Supporting Information for

Design, Synthesis and Evaluation of a Neurokinin-1 Receptor-Targeted Near IR Dye for Fluorescence Guided Surgery of Neuroendocrine Cancers

Ananda Kumar Kanduluru, Madduri Srinivasarao and Philip S Low*

Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States

*Author to whom all correspondence should be addressed: Philip S. Low Email: plow@purdue.edu Phone: 765-494-5272

Table of Contents

S.NO	Contents	Page No
1	Experimental Procedures: General	2
2	Synthesis of NK1R Ligand (NK1RL)	2-3
3	Synthesis of NK1RL-Lys	3
4	Synthesis of NK1RL-Lys-Rhodamine	4
5	Synthesis of NK1RL-peptide	5-6
6	Synthesis of NK1RL-Peptide-LS288	6
7	Confocal Laser Scanning Microscopic Images	7
8	NMR Spectral Data	8-20
9	Confocal Images of uptake of NK1RL-Peptide-LS288 on	21
	KB Cells	

EXPERIMENTAL PROCEDURES

General. Thin layer chromatography (TLC) was carried out on Merck silica gel 60 F₂₅₄ TLC plates. The TLC plates were visualized with a 254 nm UV lamp and TLC staining solutions were ceric ammonium molybdate, *p*-anisaldehyde and iodine. Silica gel column chromatography was performed using silica gel (60-120 µm particle size). Preparative reverse-phase high performance liquid chromatography (RP-HPLC) was performed on a Waters, XBridgeTM Prep C18, 5 µm; 19 × 100 mm column, mobile phase A = 20 mM ammonium acetate buffer, pH 5 or 7, B = acetonitrile, system with gradients in 30 min, 13 mL/min, $\lambda = 254/280$ nm. ¹H and ¹³C NMR spectra were recorded on 400-500 MHz Bruker spectrometers in CDCl₃/D₂O/DMSO solutions. Chemical shifts were reported in parts per million (ppm) on the δ scale from an internal standard. The LRMS-ESI (LC-MS) was recorded on Agilent LCMS 1220 system, with Waters, XBridgeTM RP18, 3.5 µm; 3 × 50 mm column, mobile phase A = 20 mM ammonium bicarbonate buffer, pH 5 or 7, B = acetonitrile, system with gradients in 30 min, 13 mL/min, $\lambda = 254/280$ nm. The high resolution mass measurements were recorded on a LTQ Orbitrap XL mass spectrometer utilizing electrospray ionization (ESI).

Procedure for Synthesis of Ester 2: The ligand, (*2S*,*3S*)-3-((3,5-bis(trifluoromethyl)benzyl)-oxy)-2-phenylpiperidine (L-733, 060, **1**) was synthesized according to the published procedure.¹ To the compound, **1** (0.065 g, 0.16 mol) in dry THF (1.5 mL) were added triethylamine (0.056 mL, 0.4 mmol, 2.5 eq.) followed by tert-butyl-2-bromo acetate (0.035 mL, 0.24 mmol, 1.5 eq.) under N₂ and reaction mixture was stirred for 16 h at r.t. The reaction was quenched with water and 2% HCl solution and extracted with EtOAc (3x5 mL) and combined organic layers were washed

¹ Mizuta, S., and Onomura, O. (2012) Diastereoselective addition to N-acyliminium ions with aryl- and alkenyl boronic acids via a Petasis-type reaction. *RSC Advances 2*, 2266-2269.

with brine, dried (Na_2SO_4), filtered and concentrated. The crude residue was purified by silicagel column chromatography (hexane:EtOAc, 4:1) to yield product, **2** (0.075 g, 92%).

