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MATERIALS AND METHODS
Statistical and Bioinformatic Analyses

Extended statistical analyses were performed with R-3.2.2 including additional packages gplots-
2.17.0 [1], partykit-1.0-3 [2], survival-2.38-3 [3] and edgeR-3.10.2 [4]. Open-access MiRNA-Seq level 3
isoform quantification data (version 3.1.17.0) and clinical information (version 2.0.28.0) from The Cancer
Genome Atlas (TCGA) breast cancer cohort (BRCA) were downloaded from TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/) on May 11, 2015. For 746 tumor samples both clinical data and
mMiRNA expression data were available. edgeR was used to calculate the logarithmized counts per million
(CPM) values as a measure of expression. To adjust for varying sequencing depth between miRNA-Seq
libraries, raw read counts were normalized by edgeR using the trimmed mean of M values approach. By
means of sequence identity, miRNAs covered by the Affymetrix miRNA2.0 chip and miRNAs measured
by TCGA miRNA-Seq were associated to each other. TCGA breast cancer samples were previously
classified using the PAM50 model [5]. PAMS50 subtype assignments of 513 tumors were obtained from
the Cancer Browser platform (https://genome-cancer.ucsc.edu/) (dataset: TCGA BRCA exp_HiSeqV2,
version 2015-02-24). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway data were
downloaded from http://www.kegg.jp/kegg/rest/ on June 11, 2015. Full and slim set of Gene Ontology
annotations for human were downloaded from http://geneontology.org/page/downloads on September 17,
2015. RefSeq mRNA sequences (genome assembly hgl9) were downloaded from UCSC Genome
Browser (https://genome.ucsc.edu/cgi-bin/hgTables) on April 29, 2014. Processed CLIP-Seq data
provided by the starBase v2.0 web-server (http://starbase.sysu.edu.cn/) were downloaded on April 30,

2014. The miRBase database (version 20) was downloaded on December 14, 2014.



mMiRNA expression in PAM50 subtypes: Based on raw read counts, miRNAs significantly
differentially expressed between PAM50 subtypes were determined using non-parametric Kruskal-Wallis
tests as well as pairwise Wilcoxon-Mann-Whitney post-tests.

Survival analyses: Overall survival was used as endpoint in all survival analyses. Associations
between survival and miRNA expression was explored using the conditional inference tree framework
from the R package partykit. The method recursively partitions the samples in subsets with significantly
differing survival functions. The P-value cut-off to accept a split was set to 0.1. The significance of the
association between groups of samples and overall survival was analyzed by log-rank tests. Holm
correction procedure [6] was applied to adjust resulting P-values for multiple testing.

Identification of miRNA sets: Putative functions of miRNA sets were identified via in silico
functional enrichment analysis of the respective miRNA targets. The population of miRNAs consisted of
1,067 distinct miRNA that were both represented on the array and registered in miRBase version 20. We
conducted a transcriptome-wide search on RefSeq mRNA sequences for miRNA targets using the
TargetScan software (version 6.2). In order to increase the reliability of target predictions, predicted target
sites were overlapped with experimentally identified miRNA-target interaction sites. The starBase v2.0
web-server provides a library of RNA-binding protein interaction sites collected from different CLIP-Seq
experiments. Here, we used the subset of 36 CLIP-Seq experiments conducted within 11 different AGO-
RNA interaction studies. Inclusion criteria for the definition of target sites were: (A) The target site had to
be confirmed by at least one CLIP-Seq study and (B) the percentile value calculated by TargetScan to
facilitate comparison of target lists of different miRNAs had to be above 75. A gene was considered to be
a target of a certain miRNA if at least one of its associated transcripts contained a minimum of one
accepted target site of that miRNA.

Over-represented functional categories are usually identified by comparing the observed overlap
between category and miRNA target set with the expected overlap estimated from the background gene
set. Notably, the definition of the background gene set is of crucial importance. It is well known, that
miRNA targets are enriched for certain functions compared to non-miRNA targets [7,8] and therefore, the
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background gene set was compiled in such a way to include only predicted miRNA targets. This is critical
in order to avoid a bias in the calling of functional terms. The resulting miRNA-gene interaction map
included 1,067 miRNAs and 11,795 genes connected via 263,451 interactions.

