Rapamycinameliorateschitosannanoparticle-induceddevelopmental defects of preimplantation embryos in mice

Supplementary Material

Supplementary Table 1: Effect of in vitro development in chitosan nanoparticles treated mouse embryo

Treatment	No. of morula	100% BL	80% BL	30% BL	0% Mo.
Control	59	48 (80.9±1.4 ^a)	8 (14.4±2.1 ^b)	2 (3.0±1.8°)	1 (1.7±1.7 ^b)
CSNPs	66	29 (45.2±5.8°)	20 (28.2±5.3 ^a)	9 (13.5±2.3 ^a)	7 (10.9±4.3 ^a)
Rapamycin 5 + CSNPs	71	40 (58.8±4.9 ^b)	20 (26.0±4.6 ^a)	7 (9,8±2.3 ^b)	4 (5.4±1.9 ^{ab})
Rapamycin 10 + CSNPs	87	52 (60.5±2.6 ^b)	24 (27.1±2.5 ^a)	7 (7.6±3.1 ^b)	4 (4.8±1.7 ^{ab})
Rapamycin 50 + CSNPs	82	47 (57.4±3.6 ^b)	22 (26.7±2.5 ^a)	8 (9.9±1.9 ^b)	5 (6.0±0.7 ^{ab})
Rapamycin 100 + CSNPs	79	47 (60.3±2.9 ^b)	18 (21.6±3.7 ^{ab})	9 (11.8±1.7 ^{ab})	5 (6.3±0.8 ^{ab})

Supplementary Table 2: Primers used for quantitative real-time polymerase chain reaction

Gene		Primer	Gene	Primer	
Atg4a	F	CCCTCACACAACCCAGACTT	Ip3R	F	CTAACCCCTCTCCTGGTCCT
	R	CCCCTGTGGTTGTCACTTCT	type1	R	CACCAAAGCCACCAAGAACT
A / 11	F	CCACAAGGTAGCAAGAGA	Junk 1	F	GCCACAAAATCCTCTTTCCA
Alg40	R	GAAGTCAAGGGACAAGATATG	JUIIKI	R	CACATCGGGGGAACAGTTTCT
Ata5	F	GGAGAGAAGAGGAGCCAGGT	LC3	F	TTCTTCCTCCTGGTGAATGG
AlgJ	R	TGTTGCCTCCACTGAACTTG	LCJ	R	GTGGGTGCCTACGTTCTCAT
Atg6	F	GTCTTATGAGATGAGGAATG	mTOP	F	ACACAGTAATCCTTCAGA
	R	AATGGCAGGATACTTCTT	miok	R	GCAATGTTTATGATGAGTTT
Atg7	F	CAGTAGCCTGTAGAATAAC	Dorb	F	GGGAAAACGGTTCTGAGACA
	R	GTAGGTGTGTCTGTAATC	I CIK	R	GCTGACCAGCTAGTCTTGGG
Atf6	F	AACCAGTCCTTGCTGTTGCT	Sirtuin 1	F	AAGGAGCAGATTAGTAAGC
	R	CTTCTTCTTGCGGGGACTGAC	Situiii-1	R	GCACCGTGGAATATGTAA
Bax	F	CGAGCTGATCAGAACCATCA	Sirtuin 3	F	TACAGGCCCAATGTCACTCA
	R	GAAAAATGCCTTTCCCCTTC	Situiii-5	R	ACAGACCGTGCATGTAGCTG
Bcl2	F	TAAGCTGTCACAGAGGGGGCT	Sirtuin-6	F	CTGGTCTGGAACTCACTGCT

