Reciprocal regulation of the cholinic phenotype and epithelialmesenchymal transition in glioblastoma cells

Supplementary Materials

Supplementary Figure S1: ZEB1 alters the metabolism of LN229 and GBM1 cells. Water soluble metabolites of shZEB1#1 and pLKO.1 control cells were analyzed with 1H-NMR spectroscopy. The relative metabolite concentrations of three independent experiments are displayed as mean ± SD.

Supplementary Figure S2: CHK α knockdown alters the metabolism of LN229 and GBM1 cells. (A) Water soluble metabolites of shCHK α and pLKO.1 control cells were analyzed with 1H-NMR spectroscopy. (B) The ratio of the relative creatine and phosphocreatine concentrations were calculated from ¹H-NMR spectra of shCHK α and pLKO.1 control cells. (C) CHK α knockdown decreases the expression of creatine kinase brain-type (CKB), the enzyme phosphorylating creatine. The data is represented as mean ± SD (n = 3).

Supplementary Figure S3: CHK α is expressed in higher levels in the infiltrating zone and the leading edge of GBM. RNA sequencing data generated from anatomic structures isolated by laser microdissection. A total of 122 RNA samples were generated from 10 tumors and used for sequencing. Data from the IVY Glioblastoma project (Website: © 2015 Allen Institute for Brain Science. Ivy Glioblastoma Atlas Project [Internet]. Available from: glioblastoma.alleninstitute.org). Image credit: Allen Institute.

Name	Gene name	Gene ID (NCBI)	Forward primer	Reverse primer
β actin	ACTB	60	CCCAGCACAATGAAGATCAA	CGATCCACACGGAGTACTTG
β-2-microglobulin	B2M	567	GTTGCTCCACAGGTAGCT CTAG	ACAAGCTTTGAGTGCAAGA GATTG
СНКа	CHKA	1119	GAAAGTGCTCCTGCGGCT GTATG	CGGCTCGGGATGAACTGCTC
СКВ	CKB	1152	GGCAACATGAAGGAGGTGTT	ATGGGCAGGTGAGGATGTAG
Nestin	NES	10763	GGCGCACCTCAAGATGTCC	CTTGGGGTCCTGAAAGCTG
N-cadherin	CDH2	1000	TATGCCCAAGACAAAGAGACC	CAACTTCTGCTGACTCCTTCA
SOX2	SOX2	6657	TGGACAGTTACGCGCACA	CGAGTAGGACATGCTGTA
SNAI1	SNA11	6615	GCTGCAGGACTCTAATCC	ATCTCCGGAGGTGGGATC
SNAI2	SNAI2	6591	TGGTTGCTTCAAGGACACAT	GTTGCAGTGAGGGCAAGAA
TWIST1	TWIST1	7291	TCCGCGTCCCACTAGCA	TTCTCTGGAAACAATGAC ATCTAGGT
VIMENTIN	VIM	7431	CCCTCACCTGTGAAGTGGAT	TCCAGCAGCTTCCTGTAGGT
ZEB1	ZEB1	6935	AAGAATTCACAGTGGAG AGAAGCCA	CGTTTCTTGCAGTTTGGGCATT
ZEB2	ZEB2	9839	GCCGCGGCATATGGTGACA	GCCACACTCTGTGCATTTGAA

Supplementary Table S1: Primer sequences used in RT qPCR