¹H NMR (400 MHz, CDCl₃): δ 7.63 (br, s, 1H), 7.60 (br, s, 2H), 7.55-7.45 (m, 1H), 7.30-7.25 (m, 4H), 4.63 (d, J = 12.8 Hz, 2H), 4.60-4.55 (m, 1H), 4.22 (d, J = 12.8 Hz, 1H), 3.68 (d, J = 3.5 Hz, 1H), 3.53 (d, J = 18.0 Hz, 1H), 3.43-3.33 (m, 1H), 2.20 (d, J = 15.8 Hz, 1H), 2.06 (s, 1H), 1.96 (s, 1H), 1.71-1.60 (m, 1H), 1.41 (s, 1H), 1.40 (s, 1H), 1.36-1.32 (m, 1H), 1.28 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 166.8, 140.2, 131.4, 131.1, 129.4, 128.9, 128.5, 127.5, 124.4, 121.7, 121.2, 82.8, 82.2, 75.7, 69.7, 68.1, 61.0, 53.9, 52.8, 27.8, 27.7, 26.4, 18.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -64.4; ESI m/z Anal. Calcd for C₂₆H₂₉F₆NO₃, 517.20; found [M+H]⁺ 518.19.

Hydrolysis of *tert*-**Bu Ester**, **2**: To the ester (**2**, 0.075 g, 0.14 mmol) in dry CH₂Cl₂ was added trifluoroacetic acid (TFA, 20 eq.) and reaction mixture was stirred for 4 h at r.t. The excess of TFA was removed, diluted with water and extracted using CH₂Cl₂ (3x5 mL). The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated. The residue obtained was purified by flash silica-gel column chromatography (hexane:EtOAc, 3:7) to give acid, **3** (0.06 g, 90%) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.71 (br, s, 1H), 7.55 (br, s, 2H), 7.44-7.35 (m, 2H), 7.32-7.24 (m, 3H), 4.56 (d, *J* = 12.5 Hz 1H), 4.45 (br, s, 1H), 4.17 (d, *J* = 12.6 Hz, 1H), 3.72 (br, s, 1H), 3.39 (br, d, *J* = 12.2 Hz, 2H), 3.10-3.20 (m, 2H), 2.18 (d, *J* = 12.5 Hz, 2H), 1.71 (t, 2H), 1.25 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 169.7, 140.0, 135.0, 131.6, 131.2, 128.8, 128.7, 128.6, 127.5, 124.4, 121.7, 121.4, 76.2, 69.9, 68.8, 55.7, 54.0, 26.4, 18.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -64.3; HRMS (ESI) m/z Anal. Calcd for C₂₂H₂₁F₆NO₃: 461.1426; found [M+H]⁺ 462.1494.

Synthesis of NK1RL-Lys (4). H-Lys (Boc)-2-Cl-Trt resin (80 mg, 0.75 mmol) was swollen in dichloromethane (2 × 5 mL) and DMF (2 x 3 mL) while bubbling under argon. A solution of Fmoc-Asp(O^tBu)-OH (2.5 equiv), PyBOP (2.5 equiv), and DIPEA (5 equiv) in DMF was added. The resulting solution was bubbled under argon for 3 h and drained, and the resin was washed with DMF (3 × 5 mL) and i-PrOH (3 × 5 mL). Fmoc deprotection was carried out using 20% piperidine in DMF (3 × 5 mL). The deprotection solution was removed, and the resin was washed again with DMF (3 × 5 mL) and i-PrOH (3 × 5 mL). Kaiser tests were conducted to assess coupling and

deprotection steps. The same procedure were followed for Fmoc-Arg(pbf)-OH, Fmoc-PEG₁-CO₂H and NK1RL couplings. But, reaction was bubbled overnight in the case of ligand coupling step. The resin was washed with DMF (3 × 5 mL) and i-PrOH (3 ×5 mL) and allowed to dry under nitrogen. The NK1RL-Lys linker was then cleaved from the resin using a mixture of 95% TFA, 2.5% H₂O and 2.5% triisopropylsilane. The solution was bubbled thrice under nitrogen for 15 min, drained, concentrated, and then precipitated by addition of cold diethyl ether. Crude product was collected by centrifugation, washed three more times with cold diethyl ether, dried under vacuum, and then purified by preparative reverse-phase HPLC (Waters, XBridgeTM Prep C18, 5 µm; 19 × 100 mm column, mobile phase A = 20 mM ammonium acetate buffer, pH 7, B = acetonitrile, gradient 0–80% B in 30 min, 13 mL/min, λ = 254 nm). Pure fractions were analyzed by LC-MS (XBridgeTM RP18, 3.5 µm; 3.0 × 50 mm column) and were pooled and lyophilized to furnish NK1RL-Lys, **4** (Scheme 2), yield 16 mg (26%).

