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1 Additional information about the simulations described in

the manuscript

1.1 Generating test statistics

In both settings, the test statistics corresponding to causal SNPs in the discovery study 1
were sampled, in each simulation, as z1 j ~ N (uy;, 1) where uy; is a realization of a random
variable sampled from unif(u;, up) distribution. When the discovery study had lower power
we set u; = 4,u;, = 5. Corresponding two-sided p-values had a median p-value of 7 x 1076,
with an inter-quartile range of [2 x 1077, 1 x 10™#]. When the discovery study had high
power we set u; = 5,up = 6. Corresponding two-sided p-values had a median p-value
of 4 x 1078, with an inter-quartile range of [5 x 1071%,2 x 107%]. The 100 test statistics
corresponding to the causal SNPs in study 2 were similarly sampled as z3; ~ N (ug;,1)
where ug; ~ unif(5, 6) when the follow-up study had high power, and ug; ~ unif(3,4) when
the follow-up study had low power; the latter had corresponding two-sided p-values with
a median p-value of 5 x 104 and an inter-quartile range of [3 x 10755 x 1073]. Finally,

we generated inflation in both the discovery and the generalizing cohorts by sampling the



non-causal test statistics from a Normal distribution with mean of zero and variance of
1.21, corresponding to Age = 1.21 (Devlin and Roeder, 1999). Inflation may exist due to
ancestry confounding or low minor allele counts.

We studied additional simulation settings: a 90% overlap of the causal SNPs between
the two populations, a larger number of causal SNPs (1,000 and 10,000), and a discovery
study with u1; ~ unif(4,5), corresponding to two-sided p-values having a median p-value
of 7 x 1079, with an inter-quartile range of [2 x 1077,1 x 10~%], and follow-up study with
ug; ~ unif(3,4). Overall, our simulations covered many plausible scenarios of the power
of the discovery and follow-up studies (high, medium, and low discovery power, and high
and low follow-up study power), and reasonable assumptions on the overlap between the
genetic component of the two populations, and on the number of SNPs associated with the

trait. Finally, we also studied the effect of setting lgp to 0.9,0.95.

1.2 Additional results

Tables S1 and S2 provide the simulation results when the discovery power was low and
the follow-up study had high power, when the goal was to control FDR, and FWER,,
respectively. Tables S3 and S4 provide similar results for the setting where the discovery
study power was high and the follow-up study had low power. In all tables we omitted
the results for the selection rules that selected SNPs for follow-up based on discovery two-
sided p-value< 1077, as this resulted in “intermediate” results in terms of power between
selection rules of higher and lower p-value thresholds, and is less beneficial than other

selection rules.



For each selection rule, the characteristics of the selected SNP sets and generalization
tests are provided, averaged across the iterations of simulations. The latter are provided
in terms of estimated power, calculated as the average proportion of generalized SNPs, out
of all generalizable SNPs in the simulation, false positives (FP) as the average number of
generalizations of SNPs that are not in fact generalizable. In addition, when the selection
rules and multiple testing adjustment methods were aimed at FDR,, control (Tables S1 and
S3), we also provide false discovery proportion (FDP,), which is the average proportion of
false positives out of all generalized SNPs, and estimates FDR,, and the standard deviation
of the false discovery proportion across all the simulations, SD(FDP,). When the selection
rules and multiple testing adjustment methods were aimed at FWER, control (Tables S2
and S4), we provide the estimated FWER,, as the proportion of simulations having at
least one false positive generalization, i.e. the mean of Iy -, the indicator function of
having at least one false generalization, i.e. V' = R — S > 0, and also SD({[y ). The
standard errors of all measures are also provided.

As expected throughout, the higher the p-value threshold implied by the selection rule,
the larger the number of selected SNPs, and the larger the number of true generalizable
SNPs selected. As expected by chance, 50% of the non-generalizable candidate SNPs have
different direction of estimated effects in the two studies, so the one-sided p-values from
the generalization study for these SNPs are higher than 0.5. Therefore, it is not surprising
to see fewer false positive generalizations under directional control (using one-sided p-
values). In both simulation settings and under both FDR, and FWER, control, directional

control also had higher generalization power compared to using two-sided p-values, with



less difference when the selection rule had very low p-values, or in other words, when fewer
SNPs were under the null. In the settings in which the discovery study had high discovery
power there was consequently higher generalization power, but also slightly higher error
rates. Importantly, both FDR, and FWER, r-values always protected their target error

measures.