	R	TGAAGAGTTCCTCCACCACC		R	CGGGTGTGATTGGTAGAGAG
D 1' 1	F	ACAGTTCTATAACAAGTGA	T-4 1	F	GCCTGTTTCATTTCCGTTGT
Bechni	R	GGGTTCTTTGCTATACAT	let-l	R	GTCCCTGACGTAGGACCAAA
Calpain2	F	CACCCTCACCTGTGACTCCTAT AA	Tet-2	F	GTTCTCAACGAGCAGGAAGG
1	R	ATCCTCCTCATCTTCGTCTT		R	TGAGATGCGGTACTCTGCAC
Caspase	F	AGGGGTCATTTATGGGACA	Tat 2	F	GGTCACGCATCGTCCTTATT
33	R	TACACGGGATCTGTTTCTTTG	161-3	R	TTTTAGGATGGGCGTGTTTC
Chon	F	ACAGAGGTCACACGCACATC	Yhn1	F	GAGCAGCAAGTGGTGGATTT
Chop	F	CTTCCGGAGAGACAGACAGG	Хорт	F	CTCTGGGGAAGGACATTTGA
c-Myc	R	CAACGTCTTGGAACGTCGTCAG A	Dnmt1	R	GCTGCTACCAAGGACTAG
	F	TCGTCTGCTTGAATGGACAG	2	F	ACAAGACTTCAAATGATGGG
Cycin D1	R	GCGTACCCTGACACCAATCT	Drumt2 a	R	ACTTGGAGAAGCGGAGTGAA
	F	ATCTCCTTCTGCACGCACTT	Diintsa	F	CTGTTCTTTGCCCTCTCCTG
Ezh2	R	TGTGGAGTTGGTAAATGC	Dnmt3h	R	GATGCTATTGTGAATGTG
	F	TTTCTTCTCTTTCATCTGGAT	Dillitso	F	AGGAAGACTTAAACCATAA
Grharah	R	CAGCAGGAGGGGGTAATGGTA	Fed5	R	GGGCACAGAGATGAAGT
Grbarab	F	CCAATGTCAATCCCTTCCAC	Leus	F	CCAGGTTTCCAGCATAC
G 70	F	TCTGGTGATCAGGATACAGGTG	G 10	F	GAAGTGGAGCAGCAGAGAA
Grp/8	R	TTCAGCTGTCACTCGGAGAATA	Suz12	R	CTACAAACAGCATACAGGCA
	F	ACAGAGCAGGAAGCCCAGTA		F	CAGTTCGCTCAGGACAACAA
Figla	R	ACTCGCACAGCTGGTAGGTT	Lxh8	R	AGCCATTTCTTCCAACATGG
	F	GATGATGATGGACCCCTGTC		F	ACAAACGCCATGAGATTTCC
Foxo3a	R	TCTTGGCGGTATATGGGAAG	Nobox	R	AACAGGGCCAGGTTCTAGGT

Supplementary Table 3: Primers used for quantitative real-time polymerase chain reaction to quantify mitochondrial DNA copy number and functional regulation

	Gene symbol	Primer		Gene symbol	Primer
itochondrial A copy number	Carth	F ATTGACCTACCTGCCCCATC		Dh = 42	F CAGTTACCCGCGAGAAGAAG
	mCyto	R CTCGTCCGACATGAAGGAAT		KII0t2	R GGCTGTCAGCATTCACTTCA
	Actin	F TCGCCATGGATGACGATA		Cytochro me C	F TTCCACAACCCTCATGTGAA
N N	Acun	R CACGATGGAGGGGAATACAG			R TAAGGGTCCAAAACCAGTGC
Mitochondrial activity	Mpv17	F TCGGAGGCTGGTACAAAGTT	tivity	A to 5h	F TGGGAAAATCGGACTCTTTG
		R ATTGTCCTGGGCTGACATTC	rial ac	Афбо	R AGTAACCACCATGGGCTTTG
	Cbr1	F AGTGGTGAATGTGTCCAGCA	puou	Atp synthase	F GCCCTCGGTAATGCTATTGA
		R CAGGACTGTCACCCCAATCT	Mitoc		R CACAGAGATTCGGGGGGATAA
	Imp1	F GGCATCCAAAGAGGTGACAT		Sec.1	F AGTGGCCTTGAAAGAAAGCA
		R ACATGACCTGTTGGCACGTA		3001	R GTAGCCTGCCCTTGCTATTG
	Mtfp1	F GCTGTGGTGTGGGTTGAGCTA		Sco2	F CCTTCGCTGAACTTGTCCTC
		R ACACAGACGGTTGATGGTGA			R CCCTAGAGCCAGTAGCATCG

