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ABSTRACT

1 Theoretical background of PCA based unsupervised FE

Although it was empirically established that PCA based unsupervised FE worked well for a wide range of FEs/FSs when
applied to gene expression/epigenetic profiles =14, the lack of theoretical background or justification has prevented other
researchers from employing this methodology widely. It also prevented us from estimating in which circumstances it works well
a priori (i.e., before applying this methodology to the specific problem). Here, we propose the theoretical background of this
methodology for the first time based upon Ref. '3, which proved the equivalence between PCA and K-means, although Ding and
He'> did not recognize that their theoretical framework can be applicable to FS, because they applied PCA only to embedded
samples, not to embedded features. In their paper, they proposed the K non-negative indicator vector Hy = (hy,--- ,hg), where
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and n is the size of the kth cluster, the elements with &, = 1 belong to the kth cluster. They also showed that the connectivity
matrix C is defined and represented as

K
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where e = (1,---,1)7. Thus, using PC scores, we could derive cluster structures among genes. In other words, embedding
features by PCA is equivalent to figuring out how genes are clustered in the fully unsupervised manner. By computing C of
synthetic data (s = 2) with K = 1, we could identify that the C between genes i = 991, - -- , 1000, i.e., those with gene expression

distinct between the two classes, have larger C values (see Fig. S6). This suggested that the theory proposed by Ref.!3 could
be applicable not only to sample classification, as they have done, but also to FSs, as has been demonstrated in PCA based
unsupervised FE. Thus, Ding and He!> provided the theoretical background as to why PCA based unsupervised FE works well;
PCA based unsupervised FE tries to cluster genes that share similar expression profiles and this results in the selection of genes
with expressions distinct between two classes. One may wonder why we do not use directly K-means instead of PCA, if they
are equivalent. The reason is that there is only one small cluster to which a limited number of (in this case, as small as 10) genes
belong, while the majority (99 % genes) do not form any clusters. K-means must cluster all genes without exceptions. This
forces K-means to generate non-existent clusters. Actually, if we apply K-means assuming two clusters, we could never obtain
a small cluster including only 10 genes, instead we have two broad clusters whose sizes are equivalent to each other. This kind
of methodological limitation exists in all clustering methodologies, because all clustering methodology must cluster elements
into a limited number of clusters, even when there is only one small cluster to which a very small part of the elements belong
and majority do not form any clusters at all. To the best of our knowledge, PCA based unsupervised FE is the only methodology
that could deal with this kind of difficult-to-treat situation. This is possibly the reason why PCA based unsupervised FE could
outperform other conventional methodologies for a wide range of problems. In addition, Ding and He'> provided the missing
criteria concerning in which circumstances PCA based unsupervised FE is recommended. Simply speaking, if there is a limited
number of small clusters to which a limited proportion of elements belong while the majority of elements do not form any



clusters, PCA based unsupervised FE is useful. To see if this is the case for a DENV data set, we computed C for data set 2
with K = 3 and ordered columns/rows using the spectral ordering!® (Fig. S6). The results definitely showed that situation
is even worse; there are no clear clusters (block diagonal parts) although around the corners there are some genes with high
connectivities, because if there are clusters, multiple block diagonal structures should appear as demonstrated by Refs.! 1.
This is possibly why PCA based unsupervised FE could outperform those methodologies that cannot deal with this situation
effectively. It also supports the employment of two minor PCs (2nd and 3rd) that result in the clear appearance of a set of genes
associated with high connectivity. Furthermore, we computed the correlation coefficient between q, that is the continuous
inverse index permutation'® and is used to order features, and P-values attributed to each gene by PCA based unsupervised FE.
Correspondingly, high correlation (Pearson’s correlation coefficient is as large as 0.627, that is associated with P < 2.2 x 10716)
was observed. This supported the use of P-values for FS instead of q;, which requires diagonalization of an N x N (thus,
generally huge) matrix. We believe the discussion in this subsection justifies the use of PCA based unsupervised FE for the
difficult situation where there are only a few (or even no) clusters to which a limited number of elements belong while the
majority of elements do not form any clusters, which was a difficult situation that could not be dealt with well by other methods.
For more details about the computation of C, see below.

2 Additional methodological advantages of PCA based unsupervised FE

In the previous subsection, we discussed the general methodological advantages of PCA based unsupervised FE based upon the
theory proposed by!>. There are several additional advantages of PCA based unsupervised FE. For example, one may wonder
why genes were not screened directly based on the criteria used to specify the PCs for FEs, i.e., DHF+DF vs. CP+HC or
convalescent vs. acute. Other than the problem that there are too many genes identified (see above), selecting genes because of
their fitness to assumed categorical classes is problematic. It was impossible to reconstruct a two-dimensional space where DHF
and DF were well discriminated, as has been done in the present research. Fig. S7 shows the distribution of genes attributed
to the two classes on the plane spanned by the PC2 and PC3 loadings. It is obvious that the genes are not unidirectionally
distributed around the origin, but alongside the diagonal directions; this is the direction that mostly represents the distinction
between the two classes. This means that to construct a two-dimensional space where DF and DHF were well discriminated,
we need to include genes unrelated to the distinction between the two classes. This shows the limitation of the supervised
method, which can select something targeted, while unsupervised FE can depict something not intended but related to the
critical biological background. No supervised method can overcome this difficulty because they cannot select genes that are not
specific to something targeted. It is unrealistic to assume that we know everything; therefore, a supervised method might miss
something biologically important unintentionally. Thus, unsupervised methods are preferable to supervised if the unsupervised
method can be applied to the data set.

