positive gener-
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alization claims compared to procedures that limit the FWER/FDR on the follow-up study

alone. With FDR control, it is more powerful to follow all SNPs satisfying the selection rule

compared to pruning SNPs, especially when applying the more lenient selection rules. The

difference in power diminishes as the selection rule becomes more stringent. However, the

number of false positives also increases somewhat when SNPs are not pruned. For FWER

control, it is more powerful to follow only lead SNPs. With any method of error control,

and with and without pruning of SNPs, it was beneficial to follow-up on a larger set of

SNPs than that dictated by the genome-wide significance level. In particular, selection

rules 1 and 2 are powerful.

Similar simulations were performed with a smaller population in the follow-up study of

6,000 MEX individuals. The conclusions remained the same, only the generalization power

decreased.

2.3 Results - generalization testing of MEX results in CEU

To study the instance in which the first stage of the study performs a GWAS in a relatively

small study of Hispanic/Latino individuals (or other diverse, non-European population),

and the follow-up study is a larger study, we provide generalization testing results for the

case were the GWAS in the MEX is treated as the discovery study, and the GWAS in

the CEU population as the follow-up. Results are given in Tables S9-S12. To summa-

rize the conclusions from these simulations, FDRg and FWERg r-values provide better

control agains false positive generalization claims compared to procedures that limit the

FWER/FDR on the follow-up study alone. Not pruning SNPs is slightly more powerful

8



(in terms of power) than pruning SNPs when applying FDRg control, but this difference is

essentially non-existent in when FWERg is controlled. With any method of error control,

and with and without pruning of SNPs, it was beneficial to follow-up on a larger set of

SNPs than that dictated by the genome-wide significance level. In particular, selection

rules 1 and 2 are powerful.

Compare to generalizing results from CEU to MEX, here we have lower power, as

expected, since less discoveries are made in the first study. In addition, it is striking that

when implementing FDRg control and following-up on all SNPs satisfying the selection rule,

with no further pruning, the number of false positives is much larger when generalizing

from CEU to MEX, than the other way around. This may also be due to the higher power

of the CEU GWAS.
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Adjustment Loci True gen loci Gen loci FP Power

1× 10−6

Bonferroni (one sided) 61.78 22.75 22.49 0.80 0.48

Bonferroni (two sided) 61.78 22.75 21.34 0.74 0.46

FWERg r-values (one sided) 61.78 22.75 20.40 0.70 0.44

FWERg r-values (two sided) 61.78 22.75 19.09 0.62 0.41

Selection rule 2 - one sided

Bonferroni (one sided) 56.55 21.91 21.62 0.77 0.46

Bonferroni (two sided) 56.55 21.91 20.55 0.72 0.44

FWERg r-values (one sided) 56.55 21.91 20.54 0.71 0.44

FWERg r-values (two sided) 56.55 21.91 19.16 0.62 0.41

Selection rule 2 - two sided

Bonferroni (one sided) 53.50 21.35 21.02 0.71 0.45

Bonferroni (two sided) 53.50 21.35 20.09 0.67 0.43

FWERg r-values (one sided) 53.50 21.35 20.08 0.66 0.43

FWERg r-values (two sided) 53.50 21.35 19.21 0.62 0.41

5× 10−8

Bonferroni (one sided) 49.66 20.19 19.95 0.68 0.43

Bonferroni (two sided) 49.66 20.19 19.16 0.65 0.41

FWERg r-values (one sided) 49.66 20.19 19.15 0.64 0.41

FWERg r-values (two sided) 49.66 20.19 18.37 0.61 0.39

Table S5: Averaged generalization testing results of CEU associations in MEX, given by

loci, when SNPs passing the selection rule are pruned by distance to the lead SNP. The

controlled error measure was FWERg. We compare the Bonferroni adjustment on the

follow-up study alone with FWERg r-values, both with and without directional control

implemented with one-sided p-values.
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Adjustment SNPs Loci True gen loci Gen loci FP Power