¹H NMR (500 MHz, D₂O): δ 7.40 (s, 1H), 7.25 (s, 2H), 7.08 (s, 2H), 6.95 (s, 2H), 6.85-6.90 (t, 1H), 4.68, 4.50-4.47 (t, 1H), 4.33 (d, *J* = 12.7 Hz, 1H), 4.27-4.24 (t, 1H), 4.04-4.01 (t, 1H), 3.86 (d, *J* = 9.8 Hz, 1H), 3.60-3.45 (m, 3H), 3.38 (s, 4H), 3.22 (br, 1H), 3.15-3.05 (m, 1H), 2.99 (br, 1H), 2.89-2.86 (t, 1H), 2.64-2.56 (m, 2H), 2.55-2.54-2.45 (m, 1H), 2.51, 2.45-2.35 (m, 2H), 2.30 (br, 1H), 1.93 (br, 1H), 1.86 (s, 2H), 1.78-1.68 (m, 1H), 1.66-1.59 (m, 1H), 1.56-1.52 (m, 2H), 1.32-1.23 (m, 4H), 1.15 (br, 2H); ¹³C NMR (126 MHz, D₂O): δ 179.6, 178.2, 177.2, 173.5, 173.3, 172.2, 171.1, 156.7, 140.4, 138.0, 130.9, 130.6, 128.4, 128.0, 127.7, 126.3, 124.1, 122.0, 120.8, 119.80, 76.4, 70.0, 69.5, 69.4, 68.7, 66.6, 57.6, 54.8, 53.2, 51.6, 40.6, 39.2, 38.3, 35.6, 31.0, 28.5, 26.3, 24.4, 22.2, 21.8, 19.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -64.2; HRMS (ESI) m/z Ana. Calcd for C₄₅H₆₃F₆N₉O₁₁: 1019.4551; found [M+H]⁺ 1020.4621.

Synthesis of NK1RL-Lys-Rhodamine (5). The purified NK1RL-Lys linker 4 was coupled with NHSrhodamine by stirring 1:1.2 ratios of linker 4 and NHS-rhodamine in dry DMSO, DIPEA under argon for 12 h at r.t. The crude reaction mass was purified by RP-HPLC, mobile phase A = 20 mM ammonium acetate buffer, pH 7, B = acetonitrile, gradient 0–80% B in 30 min, 13 mL/min, λ = 280 nm). Pure fractions were combined, concentrated under vacuum, and lyophilized to yield the product, NK1RL-Lys-Rhodamine (5), which was analyzed by LC-MS and LR-ESIMS, yield was 65%. ¹H NMR (500 MHz, DMSO): δ 9.41 (br, s, 1H), 9.25 (br, s, 1H), 8.83 (br, s, 1H), 8.69 (br, s, 1H), 8.52 (s, 1H), 8.42 (s, 1H), 8.36 (br, s, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 8.14 (d, *J* = 7.9 Hz, 1H), 8.08-7.96 (m, 2H), 7.90 (br, s, 2H), 7.84-7.70 (m, 2H), 7.65 (br, 4H), 7.39 (br, 3H), 7.23 (br, s, 6H), 6.49 (br, s, 12H), 4.62 (t, 1H), 4.52 (br, s, 1H), 4.25 (br, s, 2H), 4.12 (d, *J* = 12.6 Hz, 2H), 4.04 (br, 1H), 3.09-2.97 (m, 1H), 2.5 (s, 2H), 2.44-2.39 (m, 1H), 2.36-2.25 (m, 1H), 2.22-2.10 (m, 1H), 1.99 (br, s, 1H), 1.90 (br, 2H), 1.66 (br, s, 13H), 1.55-1.36 (m, 9H), 1.22 (br, s, 1H); ¹³C NMR (126 MHz, DMSO): δ 175.2, 170.1, 152.6, 152.4, 142.7, 140.9, 130.5, 130.3, 129.2, 128.9, 128.1, 127.5, 124.8, 122.7, 121.3, 109.5, 106.1, 98.4, 77.1, 72.7, 69.9, 69.6, 68.7, 67.2, 60.7, 59.0, 54.1, 40.8, 38.6, 27.3, 25.0, 20.2; ¹⁹F NMR (471 MHz, DMSO): δ -62.4; HRMS (ESI) m/z Anal. Calcd for $C_{70}H_{83}F_6N_{11}O_{15}$: 1431.5974; found [M+H]⁺ 1432.6072.