1.3 Conclusions from unreported simulations

We studied additional simulation settings: a 90% overlap of the causal SNPs between
the two populations, a larger number of causal SNPs (1,000 and 10,000), and a discovery
study with u1; ~ unif(4,5), corresponding to two-sided p-values having a median p-value
of 7 x 1079, with an inter-quartile range of [2 x 1077,1 x 10~%], and follow-up study with
ug; ~ unif(3,4). Overall, our simulations covered many plausible scenarios of the power
of the discovery and follow-up studies (high, medium, and low discovery power, and high
and low follow-up study power), and reasonable assumptions on the overlap between the
genetic component of the two populations, and on the number of SNPs associated with the
trait. Finally, we also studied the effect of setting lgg to 0.9, 0.95.

These simulations revealed the same pattern of results, overall suggesting that selection
rule 1 applied on two-sided p-values is the most powerful for FDR, control, and selection
rule 2 applied on one-sided p-values is the most powerful for FWER, control. Setting log to
higher values {0.9,0.95} had almost no effect on the results when selection rules with two-
side discovery p-values< 107 (or lower) were used, and had mixed effects on power when

selection rule 1 was used (beneficial in the low discovery power setting, but less powerful



in the high discovery power setting).

2 Additional simulation study: simulating diverse cohorts

2.1 Simulation set-up

Using Hapgen2 (Su et al., 2011), we simulated two populations, one of 20,000 Europeans,
derived from the CEU Hapmap (Gibbs et al., 2003) sample, that represented the discovery
cohort, and one of 10,000 Mexicans derived from the MEX Hapmap sample that represented
the generalizing cohort. The smaller MEX population size reflects the fact that often,
cohorts of diverse ethnicities are smaller than those of Europeans. For each population,
we simulated 90 causal SNPs affecting a quantitative outcome, of which 45 overlapped,
in 5 different simulation scenarios. The 5 simulation scenarios differed only by the list of
causal SNPs, to allow for potential differences in generalization power due to difference in
LD structure. The MAFs of the causal SNPs in the CEU ranged between 0.04 to 0.49,
and were different in the MEX for the same SNPs, since they were the Hapmap MAFs for
these populations. The outcome model was y,; = g;{;ﬁp + €pi, with g,,; being the vector of
90 allelic counts of individual i in population p, corresponding to the causal SNPs in this
population. B3, was the vector of SNP effects of population p, and €p; ~ N(0,1) was the
residual error. The median simulated §; in CEU was 0.07, and the largest effect sizes were
0.20 and 0.25. Of the 45 simulated causal SNPs that overlapped between populations, 12
had the same effect size in CEU and MEX so that Bcpyr = Bmexk for k=1,...,12, and

33 had effect sizes in MEX sampled from a uniform distribution around the CEU effect, so



that By px ke ~ unif(0.2 x Boguk, 1.8 X Boruk)-

From each of the 5 simulation settings we generated 20 simulations, to a total of 100
simulations of GWAS in two cohorts. In each simulation, we tested about 800,000 SNPs
were tested for association with the simulated outcome. According to the GWAS results
in the discovery population (either CEU or MEX), we performed a look-up of results in
the follow-up population (either MEX or CEU). For the two combinations of discovery and
follow-up populations, we report two sets of results. In the first analysis, SNPs that were
followed up were pruned, so that no two SNPs closer than 1M base pairs to each other were
followed-up (i.e. we follow-up for generalization testing only lead SNPs). We determined if
the SNPs was a “true signal” if the correlation (due to LD) between the detected SNP and
any simulated causal SNP was higher than 0.5. In the second set of results, we follow-up
all SNPs satisfying the selection rules and tested all. We then determined how many loci
generalized by defining loci as regions of 1M SNPs (here we did not use LD information,

to reduce computations).

2.2 Results - generalization testing of CEU results in MEX

To study the instance in which the first stage of the study performs a GWAS in a large study
of European individuals, and the follow-up study is a smaller study of Hispanic/Latino in-
dividuals, we provide generalization testing results for the case were the GWAS in the
CEU is treated as the discovery study, and the GWAS in the MEX population as the
follow-up. Results are given in Tables S5-S8. To summarize the conclusions from these

simulations, FDR, and FWER, r-values provide better control agains false positive gener-



alization claims compared to procedures that limit the FWER/FDR on the follow-up study
alone. With FDR control, it is more powerful to follow all SNPs satisfying the selection rule
compared to pruning SNPs, especially when applying the more lenient selection rules. The
difference in power diminishes as the selection rule becomes more stringent. However, the
number of false positives also increases somewhat when SNPs are not pruned. For FWER
control, it is more powerful to follow only lead SNPs. With any method of error control,
and with and without pruning of SNPs, it was beneficial to follow-up on a larger set of
SNPs than that dictated by the genome-wide significance level. In particular, selection
rules 1 and 2 are powerful.

Similar simulations were performed with a smaller population in the follow-up study of
6,000 MEX individuals. The conclusions remained the same, only the generalization power

decreased.