1× 10−6

Bonferroni (one sided) 801.63 61.78 31.02 20.23 0.66 0.43

Bonferroni (two sided) 801.63 61.78 31.02 19.33 0.63 0.42

FWERg r-values (one sided) 801.63 61.78 31.02 18.42 0.57 0.40

FWERg r-values(two sided) 801.63 61.78 31.02 17.25 0.50 0.37

Selection rule 2 - one sided

Bonferroni (one sided) 681.07 56.55 29.00 19.47 0.65 0.42

Bonferroni (two sided) 681.07 56.55 29.00 18.65 0.60 0.40

FWERg r-values (one sided) 681.07 56.55 29.00 18.64 0.59 0.40

FWERg r-values (two sided) 681.07 56.55 29.00 17.44 0.51 0.38

Selection rule 2 - two sided

Bonferroni (one sided) 624.80 53.50 27.72 19.09 0.61 0.41

Bonferroni(two sided) 624.80 53.50 27.72 18.28 0.55 0.39

FWERg r-values (one sided) 624.80 53.50 27.72 18.27 0.54 0.39

FWERg r-values (two sided) 624.80 53.50 27.72 17.56 0.53 0.38

5× 10−8

Bonferroni (one sided) 554.81 49.66 25.90 18.27 0.60 0.39

Bonferroni (two sided) 554.81 49.66 25.90 17.51 0.54 0.38

FWERg r-values (one sided) 554.81 49.66 25.90 17.50 0.53 0.38

FWERg r-values (two sided) 554.81 49.66 25.90 16.87 0.51 0.36

Table S6: Averaged generalization testing results of CEU associations in MEX in simu-

lations, given by loci, when all SNPs passing the selection rule are followed-up and the

controlled error measured was FWERg. We compare the Bonferroni adjustment on the

follow-up study alone with FWERg r-values, both with and without directional control

implemented with one-sided p-values.
15



Adjustment Loci True gen loci Gen loci FP Power

Selection rule 1 - one sided

BH (one sided) 271.41 23.08 32.07 2.58 0.66

BH (two sided) 271.41 23.08 30.59 2.58 0.62

FDRg r-values (one sided) 271.41 23.08 26.17 1.00 0.56

FDRg r-values (two sided) 271.41 23.08 24.26 0.90 0.52

Selection rule 1 - two sided

BH (one sided) 168.09 23.72 32.62 2.46 0.67

BH (two sided) 168.09 23.72 30.94 2.33 0.64

FDRg r-values (one sided) 168.09 23.72 27.09 1.11 0.58

FDRg r-values (two sided) 168.09 23.72 25.15 0.96 0.54

1× 10−6

BH (one sided) 61.78 22.75 28.11 1.68 0.59

BH (two sided) 61.78 22.75 27.05 1.64 0.56

FDRg r-values (one sided) 61.78 22.75 20.40 0.70 0.44

FDRg r-values (two sided) 61.78 22.75 25.59 1.26 0.54

5× 10−8

BH (one sided) 49.66 20.19 23.95 1.37 0.50

BH (two sided) 49.66 20.19 23.27 1.38 0.49

FDRg r-values (one sided) 49.66 20.19 22.99 1.10 0.49

FDRg r-values (two sided) 49.66 20.19 22.20 1.10 0.47

Table S7: Averaged generalization testing results of CEU associations in MEX in simula-

tions, given by loci, when SNPs passing the selection rule are pruned by distance to the

lead SNP. The controlled error measure was FDRg. We compare the BH adjustment on

the follow-up study alone with FDRg r-values, both with and without directional control

implemented with one-sided p-values.
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Adjustment SNPs Loci True gen loci Gen loci FP Power

