Supplementary Information for

Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light

Authors: Mustafa Ugur Daloglu^{1,2,3}, Aniruddha Ray^{1,2,3}, Zoltan Gorocs^{1,2,3}, Matthew Xiong¹, Ravinder Malik⁴, Gal Bitan^{4,5,6}, Euan McLeod⁷ and Aydogan Ozcan^{1,2,3,8,*}

Affiliations:

¹Electrical Engineering Department, University of California, Los Angeles, CA, 90095, USA.

²Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.

³California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.

⁴Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.

⁵Brain Research Institute, University of California, Los Angeles, CA, 90095, USA.

⁶Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.

⁷College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA

⁸Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.

*Correspondence: Prof. Aydogan Ozcan

E-mail: ozcan@ucla.edu

Supplementary Figures:

Supplementary Figure S1. (a), (b) and (c) The noise grains removed from the reconstructions of three different samples with increasing nanoparticle densities: \sim 474 per mm² for (a), 1778 per mm² for (b) and 3082 per mm² for (c). The density of the removed noise grains in these images remains relatively constant: 4031 per mm² for (a), 3556 per mm² for (b), and 4098 per mm² for (c), despite the increasing nanoparticle density.

Supplementary Figure S2. The size distribution of the polystyrene nano-beads imaged with the help of the self-assembled nanolenses (see Fig. 6 of main text). Dynamic light scattering (ZetaSizer, Malvern Instruments) was used to measure the size distribution.