Solid Phase Synthesis of NK1RL-Peptide (6). H-Cys(Trt)-Wang resin (150 mg, 0.64 mmol) was swollen in dichloromethane (2 × 5 mL) and DMF (2 x 3 mL) while bubbling under argon. After swelling the resin in DMF, a solution of Fmoc-Asp(O^tBu)-OH (2.5 equiv), PyBOP (2.5 equiv), and DIPEA (5 equiv) in DMF were added. The resulting solution was bubbled under argon for 3 h and drained, and the resin was washed with DMF (3 × 5 mL) and i-PrOH (3 × 5 mL). Fmoc deprotection was carried out using 20% piperidine in DMF (3×5 mL) and the resin was washed with DMF (3 × 5 mL) and i-PrOH (3 × 5 mL). Kaiser tests were conducted to assess coupling and deprotection steps. The above sequence was repeated for 5 more coupling steps as shown in scheme 4. Final coupling was done by NK1RL (3, 1.5 eq.) under same conditions for 12 h. The resin was washed with DMF (3 × 5 mL) and i-PrOH (3 ×5 mL) and allowed to dry under nitrogen. Finally, NK1RL-Peptide linker was then cleaved from the resin using a mixture of trifluoroacetic acid (TFA):H₂O: triisopropylsilane: ethanedithiol cocktail (92.5:2.5:2.5: 2.5). The solution was bubbled three times under nitrogen for 15 min, drained, concentrated, and then precipitated by addition of cold diethyl ether. Crude product was collected by centrifugation, washed three more times with cold diethyl ether, dried under vacuum, and then purified by preparative reverse-phase HPLC (Waters, XBridge[™] Prep C18, 5 µm; 19 × 100 mm column, mobile phase A = 20 mM ammonium acetate buffer, pH 5, B = acetonitrile, gradient 10–100% B in 30 min, 13 mL/min, λ = 280 nm). Pure fractions were analyzed by LC-MS and lyophilized to furnish **6**. Further, confirmed the products by mass spectrometry analysis.

¹H NMR (500 MHz, DMSO): δ 9.29 (br, 1H), 9.21 (br, 1H), 8.51 (s, 1H), 8.28, 8.01 (s, 1H), 7.90 (s, 1H), 7.85 (s, 1H), 7.72, 7.71, 7.66 (s, 2H), 7.47 (d, *J* = 10 Hz, 1H), 7.40 (d, *J* = 5 Hz, 2H), 7.24-7.21 (m, 3H), 4.65 (d, *J* = 15 Hz, 1H), 4.19-4.12 (m, 2H), 3.99 (s, 1H), 3.58 (s, 2H), 3.55 (s, 1H), 3.49 (t, 1H), 3.45-3.34 (m, 7H), 3.28-3.22 (m, 1H), 3.21-3.14 (m, 1H), 3.06 (br, 1H), 2.96-2.91 (m, 1H), 2.89-2.84 (m, 1H), 2.83-2.79 (m, 1H), 2.75-2.66 (m, 1H), 2.67-2.61 (m, 1H), 2.46-2.38 (m, 3H), 2.25-2.21 (t, 1H), 2.18-2.13 (m, 1H), 1.89 (s, 4H), 1.67 (s, 2H), 1.58-1.39 (m, 8H), 1.11 (s, 1H); ¹³C NMR (126 MHz, D₂O): δ 174.2, 173.8, 173.5, 172.4, 172.1, 171.6, 171.4, 171.2, 170.3, 169.6, 157.3, 142.3, 140.4, 130.1, 129.8, 129.5, 128.8, 127.7, 127.6, 127.0, 124.4, 122.2, 120.8, 76.7, 72.3, 69.4, 69.1, 68.3, 66.5, 60.2, 58.5, 54.7, 53.6, 40.0, 39.8, 39.7, 39.3, 39.2, 39.0, 38.2, 38.1, 35.9, 30.6, 28.5, 27.3, 26.8, 24.6, 24.1, 21.1, 19.7; HRMS (ESI) m/z Anal. Calcd for C₅₅H₇₉F₆N₁₃O₁₆S: 1323.5393; found [M+H]⁺ 1324.0487.

