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This appendix supplies details regarding (1) our methodology to impute data, (2) details of the 

three methods we employed for effect estimation, (3) bootstrapping for confidence intervals, (4) 

sensitivity analysis for multiple patient admissions, and (5) the causal assumptions underlying our 

approaches.   

 

Missing Data and Imputation Procedure 

Our final cohort was obtained after merging with CHIA billing data. Many records in the Mass-

DAC registry did not merge and were dropped. These records did not merge because some hospitals 

recorded key fields needed for matching differently in the registry and billing data. The severity of this 

issue varied considerably across hospitals and resulted in the loss of 25% of the registry cohort. Despite 

this problem, we used the billing data because it enriched our variable set and mortality did not vary 

significantly between merged and unmerged records. Nevertheless, this issue emphasizes the importance 

of working with hospitals to ensure high-quality data and diagnosing the extent to which dropping records 

based on missingness could bias results. A few variables in the Mass-DAC registry also had missing cells, 

especially the stenosis percentage fields. These variables were checked by coders as “not available” in the 

NCDR data collection tool, indicating that the variables were truly not measured. This could occur if 

patients transferred in from another hospital and did not undergo a second diagnostic catheterization to 

assess stenosis at the time of recording. 

Imputation of missing values for variables in the Mass-DAC registry was implemented with a 

SAS callable user interface to the IVEWare software package. IVEWare employs a multivariate 

sequential regression approach, iteratively computing multiple regressions for each imputed variable 

using observed data from the other covariates in the imputation model
1
. Continuous, binary, or categorical 

variables are imputed using linear, logistic, Poisson, or multinomial models, respectively. Some variables 

in our data were conditional on the presence of other variables, meaning they were not measured if 

another variable took on a certain value. These were not imputed via regression, but rather set to a default 

value. For example, if a patient did not have heart failure, they would not receive a NYHA classification, 



and we would not impute this. Instead a value of 0 was assigned and treated as its own class in the 

analysis process. One complete imputed set was obtained and utilized for the study analyses without 

adjustment of variance to account for the imputation.   

In general, missing data may be imputed if they are “missing at random,” wherein the presence or 

absence of a missing cell does not depend on its value given observed variables. For a complete 

discussion of missing data, see Gelman and Hill chapter 25.
2
  

 

Approaches to Effect Estimation 

Regression Only  

Our data consisted of N  = 9325 admissions at 24 hospitals. Denote 𝑦𝑖𝑗 as the binary mortality 

outcome for the ith patient at hospital j, the matrix of confounders by X, and the set of regression 

parameters by 𝜃 =  {𝑎1, 𝑎2, … , 𝑎24, 𝛽} where 𝑎𝑗 is the hospital-specific intercept for the j
th 

hospital and 𝛽 

is a vector of coefficients associated with the confounders. Furthermore, we use the indicator 𝐼𝑖𝑗 = 1 if 

patient i was treated at hospital j and 0 otherwise. We used standard logistic regression to estimate 𝜃 

(Supplemental Figure 1) when using the clinical set of 11 confounders. For the full confounder set, 𝛽 

was a vector of 225 coefficients and we estimated 𝜃 using penalized maximum likelihood as described 

below.  

 To determine the adjusted mortality at the j
th
 hospital, we set the hospital intercept of every 

patient in the state equal to 𝑎𝑗 and then computed 𝐸(𝑦𝑖𝑗) by logit−1(𝑎𝑗 + 𝛽𝑇𝑋𝑖), which represents the 

counterfactual estimate of 30-day mortality for the i
th
 patient that would have been observed had the i

th
 

patient undergone his/her PCI at hospital j. We then average these estimates over all patients to obtain 

𝐸(𝑦𝑗) =  
1

𝑁
∑ 𝐸(𝑦𝑖𝑗)𝑁

𝑖=1 , the overall adjusted mortality at hospital j.   

 

Penalized Maximum Likelihood 



Traditionally, estimation of outcome or treatment regressions involves the application of substantive 

(e.g., domain) knowledge to preselect a workable subset of confounders from which to form estimates.
3
 

However, preselection of features in a causal inference problem can undermine the opportunities offered 

by large data sets, where the information contained in existing confounders can boost predictive accuracy 

or lead to new insights if properly accounted for by investigators. The penalized maximum likelihood 

method permits estimation in this setting by restricting the size of the regression coefficients and includes 

techniques such as ridge regression, the lasso, and their generalization, the elastic net.
4 

In this paper, we utilized elastic nets, a procedure that selects confounders to minimize a penalized 

maximum likelihood equation. Under the elastic net penalty, we maximize the penalized log-likelihood 

with respect to 𝜃:   

∑ {𝑦𝑖(𝐼𝑖1𝑎1 … 𝐼𝑖24𝑎24 + 𝛽𝑇𝑋𝑖) − log(1 + 𝑒𝐼𝑖1𝑎1…𝐼𝑖24𝑎24 + 𝛽𝑇𝑋𝑖)} − 𝜆 ∑[(1 −  𝛼) 𝛽𝑝
2 +  𝛼|𝛽𝑝|]