2.3 Results - generalization testing of MEX results in CEU

To study the instance in which the first stage of the study performs a GWAS in a relatively
small study of Hispanic/Latino individuals (or other diverse, non-European population),
and the follow-up study is a larger study, we provide generalization testing results for the
case were the GWAS in the MEX is treated as the discovery study, and the GWAS in
the CEU population as the follow-up. Results are given in Tables S9-S12. To summa-
rize the conclusions from these simulations, FDR, and FWER, r-values provide better
control agains false positive generalization claims compared to procedures that limit the

FWER/FDR on the follow-up study alone. Not pruning SNPs is slightly more powerful



(in terms of power) than pruning SNPs when applying FDR, control, but this difference is
essentially non-existent in when FWERy is controlled. With any method of error control,
and with and without pruning of SNPs, it was beneficial to follow-up on a larger set of
SNPs than that dictated by the genome-wide significance level. In particular, selection
rules 1 and 2 are powerful.

Compare to generalizing results from CEU to MEX, here we have lower power, as
expected, since less discoveries are made in the first study. In addition, it is striking that
when implementing FDR, control and following-up on all SNPs satisfying the selection rule,
with no further pruning, the number of false positives is much larger when generalizing
from CEU to MEX| than the other way around. This may also be due to the higher power

of the CEU GWAS.
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Adjustment Loci True gen loci Gen loci FP Power
1x 1076
Bonferroni (one sided) 61.78 22.75 22.49 0.80 0.48
Bonferroni (two sided) 61.78 22.75 21.34 0.74 0.46
FWER, r-values (one sided) 61.78 22.75 20.40 0.70 0.44
FWER, r-values (two sided) 61.78 22.75 19.09 0.62 0.41
Selection rule 2 - one sided
Bonferroni (one sided) 56.55 21.91 21.62 0.77 0.46
Bonferroni (two sided) 56.55 21.91 20.55 0.72 0.44
FWER, r-values (one sided) 56.55 21.91 20.54 0.71 0.44
FWER, r-values (two sided) 56.55 21.91 19.16 0.62 0.41
Selection rule 2 - two sided
Bonferroni (one sided) 53.50 21.35 21.02 0.71 0.45
Bonferroni (two sided) 53.50 21.35 20.09 0.67 0.43
FWER, r-values (one sided) 53.50 21.35 20.08 0.66 0.43
FWER, r-values (two sided) 53.50 21.35 19.21 0.62 0.41
5x 1078
Bonferroni (one sided) 49.66 20.19 19.95 0.68 0.43
Bonferroni (two sided) 49.66 20.19 19.16 0.65 0.41
FWER, r-values (one sided) 49.66 20.19 19.15 0.64 041
FWER, r-values (two sided) 49.66 20.19 18.37 0.61 0.39

Table S5: Averaged generalization testing results of CEU associations in MEX, given by
loci, when SNPs passing the selection rule age pruned by distance to the lead SNP. The
controlled error measure was FWER,. We compare the Bonferroni adjustment on the

follow-up study alone with FWER, r-values, both with and without directional control

implemented with one-sided p-values.



Adjustment SNPs  Loci  True gen loci Genloci FP  Power

1x107°
Bonferroni (one sided) 801.63 61.78 31.02 20.23 0.66 0.43
Bonferroni (two sided) 801.63 61.78 31.02 19.33 0.63 0.42
FWER, r-values (one sided) 801.63 61.78 31.02 18.42 0.57 040
FWER, r-values(two sided)  801.63 61.78 31.02 17.25 0.50 0.37

Selection rule 2 - one sided

Bonferroni (one sided) 681.07 56.55 29.00 19.47 0.65 0.42
Bonferroni (two sided) 681.07 56.55 29.00 18.65 0.60 0.40
FWER, r-values (one sided) 681.07 56.55 29.00 18.64 0.59 0.40
FWER, r-values (two sided) 681.07 56.55 29.00 17.44 0.51 0.38

Selection rule 2 - two sided

Bonferroni (one sided) 624.80 53.50 27.72 19.09 0.61 041
Bonferroni(two sided) 624.80 53.50 27.72 18.28 0.55 0.39
FWER, r-values (one sided) 624.80 53.50 27.72 18.27 0.54 0.39
FWER, r-values (two sided) 624.80 53.50 27.72 17.56 0.53 0.38
5x1078
Bonferroni (one sided) 554.81 49.66 25.90 18.27 0.60 0.39
Bonferroni (two sided) 554.81 49.66 25.90 17.51 0.54 0.38
FWER, r-values (one sided) 554.81 49.66 25.90 17.50 0.53 0.38
FWER, r-values (two sided) 554.81 49.66 25.90 16.87 0.51 0.36