Selection rule 1 - one sided

BH (one sided) 3014.62 271.41 40.99 42.87 8.93 0.75

BH (two sided) 3014.62 271.41 40.99 41.37 8.92 0.72

FDRg r-values (one sided) 3014.62 271.41 40.99 32.67 2.30 0.67

FDRg r-values (two sided) 3014.62 271.41 40.99 30.13 1.96 0.63

Selection rule 1 - two sided

BH (one sided) 2123.12 168.09 39.93 40.13 6.57 0.75

BH (two sided) 2123.12 168.09 39.93 38.73 6.63 0.71

FDRg r-values (one sided) 2123.12 168.09 39.93 33.98 2.93 0.69

FDRg r-values (two sided) 2123.12 168.09 39.93 31.37 2.42 0.64

1× 10−6

BH (one sided) 801.63 61.78 31.02 30.32 3.04 0.61

BH (two sided) 801.63 61.78 31.02 29.79 3.28 0.59

FDRg r-values (one sided) 801.63 61.78 31.02 28.58 2.15 0.59

FDRg r-values(two sided) 801.63 61.78 31.02 27.58 2.15 0.57

5× 10−8

BH (one sided) 554.81 49.66 25.90 25.45 2.31 0.51

BH (two sided) 554.81 49.66 25.90 25.17 2.58 0.50

FDRg r-values (one sided) 554.81 49.66 25.90 24.26 1.73 0.50

FDRg r-values (two sided) 554.81 49.66 25.90 23.52 1.73 0.48

Table S8: Averaged generalization testing results of MEX associations in CEU in simu-

lations, given by loci, when all SNPs passing the selection rule are followed-up and the

controlled error measured was FDRg. We compare the BH adjustment on the follow-up

study alone with FDRg r-values, both with and without directional control implemented

with one-sided p-values.
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Adjustment Loci True gen loci Gen loci FP Power

1× 10−6

Bonferroni (one sided) 20.99 19.44 16.88 0.69 0.36

Bonferroni (two sided) 20.99 19.44 16.80 0.69 0.36

FWERg r-values (one sided) 20.99 19.44 15.38 0.61 0.33

FWERg r-values (two sided) 20.99 19.44 14.64 0.54 0.31

Selection rule 2 - one sided

Bonferroni (one sided) 18.66 17.64 15.44 0.61 0.33

Bonferroni (two sided) 18.66 17.64 15.38 0.61 0.33

FWERg r-values (one sided) 18.66 17.64 15.38 0.61 0.33

FWERg r-values (two sided) 18.66 17.64 14.65 0.54 0.31

Selection rule 2 - two sided

Bonferroni (one sided) 17.68 16.91 14.71 0.54 0.31

Bonferroni (two sided) 17.68 16.91 14.68 0.54 0.31

FWERg r-values (one sided) 17.68 16.91 14.68 0.54 0.31

FWERg r-values (two sided) 17.68 16.91 14.66 0.54 0.31

5× 10−8

Bonferroni (one sided) 16.51 15.88 13.81 0.46 0.30

Bonferroni (two sided) 16.51 15.88 13.78 0.46 0.30

FWERg r-values (one sided) 16.51 15.88 13.78 0.46 0.30

FWERg r-values (two sided) 16.51 15.88 13.76 0.46 0.30

Table S9: Averaged generalization testing results of MEX associations in CEU in simula-

tions, given by loci, when SNPs passing the selection rule are pruned by distance into the

lead SNPs only. We compare the Bonferroni adjustment on the follow-up study alone with

FWERg r-values, both with and without directional control implemented with one-sided

p-values.