KEGG pathway analyses: We based our pathway analyses on the number of interactions between
miRNAs and pathway genes. The interaction map was filtered to include genes for which KEGG pathway
annotations were available. This resulted in a background interaction map of 1,065 miRNAs, 4,330 genes
and 99,246 interactions. Fisher's exact test was used to test if the number of observed interactions between
genes of a certain pathway and a miRNA set significantly exceeded the number of expected interactions as
estimated from the background interaction map. Additionally, we applied an approach in line with
Bleazard et al. [9] using permutation tests for the identification of significantly associated pathways. Here,
the number of interactions between a miRNA set and a pathway was compared with the number of
interactions obtained from a random set of miRNAs of the same size as the input set sampled (without
replacement) from the background miRNA set. Sampling was repeated 10,000 times and a permutation P-
value was calculated using the proportion of random miRNA sets that exhibited equal or more interactions
with the pathway genes. The overlap between gene sets from enriched KEGG pathways (P < 0.05) were
illustrated as graph diagrams executed with yED Graph Editor (http://www.yworks.com/products/yed).
Two nodes, representing two different KEGG pathways were connected if their intersection was
significantly greater than expected (one-sided Fisher's exact test, correction for multiple testing by Holm's
method). Importantly, non-miRNA targets among the pathway genes were not considered for the network
construction. The node size refers to the pathway size in terms of the number of miRNA targets. The edge
weight illustrates the degree of similarity between two pathways as measured by the Jaccard index.
General KEGG pathways of the category "global and overview maps" and "pathways in cancer" were
neglected.

Gene Ontology (GO) term enrichment: Over-representation of GO terms were analyzed for the
sub-category ‘Biological process’. Target gene lists generated from the overlap between gene sets from
significantly enriched KEGG pathways were searched for enriched GO terms using the GORILLA tool
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(http://cbl-gorilla.cs.technion.ac.il/). The background gene set was defined as all genes with a GO
annotation. GO terms were summarized by removing redundant terms using REVIGO

(http://revigo.irb.hr/) using default parameters.
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2A vs WS8 5C vs WS8

WSS8E2 vs WS38

Supplementary Figure 1: miRNAs associated with E2-stimulated growth. Differentially expressed
miRNAs of the basal MCF-7:WS8 phenotype following 72h of E, exposure (WS8_E, versus WS8) are
compared to pairwise comparisons of 2A versus WS8 cells and 5C versus WS8 cells to identify growth-
related miRNAs. The Venn diagram intersections highlight the 71 WS8 specific miRNAs (14+33+24)
subject to changes during E, exposure. Thirty-three miRNAs overlap with the basal Al resistance

phenotypes 2A and 5C.
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Supplementary Figure 2: Basal levels of expression of candidate miRNAs between the Al-resistant
(5C, 2A) and WS8 cells. Relative miRNA expression was quantified by RT-PCR using RNU44 for
normalization. Results are shown for miR-221/222, -31, -127-3p, -409-3p and -432-5p with experiments

done in triplicates *: P < 0.05, **: P < 0.001.
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Supplementary Figure 3: miRNA expression in PAM50-defined breast tumor subtypes from TCGA.
Box-Whisker plots indicate expression differences between the subgroups Basal-like (Basal, n=86), HER2
positive (Her2, n=43), Luminal A (LumA, n=253), Luminal B (LumB, n=115) and Normal breast-like
(Normal, n=16). A. Expression levels of chromosome 14932.31 miRNAs show differences for 19
miRNAs in the various subgroups (Holm-adjusted P < 0.05). B. Expression levels of the remainder

miRNAs in the breast cancer subgroups. Plots are sorted according to the 2A-specific, 5C-specific and the

10



2A-5C-intersection miRNAs (see color code in Figure 2A and B). Y-axes: log2CPM (CPM: counts per

million). *: P <0.05, **: P <0.01, ***: P < 0.001 and ****: P < 0.0001.
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Supplementary Figure 4: Kaplan-Meier curves of overall survival of breast cancer patients of
TCGA stratified by miRNA expression. MiRNA expression cut-offs were determined by conditional
inference tree models. High (red) and low (green) expression are indicated on the log2CPM scale (CPM:
counts per million). A. Analyses across all 746 patients showed associations between high expression of
miR-410, -381, -485-5p, -487a, -376¢, -411, and -127-3p and favorable outcome as compared to low
expression, respectively. B. Analyses across 253 patients with Luminal A tumors show associations of
high expression of miR-431 and -654-3p with favorable outcome as compared to low expression,
respectively. In contrast, low expression of miR-493* and -505* was associated with favorable outcome
compared to high expression, respectively. Holm correction was applied to adjust P-values for multiple