Table S6: Averaged generalization testing results of CEU associations in MEX in simu-
lations, given by loci, when all SNPs passing the selection rule are followed-up and the
controlled error measured was FWER,. We compare the Bonferroni adjustment on the
follow-up study alone with FWER, r-values, both with and without directional control
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Adjustment Loci True gen loci Gen loci FP Power
Selection rule 1 - one sided
BH (one sided) 271.41 23.08 32.07 2.58 0.66
BH (two sided) 271.41 23.08 30.59 2.58 0.62
FDR, r-values (one sided) 271.41 23.08 26.17 1.00 0.56
FDR, r-values (two sided) 271.41 23.08 2426 090  0.52
Selection rule 1 - two sided
BH (one sided) 168.09 23.72 32.62 246  0.67
BH (two sided) 168.09 92372 3094 233  0.64
FDR, r-values (one sided) 168.09 23.72 27.09 1.11 0.58
FDRy r-values (two sided) 168.09 23.72 25.15 0.96 0.54
1x 1076
BH (one sided) 61.78 22.75 28.11 1.68 0.59
BH (two sided) 61.78 22.75 27.05 1.64 0.56
FDR, r-values (one sided)  61.78 22.75 20.40 0.70 0.44
FDR, r-values (two sided)  61.78 22.75 25.59 1.26 0.54
5x 1078
BH (one sided) 49.66 20.19 2395 137  0.50
BH (two sided) 49.66 20.19 23.27 1.38 0.49
FDR, r-values (one sided)  49.66 20.19 22.99 1.10 0.49
FDR, r-values (two sided)  49.66 20.19 2220 1.10 0.47

Table S7: Averaged generalization testing results of CEU associations in MEX in simula-
tions, given by loci, when SNPs passing thd Gelection rule are pruned by distance to the
lead SNP. The controlled error measure was FDR,. We compare the BH adjustment on

the follow-up study alone with FDR, r-values, both with and without directional control

implemented with one-sided p-values.



Adjustment SNPs Loci True gen loci  Gen loci FP  Power

Selection rule 1 - one sided

BH (one sided) 3014.62  271.41 40.99 42.87 8.93 0.75
BH (two sided) 3014.62  271.41 40.99 41.37 8.92 0.72
FDR, r-values (one sided) 3014.62 271.41 40.99 32.67 2.30 0.67
FDR, r-values (two sided) 3014.62 271.41 40.99 30.13 1.96 0.63

Selection rule 1 - two sided

BH (one sided) 2123.12 168.09 39.93 40.13 6.57 0.75
BH (two sided) 2123.12 168.09 39.93 38.73 6.63 0.71
FDR, r-values (one sided) 2123.12 168.09 39.93 33.98 2.93 0.69
FDR, r-values (two sided) 2123.12 168.09 39.93 31.37 2.42  0.64
1x107°
BH (one sided) 801.63  61.78  31.02 30.32 3.04 0.61
BH (two sided) 801.63  61.78  31.02 29.79 3.28 0.59
FDR, r-values (one sided) 801.63  61.78  31.02 28.58 2.15 0.59
FDR, r-values(two sided)  801.63  61.78  31.02 27.58 2.15 0.57
5x1078
BH (one sided) 554.81  49.66  25.90 2545 231 0.51
BH (two sided) 554.81 49.66 25.90 25.17 2.58 0.50
FDR, r-values (one sided) 554.81  49.66  25.90 24.26 1.73  0.50
FDR, r-values (two sided) 554.81 49.66 25.90 23.52 1.73  0.48

Table S8: Averaged generalization testing results of MEX associations in CEU in simu-
lations, given by loci, when all SNPs passing the selection rule are followed-up and the
controlled error measured was FDR,. We compare the BH adjustment on the follow-up
study alone with FDR, r-values, both with and without directional control implemented
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Adjustment Loci True gen loci Gen loci FP Power
1x 1076
Bonferroni (one sided) 20.99 19.44 16.88 0.69 0.36
Bonferroni (two sided) 20.99 19.44 16.80 0.69 0.36
FWER, r-values (one sided) 20.99 19.44 15.38 0.61 0.33
FWER, r-values (two sided) 20.99 19.44 14.64 0.54 0.31
Selection rule 2 - one sided
Bonferroni (one sided) 18.66 17.64 15.44 0.61 0.33
Bonferroni (two sided) 18.66 17.64 15.38 0.61 0.33
FWER, r-values (one sided) 18.66 17.64 15.38 0.61 0.33
FWER, r-values (two sided) 18.66 17.64 14.65 0.54 0.31
Selection rule 2 - two sided
Bonferroni (one sided) 17.68 16.91 14.71 0.54 0.31
Bonferroni (two sided) 17.68 16.91 14.68 0.54 0.31
FWER, r-values (one sided) 17.68 16.91 14.68 0.54 0.31
FWER, r-values (two sided) 17.68 16.91 14.66 0.54  0.31
5x 1078
Bonferroni (one sided) 16.51 15.88 13.81 0.46 0.30
Bonferroni (two sided) 16.51 15.88 13.78 0.46 0.30
FWER, r-values (one sided) 16.51 15.88 13.78 0.46 0.30
FWER, r-values (two sided) 16.51 15.88 13.76  0.46 0.30