18



Adjustment SNP Loci True gen loci Gen loci FP Power

1× 10−6

Bonferroni (one sided) 287.36 20.99 16.75 16.74 0.51 0.36

Bonferroni (two sided) 287.36 20.99 16.75 16.66 0.51 0.36

FWERg r-values (one sided) 287.36 20.99 16.75 15.28 0.46 0.33

FWERg r-values (two sided) 287.36 20.99 16.75 14.47 0.44 0.31

Selection rule 2 - one sided

Bonferroni (one sided) 243.00 18.66 15.22 15.33 0.46 0.33

Bonferroni (two sided) 243.00 18.66 15.22 15.30 0.46 0.33

FWERg r-values (one sided) 243.00 18.66 15.22 15.30 0.46 0.33

FWERg r-values (two sided) 243.00 18.66 15.22 14.52 0.45 0.31

Selection rule 2 - two sided

Bonferroni (one sided) 224.44 17.68 14.47 14.62 0.45 0.31

Bonferroni (two sided) 224.44 17.68 14.47 14.59 0.45 0.31

FWERg r-values (one sided) 224.44 17.68 14.47 14.59 0.45 0.31

FWERg r-values (two sided) 224.44 17.68 14.47 14.53 0.45 0.31

5× 10−8

Bonferroni (one sided) 204.14 16.51 13.59 13.74 0.40 0.30

Bonferroni (two sided) 204.14 16.51 13.59 13.72 0.40 0.30

FWERg r-values (one sided) 204.14 16.51 13.59 13.72 0.40 0.30

FWERg r-values (two sided) 204.14 16.51 13.59 13.66 0.40 0.29

Table S10: Averaged generalization testing results of MEX associations in CEU in simula-

tions, given by loci, when all SNPs passing the selection rule are followed-up and the con-

trolled error measure is FWERg. We compare the Bonferroni adjustment on the follow-up

study alone with FWERg r-values, both with and without directional control implemented

with one-sided p-values.
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Adjustment Loci True gen loci Gen loci FP Power

Selection rule 1 - one sided

BH (one sided) 111.95 28.30 26.28 2.94 0.52

BH (two sided) 111.95 28.30 26.01 2.72 0.52

FDRg r-values (one sided) 111.95 28.30 18.78 0.82 0.40

FDRg r-values (two sided) 111.95 28.30 17.88 0.72 0.38

Selection rule 1 - two sided

BH (one sided) 62.56 26.56 24.38 2.37 0.49

BH (two sided) 62.56 26.56 24.16 2.20 0.49

FDRg r-values (one sided) 62.56 26.56 18.85 0.86 0.40

FDRg r-values (two sided) 62.56 26.56 17.94 0.72 0.38

1× 10−6

BH (one sided) 20.99 19.44 17.18 0.79 0.36

BH (two sided) 20.99 19.44 17.10 0.76 0.36

FDRg r-values (one sided) 20.99 19.44 17.06 0.75 0.36

FDRg r-values (two sided) 20.99 19.44 16.98 0.71 0.36

5× 10−8

BH (one sided) 16.51 15.88 13.94 0.48 0.30

BH (two sided) 16.51 15.88 13.90 0.47 0.30

FDRg r-values (one sided) 16.51 15.88 13.88 0.47 0.30

FDRg r-values (two sided) 16.51 15.88 13.86 0.46 0.30

Table S11: Averaged generalization testing results of MEX associations in CEU in simu-

lations, given by loci, when SNPs passing the selection rule are pruned by distance to the

lead SNP. The controlled error measure was FDRg We compare the BH adjustment on

the follow-up study alone with FDRg r-values, both with and without directional control

implemented with one-sided p-values.
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Adjustment SNP Loci True gen loci Gen loci FP Power

Selection rule 1 - one sided

BH (one sided) 869.93 111.95 28.84 30.14 4.89 0.56

BH (two sided) 869.93 111.95 28.84 29.93 4.80 0.56

FDRg r-values (one sided) 869.93 111.95 28.84 24.51 1.58 0.51

FDRg r-values (two sided) 869.93 111.95 28.84 22.47 1.03 0.48

Selection rule 1 - two sided

BH (one sided) 625.74 62.56 25.12 25.99 2.80 0.52

BH (two sided) 625.74 62.56 25.12 25.71 2.60 0.51

FDRg r-values (one sided) 625.74 62.56 25.12 24.69 1.73 0.51

FDRg r-values (two sided) 625.74 62.56 25.12 22.63 1.13 0.48

1× 10−6

BH (one sided) 287.36 20.99 16.75 16.74 0.51 0.36

BH (two sided) 287.36 20.99 16.75 17.39 0.88 0.37

FDRg r-values (one sided) 287.36 20.99 16.75 17.29 0.78 0.37

FDRg r-values (two sided) 287.36 20.99 16.75 17.13 0.66 0.37

5× 10−8

BH (one sided) 204.14 16.51 13.59 14.19 0.74 0.30

BH (two sided) 204.14 16.51 13.59 14.11 0.67 0.30

FDRg r-values (one sided) 204.14 16.51 13.59 14.01 0.57 0.30

FDRg r-values (two sided) 204.14 16.51 13.59 13.93 0.49 0.30

Table S12: Averaged generalization testing results of MEX associations in CEU in sim-