Synthesis of NK1RL-Peptide-LS288 Conjugate (8). To the NK1RL-Peptide linker (6) in dry DMSO were added LS288-maleimide (7, 1 eq.) followed by diisopropylethylamine (5 eq.) under argon atmosphere and the reaction mixture was stirred at r.t for overnight. The progress of the reaction was monitored through LC-MS as conditions shown above and crude product was purified by reverse phase-HPLC using a mobile phase of A = 20 mM ammonium acetate buffer, pH 7; B = acetonitrile; gradient 0–50% B in 30 min, 13 mL/min, λ = 280 nm. Pure fractions were combined and concentrated under vacuum and lyophilized to yield the product, **8** and analyzed by LC-MS and LR-ESIMS. ESI m/z Anal. Calcd for C₁₀₆H₁₃₇F₆N₁₇O₃₁S₅: 2417.8174; found [M+H]⁺ 1210.1 (half mass).

Spectral Data:

^1H NMR (400 MHz) spectra in CDCl3 of L-733 060, 1

$^{\rm 13}{\rm C}$ NMR (100 MHz) spectra in CDCl_3 of L-733060, 1

$^{19}\mathrm{F}$ NMR (376 MHz) spectra in CDCl_3 of L-733060, 1

¹H NMR (400 MHz) spectra in CDCl₃ of NK1RL-tert-Bu ester, 2

¹³C NMR (100 MHz) spectra in CDCl₃ of NK1RL-tert-Bu ester, 2

LC-MS of NK1RL-tert-Bu ester (2)

Mass spectrum of NK1RL-tert-Bu ester (2)

¹H NMR (400 MHz) spectra in CDCl₃ of NK1 Ligand (NK1RL, 3)

 $^{19}\mathrm{F}$ NMR (376 MHz) spectra in CDCl3 of NK1 Ligand (NK1RL, 3)

LC-MS of NK1 Ligand (NK1RL, 3)

Mass spectrum of NK1 Ligand (NK1RL, 3)

¹H NMR (500 MHz) spectra in CDCl₃ of NK1RL-Lys, 4

¹³C NMR (125 MHz) spectra in CDCl₃ of NK1RL-Lys, 4

LC-MS profile of NK1RL-Lys, 4

Mass spectrum of NK1RL-Lys, 4

LC-MS profile of NK1RL-Lys-Rhodamine, 5

UV profile of NK1RL-Lys-Rhodamine, 5

Mass spectrum of NK1RL-Lys-Rhodamine, 5

LC-MS of NK1RL-Peptide, 6

Mass Spectrum of NK1RL-Peptide, 6

LC-MS profile of NK1RL-Peptide-LS288, 8

UV profile of NK1RL-Peptide-LS288, 8

Mass spectrum of NK1RL-Peptide-LS288, 8

Figure S1. Confocal microscopy images: In vitro binding studies of NK1-Lys-Rhodamine **5** conjugate to KB (NK1R-negative) cells. Incubation of cells for 1 h at 37 °C with (a) 25 nM and (b) 50 nM of **5**. The images show no uptake of **5** even at 50 nM and this further supports the specificity of the conjugate for NK1R.