Table S9: Averaged generalization testing results of MEX associations in CEU in simula-
tions, given by loci, when SNPs passing thel®lection rule are pruned by distance into the
lead SNPs only. We compare the Bonferroni adjustment on the follow-up study alone with

FWER, r-values, both with and without directional control implemented with one-sided

p-values.



Adjustment SNP  Loci True gen loci Genloci FP Power

1x 1076
Bonferroni (one sided) 287.36  20.99 16.75 16.74 0.51 0.36
Bonferroni (two sided) 287.36  20.99 16.75 16.66 0.51 0.36
FWER, r-values (one sided) 287.36 20.99 16.75 15.28 0.46 0.33
FWER, r-values (two sided) 287.36 20.99 16.75 14.47 044  0.31

Selection rule 2 - one sided

Bonferroni (one sided) 243.00 18.66 15.22 15.33 0.46 0.33
Bonferroni (two sided) 243.00 18.66 15.22 15.30 0.46 0.33
FWER, r-values (one sided) 243.00 18.66 15.22 1530 0.46  0.33
FWER, r-values (two sided) 243.00 18.66 15.22 14.52  0.45 0.31

Selection rule 2 - two sided

Bonferroni (one sided) 22444 17.68 14.47 14.62 0.45 0.31
Bonferroni (two sided) 224.44 17.68 14.47 14.59 0.45 0.31
FWER, r-values (one sided) 224.44 17.68 14.47 14.59 0.45 0.31
FWER, r-values (two sided) 224.44 17.68 14.47 14.53 045 0.31
5x 1078
Bonferroni (one sided) 204.14 16.51 13.59 13.74 0.40 0.30
Bonferroni (two sided) 204.14 16.51 13.59 13.72  0.40 0.30
FWER, r-values (one sided) 204.14 16.51 13.59 13.72  0.40 0.30
FWER, r-values (two sided) 204.14 16.51 13.59 13.66 0.40 0.29

Table S10: Averaged generalization testing results of MEX associations in CEU in simula-
tions, given by loci, when all SNPs passing tllge selection rule are followed-up and the con-
trolled error measure is FWER,. We compare the Bonferroni adjustment on the follow-up
study alone with FWER, r-values, both with and without directional control implemented

with one-sided p-values.



Adjustment Loci True gen loci Gen loci FP Power
Selection rule 1 - one sided
BH (one sided) 111.95 28.30 26.28 2.94 0.52
BH (two sided) 111.95 28.30 26.01 2.72 0.52
FDR, r-values (one sided) 111.95 28.30 18.78 0.82 0.40
FDR, r-values (two sided) 111.95 28.30 17.88 0.72  0.38
Selection rule 1 - two sided
BH (one sided) 62.56 26.56 2438 237 049
BH (two sided) 62.56 26.56 24.16 2.20 0.49
FDR, r-values (one sided)  62.56 26.56 18.85 0.86  0.40
FDRy r-values (two sided)  62.56 26.56 17.94 0.72 0.38
1x 1076
BH (one sided) 20.99 19.44 17.18 0.79 0.36
BH (two sided) 20.99 19.44 17.10 0.76 0.36
FDR, r-values (one sided)  20.99 19.44 17.06  0.75 0.36
FDR, r-values (two sided)  20.99 19.44 16.98 0.71 0.36
5x 1078
BH (one sided) 16.51 15.88 13.94 0.48 0.30
BH (two sided) 16.51 15.88 13.90 0.47 0.30
FDR, r-values (one sided)  16.51 15.88 13.88 0.47  0.30
FDR, r-values (two sided)  16.51 15.88 13.86 0.46 0.30

Table S11: Averaged generalization testing results of MEX associations in CEU in simu-
lations, given by loci, when SNPs passing tlafselection rule are pruned by distance to the
lead SNP. The controlled error measure was FDR, We compare the BH adjustment on

the follow-up study alone with FDR, r-values, both with and without directional control

implemented with one-sided p-values.