225

𝑝=1

𝑁

𝑖=1

 

The elastic net penalty is the second term in this equation while the first term is simply the ordinary log-

likelihood for binomial logistic regression. The strength of the penalty is determined by the value of the 

tuning parameter, 𝜆.  When 𝜆 = 0, the ordinary maximum likelihood results are recovered.  We chose an 

α value of 0.80, yielding a mix of the lasso penalty (|𝛽𝑝|) allowing for variable selection, and the ridge 

penalty (𝛽𝑝
2), used to reduce multicollinearity and encourage the coefficients of correlated confounders to 

be shrunk towards each other.
5
 For the mortality regressions, we estimated a penalized logistic regression 

with the penalty size 𝜆 varying from e
-10

 to e
2
 and assessed the 5-fold cross-validation deviance at each 

value of λ (Supplemental Figure 2)
6
. We then selected the coefficients from the regression with the 𝜆 

value that yielded the lowest cross-validated deviance, which we present in the main paper (Figure 4). 

For theoretical and practical reasons, we penalized only the confounder coefficients and did not penalize 

the hospital specific intercepts.
4
  

The multinomial (24 hospitals) propensity score regression with full confounders was estimated 

in an identical fashion using the multinomial deviance, yielding (24 − 1) ∗ 225 = 5175 coefficients (a 



set for each hospital), most of which were identically zero. Note that only 23 probabilities require 

estimation for the 24 hospitals because the final hospital’s probability for patient i is given by 1 −

∑ 𝑃(𝐼𝑖𝑗 = 1)23
𝑗=1 . Because of the large number of hospital probabilities requiring estimation, estimation of 

the multinomial regression can have convergence issues, even with a small number of confounders. For 

example, even with our parsimonious set of 11 clinical confounders, convergence was challenging, 

requiring the use of a ridge penalty to estimate the regression parameters. We again chose the coefficients 

corresponding to the 𝜆 minimizing cross-validated deviance (Supplemental Figure 2). Because we used 

the ridge penalty, none of these coefficients was identically zero and the full set of 11 clinically chosen 

confounders remained in the regression. We implemented our penalized regression in the R package 

glmnet.
6
  

 

Augmented Inverse Probability Weighting (A-IPW) 

Augmented inverse probability weighting (A-IPW) is an advance incorporating the commonly 

used propensity score. The method combines a propensity score regression with outcome predictions, in 

our case generated from a logistic regression as described above. The double-robustness of this approach 

means that it yields unbiased estimates of the hospital effect if either the propensity score or outcome 

regression is consistently estimated. That is, if either regression accounts for confounders in a way that 

reflects their true relationship to hospital and outcomes.
7-9

 Using doubly-robust approaches is appealing 

because it is rare that the true structure of the regression is known, and the doubly-robust nature gives the 

researcher two opportunities to get it right.
7,10 

To implement A-IPW, we estimated a multinomial regression that provides 24 estimated 

probabilities for each patient – each probability reflects the likelihood that a patient undergoes PCI at the 

hospital given the patient’s observed confounders. We used elastic net penalized regression for the full 

confounder set and ridge penalized regression for the clinically informed confounder set. To stabilize 

extreme weights for each hospital we divided the propensity scores for that hospital by the proportion of 



total patients who underwent PCI at the hospital. Next, we estimated the respective logistic regressions 

linking 30-day mortality with the full confounders (via elastic net penalized regression) and again with 

the parsimonious confounder sets (via standard logistic regression). The propensity scores from the 

hospital regression and the mortality estimates from the outcome regression were combined using the A-

IPW equation as follows:   

𝐸(𝑦𝑗) =  
1

𝑁
∑ 𝐸(𝑦𝑖𝑗) + 

𝐼𝑖𝑗

𝑃(𝐼𝑖𝑗 = 1 | 𝑋𝑖)
{𝑦𝑖 − 𝐸(𝑦𝑖𝑗)}

𝑁

𝑖=1

 

Thus if patient i wasn’t treated at hospital j, then that patient’s contribution to the A-IPW estimate is 

simply their expected (counterfactual) outcome as predicted from regression. However, if the patient was 

treated at hospital j, A-IPW includes the additional weighting from the propensity score, 𝑃(𝐼𝑖𝑗 = 1 |𝑋𝑖).  