ulations, given by loci, when all SNPs passing the selection rule are followed-up and the

controlled error measure is FDRg. We compare the BH adjustment on the follow-up study

alone with FDRg r-values, both with and without directional control implemented with

one-sided p-values.
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3 Additional data analysis results

3.1 SNPs that generalized in the FDRg directional r-values TC analysis

but were not discovered in HCHS/SOL or GLGC GWAS alone
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3.2 Generalization of total cholesterol SNPs discovered in Europeans -

without SNP pruning

In this analysis we tested all SNPs with p-value< 10−6 in the GLGC GWAS. There were

2.4 million genotyped SNPs with association testing results in Willer et al. (2013), and

5,399 SNPs had p-value< 10−6 and were available in the HCHS/SOL. Of these SNPs 2,418

of the SNPs generalized, which includes the 33 SNPs that were generalized in Analysis A.

In addition, another one of the SNPs reported in Willer et al. (2013) generalized. Other

generalized SNPs were not specifically reported in the papers. However, we defined loci as

1MB regions around the known loci, and found that all SNPs that generalized in Analysis

B where located at loci around reported SNPs. In particular, there were 9 loci in which

the reported SNP did not generalize, but other SNPs did. These generalizations did not

occur in the analysis reported in the main manuscript, in whic these SNPs were not tested.

4 Mathematical derivations

Definition. A stable selection rule satisfies the following condition: for any j ∈ R1,

changing pL1j so that j is still selected while all other discovery study p-values are held

fixed, will not change the set R1.

Stable selection rules include selecting the hypotheses with two-sided discovery p-values

below a certain cut-off, or by a non-adaptive multiple testing procedure on the discovery

study two-sided p-values such as the BH procedure for FDR control or the Bonferroni

procedure for FWER control, or selecting the k hypotheses with the smallest two-sided
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p-values, where k is fixed in advance.

Theorem 1 Let f00 be the true fraction of the m SNPs investigated in the discovery study

that are null in both studies. The level q directional procedure based on FDRg r-values

in Section 2.1.5 in the manuscript controls the directional FDRg at level at most q if

the following conditions are satisfied: the rule by which the set R1 is selected is a stable

selection rule; l00 ≤ f00; the p-values within the follow-up study are jointly independent

or are positive regression dependent on the subset of p-values corresponding to true null

hypotheses (property PRDS); for SNPs with Hj /∈ {(1, 1), (−1,−1)} the follow-up study

p-values are independent of the discovery study p-values; and in addition one of items 1-3

below is satisfied.

1. The p-values within the discovery study are independent.

2. Arbitrary dependence among the p-values within the discovery study, when in the com-

putation of the FDRg r-values (section 2.1.4 in the main manuscript) m is replaced

by m∗ = m
∑m

i=1 1/i.

3. Arbitrary dependence among the p-values within the discovery study, and the selection

rule is such that the discovery study p-values of the SNPs that are selected for follow-

up are at most a fixed threshold t ∈ (0, 1), when c1 computed in Step 3(a) is replaced

by

c̃1(x) = max{a : a(1 +

dtm/(ax)−1e∑
i=1

1/i) = c1(x)}.