Adjustment SNP Loci True gen loci Gen loci FP Power
Selection rule 1 - one sided
BH (one sided) 869.93 111.95 28.84 30.14 4.89 0.56
BH (two sided) 869.93 111.95 28.84 29.93 4.80 0.56
FDR, r-values (one sided) 869.93 111.95 28.84 24.51 1.58 0.51
FDR, r-values (two sided) 869.93 111.95 28.84 22.47 1.03 0.48
Selection rule 1 - two sided
BH (one sided) 625.74  62.56 25.12 25.99 2.80 0.52
BH (two sided) 625.74  62.56 25.12 25.71 2.60 0.51
FDR, r-values (one sided) 625.74  62.56 25.12 24.69 1.73 0.51
FDRy r-values (two sided) 625.74  62.56 25.12 22.63 1.13 0.48
1x 1076
BH (one sided) 287.36 20.99 16.75 16.74 0.51 0.36
BH (two sided) 287.36  20.99 16.75 17.39 0.88 0.37
FDR, r-values (one sided) 287.36  20.99 16.75 17.29 0.78 0.37
FDR, r-values (two sided) 287.36  20.99 16.75 17.13 0.66 0.37
5x 1078
BH (one sided) 204.14  16.51 13.59 14.19 0.74 0.30
BH (two sided) 204.14  16.51 13.59 14.11  0.67 0.30
FDR, r-values (one sided) 204.14  16.51 13.59 14.01 0.57  0.30
FDR, r-values (two sided) 204.14  16.51 13.59 13.93 0.49 0.30

Table S12: Averaged generalization testing results of MEX associations in CEU in sim-

ulations, given by loci, when all SNPs passig the selection rule are followed-up and the

controlled error measure is FDR,. We compare the BH adjustment on the follow-up study

alone with FDR, r-values, both with and without directional control implemented with

one-sided p-values.



3 Additional data analysis results

3.1 SNPs that generalized in the FDR, directional r-values TC analysis

but were not discovered in HCHS/SOL or GLGC GWAS alone
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3.2 Generalization of total cholesterol SNPs discovered in Europeans -

without SNP pruning

In this analysis we tested all SNPs with p-value< 1076 in the GLGC GWAS. There were
2.4 million genotyped SNPs with association testing results in Willer et al. (2013), and
5,399 SNPs had p-value< 10~% and were available in the HCHS/SOL. Of these SNPs 2,418
of the SNPs generalized, which includes the 33 SNPs that were generalized in Analysis A.
In addition, another one of the SNPs reported in Willer et al. (2013) generalized. Other
generalized SNPs were not specifically reported in the papers. However, we defined loci as
1MB regions around the known loci, and found that all SNPs that generalized in Analysis
B where located at loci around reported SNPs. In particular, there were 9 loci in which
the reported SNP did not generalize, but other SNPs did. These generalizations did not

occur in the analysis reported in the main manuscript, in whic these SNPs were not tested.

4 Mathematical derivations

Definition. A stable selection rule satisfies the following condition: for any j € Ry,
changing pfj so that j is still selected while all other discovery study p-values are held
fixed, will not change the set R1.

Stable selection rules include selecting the hypotheses with two-sided discovery p-values
below a certain cut-off, or by a non-adaptive multiple testing procedure on the discovery
study two-sided p-values such as the BH procedure for FDR control or the Bonferroni

procedure for FWER control, or selecting the k hypotheses with the smallest two-sided
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p-values, where k is fixed in advance.

Theorem 1 Let fog be the true fraction of the m SNPs investigated in the discovery study
that are null in both studies. The level q directional procedure based on FDRy r-values
in Section 2.1.5 in the manuscript controls the directional FDR, at level at most q if
the following conditions are satisfied: the rule by which the set Ry is selected is a stable
selection rule; log < foo; the p-values within the follow-up study are jointly independent
or are positive regression dependent on the subset of p-values corresponding to true null
hypotheses (property PRDS); for SNPs with H; ¢ {(1,1),(—1,—1)} the follow-up study
p-values are independent of the discovery study p-values; and in addition one of items 1-3

below is satisfied.
1. The p-values within the discovery study are independent.

2. Arbitrary dependence among the p-values within the discovery study, when in the com-

putation of the FDRy r-values (section 2.1.4 in the main manuscript) m is replaced

bym*=m> ", 1/i.

3. Arbitrary dependence among the p-values within the discovery study, and the selection
rule is such that the discovery study p-values of the SNPs that are selected for follow-
up are at most a fized threshold t € (0,1), when ¢ computed in Step 3(a) is replaced
by

[tm)/(az)—1]
a(z) =maxfa: a(l+ > 1/i)=c(x)}
=1

Steps 3(b) and 3(c) remain unchanged. In step 4, the FDR r-value for feature i € Ry

is r; = min{x : f;(x) <z} if a solution exists in (0,1), and one otherwise.
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The implication of item 3 is that for generalization controlling FDR, at level ¢, if ¢t <
c1(q)g/m, no modification is required, so the procedure that declares as generalized all
SNPs with r-values at most ¢ controls the FDR, at level ¢ any type of dependency in the

discovery study. Note that the modification in item 3 will lead to more generalization than

c1(9)g
1+t

From simulation study 2, even if the discovery study p-values are not independent,

the modification in item 2 only if ¢ <

the conservative modifications of the r-value computation in items 2-3 are unnecessary for

FDR, control in GWAS.