testing.
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Supplementary Figure 5: KEGG pathways identified in miRNA functional enrichment analyses. A.
5C cell-specific enriched pathways stratified by up (red)- and down (green)-regulated miRNA subsets.
The yellow node represents pathways enriched for both up- and down-regulated miRNA subsets. B. 2A
cell-specific enriched pathways stratified by up (red)- and down (green)-regulated miRNA subsets.
Yellow nodes represent pathways enriched for both up- and down-regulated miRNA subsets. The node
size reflects the number of pathway-related genes regulated by the specific miRNA set. The edge weight
illustrates the degree of gene overlap between two pathways as measured by the Jaccard index. Pathways

highlighted in bold are enriched in both Al-resistant cell models. The font size reflects the unadjusted
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Fisher test P-values from the enrichment analysis (P < 0.001, large (24 pts); 0.001 < P < 0.01,
intermediate (18 pts); 0.01 < P < 0.05, small (12 pts)). C. Enriched pathways of 5C- and 2A-specific up-
and down-regulated miRNA subsets. X-axes represent -log;o value, Y-axes: enriched pathways sorted

according to specific pathways enriched in 5C or 2A. D. Venn diagram illustrating pathway overlaps
between up- and down-regulated miRNA sets of 5C and 2A cells (Table S1 and S2).
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Supplementary Figure 6: Basal levels of gene and protein expression of key growth factor signal
transduction mediators compared between Al resistance models 2A and 5C and their modulatory
mMiRNAs. Gene expression levels were quantified by RT-PCR and protein expression levels were
examined by Western blotting with B-action as loading control (WS8: E2 growth sensitive control). Up
(red) and down (green) regulating miRNAs were obtained from specific miRNA sets given in Table 1.
Putative miRNA-mRNA interaction thresholds were defined as CLIP confirmed Targetscan 7.0 in silico
predictions (> 50 percentile). MiRNAs of the DLK-DIO3 cluster of chromosome 14 are underlined. Small

down regulatory effects in 5C compared to 2A were observed for AKT1, MAPK1, KRAS, RAF-1. Small
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up regulatory effects in 5C compared to 2A were observed for MTOR. *: P < 0.05, #: P < 0.01, **: P <

0.001 (comparisons to WS8).
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Supplementary Figure 7: GO terms of the subcategory ‘Biological Process’ identified in Gene Set
Enrichment Analyses with the GORILLA tool. Test set gene lists were obtained from KEGG pathway
interaction networks (Figs. 5A, B). Resulting GO terms were summarized by removing redundant terms
with REVIGO using default parameters. Terms were then filtered according to the following thresholds:
frequency < 5% and —logig P < 40 (intersection gene set), —log;o P < 15 (5C-, 2A-specific gene sets). Dark
color bars represent major GO terms; light color bars specify minor sub-terms of major terms (bold). A.
Intersection of 5C versus 2A gene sets. B. 5C-specific gene set. C. 2A-specific gene set. X-axes: adjusted

—log,o P-Value; Y-axes: GO terms.
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Supplementary Figure 8: Abbreviated GO terms of the subcategory ‘Biological process’ enriched in
5C and 2A models. Major (bold) and minor terms are listed for the Al resistance phenotype common to

the 5C and 2A models (grey boxes), 5C-specific (blue boxes) and 2A-specific phenotype (green boxes).
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Supplementary Figure 9: miR-134 mimic and inhibition affect EGFR expression in MCF-7:2A and
MCF-7:5C cells, respectively. A. In 2A cells miR-134 expression levels are significantly increased at 3
and 5 days. Although EGFR mRNA levels are increased, the downregulation of EGFR protein correlates
with relative miR-134 levels. B. In 5C cells miR-134 expression levels are significantly decreased at 3 and
5 day inhibition. EGFR mRNA level is significantly increased after 5 days which correlates with an
increase of EGFR protein. R-actin was used as loading control; NC: negative control. qRT-PCR

experiments were done in triplicates; *: P < 0.05, **: P < 0.001.
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