Gene		Primer	Gene		Primer
M. 1.2	F	AGTTCCCAGCACCCATGTAG	61.00.2	F	CATTTGCGCCAAATTTTTCT
WIASH2	R	GGGTGGTTTGCTTGCAGTAT	5102285	R	TCACGATCACGAAGCAAGTC
Cdx2	F	TGTGATTGGAGGTTAAAGTG	S1c40a1	F	GTCATCCTCTGCGGAATCAT
	R	CCCAAAACAAACCTCACCAT	5104041	R	AAGGACCCATCCATGGTACA
Hand1	F	TGGACGTCTGAACCCTTCTC	S10203	F	CGCCAATGGCTTTTAAGTGT
11allu1	R	AAGGCTGGAGATGACACGAA	510245	R	ССССТТСССТСССААТАТАА
	F	GGGACACTGTGCATTGTTTG		F	TATATATGGATGTATTGTAATATAGG TTAG
Gys1	R	CCGATTCGTCTAATGGTGCT	Ig-DMR	R	CACTTTTACTATAAAACACTTAAC TC
Gcm1	F	CGATGTGAAACTGCCTCAGA	Lit1-	F	TAAGGTGAGTGGTTTAGGAT
	R	TGTCGTCCGAGCTGTAGATG	DMR	R	CCACTATAAACCCACACATA
Prl8a8	F	CCTCAGTGATGGAACTGCAA	Meg1-	F	AAGTTTGTTTGTTGAGTTGGTTT T
	R	GAAGCTTTCTCCCACAGCAG	DMR	R	AATATAATTCACCACCCATTCCTAA
F	F	CTTCTTCCCCATCTCCAACA	Peg3-	F	GGTGGAGATAGGTTTGTTGTATAG
GJDS	R	AGGCTACATGCAGGATGACC	DMR	R	AAAACCAAATACAATCCAAAATC
<u> </u>	F	CTCCTGGAGATTGACCCGTA	Peg10-	F	TGGAAAGTTGTAGGAGAGTAATTA AA
Gbel	F	TCGATCCCACCTTCATTCTC	DMR	F	CACAAACTATTACTAAACACCCAT TC
Atp2a 3	R	TGACCCCCAGTAACAAAAGC	Rafg1-	R	AGTTGGGGAGGTGTGTTATATTAG A
	F	GAGGAGATGCAGGAGAGTGG	DMR	F	AAACCAAAATATCAATCCTAACCT C

Supplementary Table 4: Primers used for quantitative real-time polymerase chain reaction for placenta analysis

Supplementary Figure 1: The effect of rapamycin on CSNPs-induced autophagy in blastocysts. Morula-stage embryos were cultured with CSNPs. CSNPs-treated embryos exhibited various types of structural and cellular damages related to autophagy.

Supplementary Figure 2: Determination of ROS signals. (A). Levels of cytoplasmic ROS generation were measured (green color) after morula stage embryos were cultured either in CSNPs or rapamycin +CSNPs for 24h. (B) Statistical analysis of ROS intensity. RM indicates rapamycin.

Control

A nu n nu **CSNPs** treatment B 15 nu nul nu nu nu nı nu nul nu nu

Supplementary Figure 3: Ultrastructure of heterochromatin condensation. (A) Control (B) CSNPs-treated embryos.

Supplementary Figure 4: Comparison of 5-hmC and 5-mC signal intensity in blastocyst with different cavity size. (A) 5-hmC and 5-mC staining patterns of the control, the CSNPs- and rapamycin+CSNPs-treated group. (B) Measurement of the fluorescence intensities of 5-hmC and 5-mC signals. RM indicates rapamycin.

Supplementary Figure 5: Quality analysis of *in vivo* blastocyst embryos recovered from CSNPsinjected female mice. At 10 days after CSNPs injection, female mice are mated with fertile male mice and checked vaginal plugs at next morning. Three days later, blastocyst embryos were recovered from Control and CSNPs-treated female mice. (A) Time schedule for *in vivo* studies. (B) Microscopy picture of blastocyst stage embryos. (C) Cdx2 (red color) and Oct3/4 (green color) staining using CDX2 and OCT3/4 antibodies indicate (TE) and inner cell mass (ICM), respectively. (D) Statistical analysis of TE and ICM cell numbers. There is no difference between control and CSNPs-injected blastocyst stage embryos. A

	No. of embryos transferred	No. of pregnancy	No. of offspring
Control	20	4	30
CSNPs	20	6	20
RM+CSNPs	20	6	28

Supplementary Figure 6: Fertility test in CSNPs- or rapamycin+CSNPs treated embryos. Morulastage embryos were cultured with CSNPs or rapamycin+CSNPs for 24h. At day 20 after embryo transfer, each offspring were recovered from the uteruses of recipients treated with CSNPs or both rapamycin and CSNPs. (A) Embryo transfer data in control, CSNPs, rapamycin+CSNPs treated groups. (B) A representative picture of offspring and placenta. (C) PAS staining of placentas in control, CSNPs, rapamycin+CSNPs treated groups. Of note, control shows normal spongiotrophoblast areas, whereas CSNPs-treated groups show mis-location of spongiotrophoblast. RM indicates rapamycin.

Supplementary Figure 7: The hypothetical mechanisms for explaining CSNPs-induced toxic effects in preimplantation mouse embryos.