Theorem 2 The level q directional procedure based on FWERy r-values controls the di-
rectional FWER, at level q if loo < foo, and if for SNPs with H; ¢ {(1,1),(=1,—-1)} the

follow-up study p-values are independent of the discovery study p-values.

4.1 Proof of Theorem 1

We first show that the following procedure is identical to that of declaring the set of SNPs
with FDR r-values at most ¢ as generalized. First, compute the number of generalization

claims at level ¢ as follows:

T T
Ry£max{r: » 1 [(plljapIZj) = (mCI(Q)(L &02‘1)} =T
JER1

Next, declare as generalized SNPs the set
. Ry Ry .
_ ]
Ra = {5+ thyth) < (st jhcaa) G € R |

It was shown in Lemma S1.1 in Heller et al. (2014), without directional control, that

this procedure is identical to declaring the set of SNPs with FDR r-values at most ¢ as
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generalized. It is straightforward to see that the proof of Lemma S1.1 in Heller et al.
(2014) remains unchanged when the p-values are replaced by (p} » P j), therefore the above
procedure is identical to that of declaring the set of SNPs with FDR, r-values at most ¢
as generalized.

We will now prove that under the conditions of items 1-3 of Theorem 1 the directional

procedure based on FDR, r-values controls FDR, at a level which is smaller or equal to

Cl(Q)02q2(|j : Hj € {(—1,0), (170)7 (030)}‘)/7” +
C1(Q)Q|j : Hj € {(07 1)7 (0’ *1)’ (*1’ *1)7 (1’ 1)7 (*17 1)a (17 *1)}|/m +
CQQEHRl N {.7 : Hj € {(_170)7 (170)’ (_1’ 1)7 (17 _1)7 (0’ 1)7 (0’ _1)’ (070)}’/|R1H7

(1)

where the cardinalities are over the sets containing all m SNPs, i.e. j = 1,...,m. Note

that this expression is at most ¢ if log < foo. To see this, note that

7 Hj € {(=1,0),(1,0),(0,0)}/m = fo,

and
|] : Hj € {(O’ 1)’ (Ov *1)7 (*17 *1)7 (L 1)? (*17 1)7 (1’ *1)}|/m =1-fo.

Moreover,

EHRl N {J : Hj € {(_170), (170)7 (_17 1)7 (17 _1)7 (0, 1)7 (07 _1)7 (070)}’/’7?’1’] <L
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Therefore, expression (1) is at most

c1(q)e2q” fo + er(@)a(1 = fio) + c2q
= c1(q)q — foc1(@)q(1 — c2q) + c2q
< c1(9)q = loocr(9)q(1 — c2q) + c2q
= c1(q)q[l = loo(1 — c2q)] + c2q

=(1—-c2)qg+c2g=gq.

We will now prove that the expression in (1) is an upper bound for FDR, which is

* (ms)

L R
5 . ( RE + R ) .
(R, 1)
{j:Hje{(07_1)7(071)7(070)7(170)7(_170)7(17_1)7(_171)}} fax ’
RE RE
-7 -3
, Z E (max(R, 1)) * _ Z E (max(R, 1)> ' @)
{7H;=(1,1)} {i:H;=(-1,-1)}
For each j € {1,...,m}, we define Cﬁj ) as the event in which if j is declared generalized,

r hypotheses are declared generalized including j, which amounts to the definition given
in the proof of Theorem 1 in Supplementary Material of Heller et al. (2014), where the
one-sided p-values (p1;, p2;j) are replaced by (p) i p'Qj). Note that for any given realization
of |R1| and value of r such that r > |Ry|, CY) = 0.

From the equivalent procedure above we get the following equality,

RE "1 rci(q)q rcaq .
2 ) S Loy (je Ry PE < min (TU99 o5) Lo TR o)
<max<R,1>> 2 L O T N et e

1 rei(g)q :
<> opr <P1Lj < S Ph <. 0P ), (3)
r=1
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where the equality follows from the fact that a generalization claim is made in the left

direction only if Ple < Pf}, i.e. only if Ple < 0.5. Similarly,

RE m 4 rer(q) |
(max(R, 1)) - 721 r r ( L c2q, Cy (4)

Using inequalities (3) and (4), and the facts that Ple and Pf} are uniform for j € {j : Hy; =

0} and are stochastically larger than uniform for j € {j : Hi; =1} and j € {j : Hi; = —1}

respectively, we obtain the following inequalities:

. c1(q)g/m if H; € {(0,-1),(1,-1),(1,1)},
E (max(le)> S eqE[(j € Ry)/|Ra] if Hj € {(~1,0),(0,1), (=1, 1)},
ci1(q)e2q® /m if H; € {(0,0),(1,0)},
. c1(q)g/m if H; € {(0,1),(~1,1),(=1,-1)},
E (max(JRl)> S «qBlI(j € Ry)/|Ril] if Hj € {(1,0),(0,-1),(1,-1),(0,0)},
c1(q)eaq®/m if H; € {(—1,0)}.