Steps 3(b) and 3(c) remain unchanged. In step 4, the FDR r-value for feature i ∈ R1

is ri = min{x : fi(x) ≤ x} if a solution exists in (0, 1), and one otherwise.
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The implication of item 3 is that for generalization controlling FDRg at level q, if t ≤

c1(q)q/m, no modification is required, so the procedure that declares as generalized all

SNPs with r-values at most q controls the FDRg at level q any type of dependency in the

discovery study. Note that the modification in item 3 will lead to more generalization than

the modification in item 2 only if t < c1(q)q

1+
∑m−1

i=1 1/i
.

From simulation study 2, even if the discovery study p-values are not independent,

the conservative modifications of the r-value computation in items 2-3 are unnecessary for

FDRg control in GWAS.

Theorem 2 The level q directional procedure based on FWERg r-values controls the di-

rectional FWERg at level q if l00 ≤ f00, and if for SNPs with Hj /∈ {(1, 1), (−1,−1)} the

follow-up study p-values are independent of the discovery study p-values.

4.1 Proof of Theorem 1

We first show that the following procedure is identical to that of declaring the set of SNPs

with FDR r-values at most q as generalized. First, compute the number of generalization

claims at level q as follows:

R2 , max

r :
∑
j∈R1

I

[
(p′1j , p

′
2j) ≤

(
r

m
c1(q)q,

r

R1
c2q

)]
= r

 .

Next, declare as generalized SNPs the set

R2 =

{
j : (p′1j , p

′
2j) ≤

(
R2

m
c1(q)q,

R2

R1
c2q

)
, j ∈ R1

}
.

It was shown in Lemma S1.1 in Heller et al. (2014), without directional control, that

this procedure is identical to declaring the set of SNPs with FDR r-values at most q as
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generalized. It is straightforward to see that the proof of Lemma S1.1 in Heller et al.

(2014) remains unchanged when the p-values are replaced by (p′1j , p
′
2j), therefore the above

procedure is identical to that of declaring the set of SNPs with FDRg r-values at most q

as generalized.

We will now prove that under the conditions of items 1-3 of Theorem 1 the directional

procedure based on FDRg r-values controls FDRg at a level which is smaller or equal to

c1(q)c2q
2(|j : Hj ∈ {(−1, 0), (1, 0), (0, 0)}|)/m+

c1(q)q|j : Hj ∈ {(0, 1), (0,−1), (−1,−1), (1, 1), (−1, 1), (1,−1)}|/m+

c2qE[|R1 ∩ {j : Hj ∈ {(−1, 0), (1, 0), (−1, 1), (1,−1), (0, 1), (0,−1), (0, 0)}|/|R1|],

(1)

where the cardinalities are over the sets containing all m SNPs, i.e. j = 1, . . . ,m. Note

that this expression is at most q if l00 ≤ f00. To see this, note that

|j : Hj ∈ {(−1, 0), (1, 0), (0, 0)}|/m = f·0,

and

|j : Hj ∈ {(0, 1), (0,−1), (−1,−1), (1, 1), (−1, 1), (1,−1)}|/m = 1− f·0.

Moreover,

E[|R1 ∩ {j : Hj ∈ {(−1, 0), (1, 0), (−1, 1), (1,−1), (0, 1), (0,−1), (0, 0)}|/|R1|] ≤ 1.
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Therefore, expression (1) is at most

c1(q)c2q
2f·0 + c1(q)q(1− f·0) + c2q

= c1(q)q − f·0c1(q)q(1− c2q) + c2q

≤ c1(q)q − l00c1(q)q(1− c2q) + c2q

= c1(q)q[1− l00(1− c2q)] + c2q

= (1− c2)q + c2q = q.

We will now prove that the expression in (1) is an upper bound for FDRg, which is

E

(
R− S

max(R, 1)

)
=

∑
{j:Hj∈{(0,−1),(0,1),(0,0),(1,0),(−1,0),(1,−1),(−1,1)}}

E

(
RL

j +RR
j

max(R, 1)

)
+

∑
{j:Hj=(1,1)}

E

(
RL

j

max(R, 1)

)
+

∑
{j:Hj=(−1,−1)}

E

(
RR

j

max(R, 1)

)
. (2)

For each j ∈ {1, . . . ,m}, we define C
(j)
r as the event in which if j is declared generalized,

r hypotheses are declared generalized including j, which amounts to the definition given

in the proof of Theorem 1 in Supplementary Material of Heller et al. (2014), where the

one-sided p-values (p1j , p2j) are replaced by (p′1j , p
′
2j). Note that for any given realization

of |R1| and value of r such that r > |R1|, C(j)
r = ∅.