 

Targeted Maximum Likelihood Estimation 

Targeted maximum likelihood estimation (TMLE) is a general framework that extends parametric 

maximum likelihood estimation for semiparametric and nonparametric models. It focuses on estimating 

parameters that are features of a probability distribution while making minimal assumptions. The TMLE 

algorithm for the parameters targeted in this paper consists of updating an initial mortality regression with 

information from the propensity score in an effort to reduce bias for the parameter of interest. This second 

step can therefore be thought of as a bias-reduction step and is detailed below. The TMLE is a double 

robust, efficient, consistent, well-defined loss-based substitution estimator of the parameter of 

interest.
11

After generating initial estimates for 𝐸(𝑌𝑖𝑗) in the same fashion as for the regression only 

approach, denoted 𝑄𝑖𝑗
0 , we update the estimates with information from the multinomial propensity score 

regression to obtain a revised estimate, 𝑄𝑖𝑗
1 . This is accomplished by regressing the outcome 𝑦𝑖 on a new 

covariate generated from the propensity scores with offset 𝑄𝑖𝑗
0   to obtain a coefficient 𝜖, and averaging the 

fluctuated outcomes:  



logit(𝑄𝑖𝑗
1 ) =  logit(𝑄𝑖𝑗

0 ) +  𝜖 [
𝐼𝑖𝑗

𝑃(𝐼𝑖𝑗 = 1 | 𝑋𝑖)
] 

𝐸(𝑦𝑗) =
1

𝑁
∑ 𝑄𝑖𝑗

1

𝑁

𝑖=1

 

The algorithm is easy to implement in R using the tmle package.
12

  

 

Hospital-Specific Excess Mortality Risk 

The excess mortality risk at a hospital was determined using the estimates 𝐸(𝑦𝑗) and their 

average across hospitals.  Specifically, we determined the difference in the adjusted mortality at that 

hospital, and a statewide adjusted mortality calculated by taking the average adjusted mortality at each 

hospital:   𝐸(𝑦𝑗) − 𝐸(𝑦) = 𝐸(𝑦𝑗) −
1

24
∑ 𝐸(𝑦𝑗)24

𝑗=1 . A high excess risk indicates a hospital that is 

performing poorly compared with the rest of the state, while negative excess risk indicates a better than 

average hospital.   

 

Bootstrapping 

 We next determined standard errors and confidence intervals to account for the uncertainty 

associated with the mortality estimates. We accomplished this through the use of bootstrapping, a robust 

statistical technique for constructing confidence intervals. We resampled hospitals with replacement B 

times, using all patients in the sampled hospitals,
 13

 estimating the parameters of interest on each 

bootstrapped set, and using the distribution of the recalculated estimates to construct standard errors and 

confidence intervals. To match the exact confidence intervals more precisely, we perform a 

transformation on the percentiles of the bootstrap samples to give bias-corrected intervals.
14 

 

Multiple Patient Admissions: Sensitivity Analysis 

 We allowed for multiple admissions from single patients to contribute to our data as long as the 

admissions were more than 30-days apart. Treating admissions from repeat patients as independent is 



typical in profiling.
15

 In our data 352 patients had more than one admission, contributing an additional 

373 admissions to our data. Only 7 of these patients died within 30-days after their last procedure. We 

eliminated these additional admissions by randomly sampling a single admission for each of the 373 

patients. Minor shifts in the patient distributions lead to a few small changes in outlier classification for 

borderline hospitals (Supplemental Figure 3).  For example, hospital I moves from a non-outlier to an 

outlier in TMLE with full confounders. However, substantive inferences like kappa statistics are not 

significantly affected. Special techniques may be required to handle correlation introduced by multiple 

admissions if they make up a substantial portion of the data. 

 

Causal Assumptions 

 Additional untestable assumptions are required to enrich the interpretation of hospital effects as 

causal. Key causal assumptions include the stable unit treatment assumption (SUTVA) and no 

unmeasured confounding.
16

 Under SUTVA, we assume both that the hospital assigned to a subject does 

not interfere with the potential outcomes for other subjects and that there is no variation within hospitals. 

We have reason to doubt the validity of the SUTVA assumption because care may vary significantly 

within hospitals, for instance because different doctors perform operations at the same center. SUTVA is 

untestable, but such realities compel us to be cautious when drawing causal conclusions from our 

analysis. No unmeasured confounding, a causal assumption frequently violated in practice, assumes that 

the potential outcomes are independent of the hospital conditioning on the adjustment set of confounders. 

The inclusion of many potential confounders from rich data sets, as in this paper, can bolster the validity 

of this assumption. Even when causal assumptions may not be justified, the target parameters defined in 

this paper are still interesting statistical parameters with interpretations as average effects adjusted for 

measured confounding. 
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Supplemental Figure 1: Estimated coefficients for the logistic mortality regression model with clinically selected confounders. Confounders are 

indexed on the x-axis, sorted by size. The y-axis denotes the log-odds ratios associated with each confounder. A higher log-odds ratio indicates 

increased chance of mortality when that confounder is present. 

 

 



 
Supplemental Figure 2: Five-fold cross validation deviance plots. The log of the lambda values appears on the x-axis. Moving from left to right, 

a larger lambda value selects a more parsimonious model. The number of non-zero coefficients at a given lambda appears above the plot. The 

lambda giving the lowest cross-validated deviance is denoted by the dotted line on the left hand side. The dotted line to the right shows the lambda 

value with the largest deviance within one standard error of the smallest, which gives a more parsimonious model.  

 



 
Supplemental Figure 3: Estimates of hospital effects with random sampling of a single admission from patients with multiple. Orange dots are 

point estimates of excess risk; blue lines are 99.8% confidence intervals (Boneferonni adjusted for multiple testing).  