These upper bounds for items 1-3 of Theorem 1 follow from similar derivations to these
given in the proof of items (7)-(4ii) of Theorem 1 in Heller et al. (2014), respectively.
Specifically, for each of the items, the upper bounds ¢;(q)q/m, coqE[I(j € R1)/|R1|] and
c1(q)e2q?/m are derived similarly to inequalities [S3], [S4], and [S5] in the proof of Theorem

1 in Heller et al. (2014), respectively. Thus we obtain

c2qBlI(j € R1)/IR|] + e1(q)caq®/m  if Hj = (0,0),

RE + RE ) e2qB[I(j € R1)/|Ral] + ci(q)eag?/m  if Hj € {(1,0), (~1,0)},

B (
maX(R7 1) c1 (q)q/m -+ ngEU(j S Rl)/|R1” if Hj € {(07 1)7 (07 _1)}’

c2qE[I(j € R1)/IR1l] + c1(q)g/m if Hy € {(1,-1),(~1,1)},
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and for the directional error terms:

Ry c1(a)q .
E (B, 1) < , for j with Hj;=(1,1)

E e <alda o ith H; = (-1,-1).
max(R,1) | — ’ / ’

The result follows from using expression (2) for FDR,, and summing up over the above

upper bounds.

4.2 Proof of Theorem 2

It is easy to show that the procedure in Section 2.1.5 of the main manuscript is unchanged if
we replace Step 2 by the following: all SNPs with fJF WER () < q are declared generalized.
The equivalence follows from the facts that f]F WER () is a continuous function of x and
fJF WER (g)/x is strictly monotone decreasing (this result follows from the proof of Lemma
S1.1 in the ST of Heller et al. (2014) and it is straightforward to show that it continues to
hold in the directional generalization analysis).

We will now prove that the expression in (1) with ¢ replaced by « is an upper bound

for the directional FWERy, which is Pr(R — S > 0). It was shown in the proof of Theorem

1 that this expression is at most « if lgg < foo. Note that

Pr(R-S>0<ER-S)< Y E®RhH+ Y ERY

{7:H;=(1,1)} {7 H;=(-1,-1)}
+ > E(RF + RE).
{j:Hje{(O,—l),(O,l),(0,0),(1,0),(—1,0),(1,—1),(—1,1)}}

We consider the procedure that replaces Step 2 by declaring SNPs with fJF WER(q) < o

as generalized (as discussed above). The directional error terms (declaring that a SNP
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association is generalized in one direction, when in fact the association is in the other

direction) in the first two sums above are bounded by:

c1(a)a o

E (RJL) < 1(7”) , for j with H; =(1,1)
c1(a)a o

FE (Rf) < (m) , for j with H; = (-1,-1)

These bounds hold since (without loss of generality), for j with H; = (1,1)

E (R) < Pr(P}; < min(ci(o)a/m,0.5), Py; < coor/ Ry)
< Pr(Ple < ci(@)a/m) < cia/m,

where the first inequality follows from the fact that a generalization claim is made in the
left direction only if Ple < Pg, i.e., only if Ple < 0.5, and the last inequality follows that
the fact that for Hy; = 1, Ple is stochastically larger than uniform.

All remaining errors are false generalization claims that are not directional errors.

Clearly,
E(RF + RY) = Pr(min(P{}, P{}) < ci(a)a/m, Py; < caa/|R1|, j € Ry).

It is simple to show (using similar derivations to these in the proof of Theorem S6.1 in the

ST of Heller et al. (2014)) that the right hand side is at most the following upper bounds:

caB[I(j € Ri)/IRall + ei{a)a/m x cra if Hj = (0,0),

E(RR N RL) - caE[I(j € R1)/IR1|] + ci(e)o/m x cor if Hj € {(1,0),(—1,0)},
J j/) =

ci(a)a/m+ caaE[I(j € R1)/|R1l] if Hy € {(0,1),(0,-1)},

eaBlI(j € Ri)/[Rall + cila)a/m it Hy € {(1,-1), (=1, 1)}.

The result follows from summing over these upper bounds.
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