From the equivalent procedure above we get the following equality,

E

(
RL

j

max(R, 1)

)
=

m∑
r=1

1

r
Pr

(
j ∈ R1, P

L
1j ≤ min

(
rc1(q)q

m
, 0.5

)
, PL

2j ≤
rc2q

max(|R1|, 1)
, C(j)

r

)

≤
m∑
r=1

1

r
Pr

(
PL
1j ≤

rc1(q)q

m
, PL

2j ≤ c2q, C(j)
r

)
, (3)

28



where the equality follows from the fact that a generalization claim is made in the left

direction only if PL
1j ≤ PR

1j , i.e. only if PL
1j < 0.5. Similarly,

E

(
RR

j

max(R, 1)

)
≤

m∑
r=1

1

r
Pr

(
PR
1j ≤

rc1(q)q

m
, PR

2j ≤ c2q, C(j)
r

)
. (4)

Using inequalities (3) and (4), and the facts that PL
1j and PR

1j are uniform for j ∈ {j : H1j =

0} and are stochastically larger than uniform for j ∈ {j : H1j = 1} and j ∈ {j : H1j = −1}

respectively, we obtain the following inequalities:

E

(
RL

j

max(R, 1)

)
≤


c1(q)q/m if Hj ∈ {(0,−1), (1,−1), (1, 1)},

c2qE[I(j ∈ R1)/|R1|] if Hj ∈ {(−1, 0), (0, 1), (−1, 1)},

c1(q)c2q
2/m if Hj ∈ {(0, 0), (1, 0)},

E

(
RR

j

max(R, 1)

)
≤


c1(q)q/m if Hj ∈ {(0, 1), (−1, 1), (−1,−1)},

c2qE[I(j ∈ R1)/|R1|] if Hj ∈ {(1, 0), (0,−1), (1,−1), (0, 0)},

c1(q)c2q
2/m if Hj ∈ {(−1, 0)}.

These upper bounds for items 1-3 of Theorem 1 follow from similar derivations to these

given in the proof of items (i)-(iii) of Theorem 1 in Heller et al. (2014), respectively.

Specifically, for each of the items, the upper bounds c1(q)q/m, c2qE[I(j ∈ R1)/|R1|] and

c1(q)c2q
2/m are derived similarly to inequalities [S3], [S4], and [S5] in the proof of Theorem

1 in Heller et al. (2014), respectively. Thus we obtain

E

(
RR

j +RL
j

max(R, 1)

)
≤



c2qE[I(j ∈ R1)/|R1|] + c1(q)c2q
2/m if Hj = (0, 0),

c2qE[I(j ∈ R1)/|R1|] + c1(q)c2q
2/m if Hj ∈ {(1, 0), (−1, 0)},

c1(q)q/m+ c2qE[I(j ∈ R1)/|R1|] if Hj ∈ {(0, 1), (0,−1)},

c2qE[I(j ∈ R1)/|R1|] + c1(q)q/m if Hj ∈ {(1,−1), (−1, 1)},
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and for the directional error terms:

E

(
RL

j

max(R, 1)

)
≤ c1(q)q

m
, for j with Hj = (1, 1)

E

(
RR

j

max(R, 1)

)
≤ c1(q)q

m
, for j with Hj = (−1,−1).

The result follows from using expression (2) for FDRg, and summing up over the above

upper bounds.

4.2 Proof of Theorem 2

It is easy to show that the procedure in Section 2.1.5 of the main manuscript is unchanged if

we replace Step 2 by the following: all SNPs with fFWER
j (q) ≤ q are declared generalized.

The equivalence follows from the facts that fFWER
j (x) is a continuous function of x and

fFWER
j (x)/x is strictly monotone decreasing (this result follows from the proof of Lemma

S1.1 in the SI of Heller et al. (2014) and it is straightforward to show that it continues to

hold in the directional generalization analysis).

We will now prove that the expression in (1) with q replaced by α is an upper bound

for the directional FWERg, which is Pr(R−S > 0). It was shown in the proof of Theorem

1 that this expression is at most α if l00 ≤ f00. Note that

Pr(R− S > 0) ≤ E(R− S) ≤
∑

{j:Hj=(1,1)}

E(RL
j ) +

∑
{j:Hj=(−1,−1)}

E(RR
j )

+
∑

{j:Hj∈{(0,−1),(0,1),(0,0),(1,0),(−1,0),(1,−1),(−1,1)}}

E(RR
j +RL

j ).

We consider the procedure that replaces Step 2 by declaring SNPs with fFWER
j (α) ≤ α

as generalized (as discussed above). The directional error terms (declaring that a SNP
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association is generalized in one direction, when in fact the association is in the other

direction) in the first two sums above are bounded by:

E
(
RL

j

)
≤ c1(α)α

m
, for j with Hj = (1, 1)

E
(
RR

j

)
≤ c1(α)α

m
, for j with Hj = (−1,−1)

These bounds hold since (without loss of generality), for j with Hj = (1, 1)

E
(
RL

j

)
≤ Pr(PL

1j ≤ min(c1(α)α/m, 0.5), PL
2j ≤ c2α/R1)

≤ Pr(PL
1j ≤ c1(α)α/m) ≤ c1α/m,

where the first inequality follows from the fact that a generalization claim is made in the

left direction only if PL
1j ≤ PR

1j , i.e., only if PL
1j < 0.5, and the last inequality follows that

the fact that for H1j = 1, PL
1j is stochastically larger than uniform.

All remaining errors are false generalization claims that are not directional errors.

Clearly,

E(RR
j +RL

j ) = Pr(min(PL
1j , P

R
1j) ≤ c1(α)α/m,P ′2j ≤ c2α/|R1|, j ∈ R1).

It is simple to show (using similar derivations to these in the proof of Theorem S6.1 in the

SI of Heller et al. (2014)) that the right hand side is at most the following upper bounds:

E(RR
j +RL

j ) ≤



c2αE[I(j ∈ R1)/|R1|] + c1(α)α/m× c2α if Hj = (0, 0),

c2αE[I(j ∈ R1)/|R1|] + c1(α)α/m× c2α if Hj ∈ {(1, 0), (−1, 0)},

c1(α)α/m+ c2αE[I(j ∈ R1)/|R1|] if Hj ∈ {(0, 1), (0,−1)},

c2αE[I(j ∈ R1)/|R1|] + c1(α)α/m if Hj ∈ {(1,−1), (−1, 1)}.

The result follows from summing over these upper bounds.

31



References

Devlin, B. and Roeder, K. (1999). Genomic control for association studies. Biometrics,

55 997–1004.

Gibbs, R. A., Belmont, J. W., Hardenbol, P., Willis, T. D., Yu, F., Yang, H.,

Ch’ang, L.-Y., Huang, W., Liu, B., Shen, Y. et al. (2003). The international

HapMap project. Nature, 426 789–796.

Heller, R., Bogomolov, M. and Benjamini, Y. (2014). Deciding whether follow-up

studies have replicated findings in a preliminary large-scale omics study. Proceedings of

the National Academy of Sciences, 111 16262–16267.

Su, Z., Marchini, J. and Donnelly, P. (2011). HAPGEN2: simulation of multiple

disease SNPs. Bioinformatics, 27 2304–2305.

Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S.,

Kanoni, S., Ganna, A., Chen, J., Buchkovich, M. L., Mora, S. et al. (2013).

Discovery and refinement of loci associated with lipid levels. Nature Genetics, 45 1274

– 1283.

32