Another advantage of the unsupervised method is the number of classes that should be assumed when FE is performed.
Although data sets 1 and 2 apparently comprise four classes, in our analysis, we identified that two classes is a reasonable
assumption. However, it is difficult for supervised methods to assume a suitable number of classes, because the number of
classes is not supposed to be identified, but to be assumed by supervised methodology. Thus, it is evident that assuming two
classes not four classes in data sets 1 and 2 is the reason of the successful FEs, and unsupervised FE is more suitable to the
present study than supervised FEs.

Furthermore, although PCA is supposed not to be able to represent non-linearity, because PCA is a linear method, this
is not always true. For example, in Fig. 4 in main text, development time of diseases is not proportional to any of the gene
expressions, because it curves. However, since PCA identifies a two-dimensional space where non-linearity can be expressed as
a curve, PCA identified successfully the non-linear dependence of development time upon gene expression. In this sense, if
PCA could detect more than one-dimensional space, e.g., a plane, non-linearity could be captured, even using linear methods
like PCA.

3 Details about sam and limma

When using sam, gene expression is given to sam assuming two or four class arrangements. Then probes associated with
g.value lessthan 0.01 were identified as selected genes. Wehn using limma assuming two classes, pseudo R code is

gene_exp <- new ("ExpressionSet",expr=data.matrix(log(x[,-1]1)))
fData (gene_exp) [ ["gene_id"]] <- x[,1]

pData (gene_exp) [ ["sample_name"]]<- class

design <- model.matrix (" 0O+class)

colnames (design) <- levels(class)

fit <- 1lmFit (gene_exp, design)

fit <- eBayes (fit)
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- four two classes —————-—

TT <- topTableF (fit, adjust="BH", number=dim(x) [1])

o for four classes ———-

contrast.matrix <- makeContrasts(classl-class2,classl-class3,classl-class4,class2-class3,
class2-class4,class3-class4, levels=design)

fit2 <- contrasts.fit (fit, contrast.matrix)

fit2 <- eBayes (fit2)

TT <- topTableF (fit2, adjust="BH", number=dim(x) [1])

table(TT[,6]<0.01)

where x is supposed to include gene expression, with rows and columns being genes and samples, respectively. The first column
is supposed to be gene identifier. class is supposed to be factor that represents sample classes. TT [, 6] is supposed to
include adjusted P-values.

4 Details of computing connectivity matrix C

4.1 Synthetic data set

For synthetic data set, a 1000 x 1000 matrix was generated as described in main text. Then, C is computed. Fig. S6 shows
the connectivity matrix between 900th and 1000th genes. Only genes between 990th and 1000th are associated with distinct
expression between two classes.

4.2 Data set 2

After computing connectivity matrix C, the eigen vector q; was computed. Starting initial random vector q; drawn from
the uniform distribution (0, 1], only three iterations of q; +— Cq; with suitable scaling | q; |= 1 turned out to be enough for
the convergence. Since —q is also an eigen vector if q; is an eigne vector, we could not identify if gene are ordered in the
decreasing or increasing order of the elements of q;, we first compute the correlation between q; and P-vales that PCA based
unsupervised FE attributed to each gene. Then, genes are ordered such that those associated with smaller P-values are top
ranked. Then, connectivities among top ranked 2400 genes are drawn in Fig. S6 after averaging over every 10 sequentially
ranked genes.
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Table S1. List of samples included in data set 1, 2 and 3. DSS:Dengue Shock Syndrome. GSE51808: RMA normalization
was performed using Expression Console software. GSE13052: Intensity was acquired using Beadstudio software Intensity
was background normalised (Subtract the background value). GSE25001: Data was normalised by Beadstudio software.
GSE9378: Signal values were calculated using robust multi-array analysis (RMA) (BioConductor), transformed using inverse
nlog, and then imported into GeneSpring (Agilent) for chip normlaization to 50th percentile and gene normalization to the
mean of controls (where available) for each cell type independently. GSE43777: RMA normalization was performed using
Expression Console software. For more details, see paper.

Data set 1 (GSE51808) Affymetrix HT HG-U133+ PM Array Plate
Healthy Controls (HC)  Acute Patients (AC) DF DHF
9 19 18 10
Data set 2 (GSE13052) Sentrix HumanRef-8 Expression BeadChip
Acute Convalescent
uncomplicated (DF) 10 5
DSS* (DHF) 9 6
Data set 3 (GSE25001) [lumina humanRef-8 v2.0 expression beadchip
Acute 0-1 Disease (Fever) follow up
DF 56 32 31 16
DHF 24 12 20 18
in vitro (GSE9378) Affymetrix Human Genome U133A Array
HUVEC Monocyte
control 2 2
infected 2 2

Data set 4 (GSE43777-GPL570)  Affymetrix Human Genome U133 Plus 2.0 Array
GO GI G2 G3 G4 G5 G6 G7

DF 0 2 5 8 9 5 11 12

DHF 0 0 3 8§ 10 5 11 12

Data set 5 (GSE43777-GPL201) Affymetrix Human HG-Focus Target Array
DF 2 5 21 18 22 22 24 45

DHF 0 0 0 1 3 1 1 3
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Table S2. Number of genes identified by sam, limma and PCA based unsupervised FE. Two classes mean “DHF+DF” vs
“CP+HC” for data set 1 (GSE51808) and “Acute” vs “Convalescent” for data set 2 (GSE13052). *:all probes. The numbers in
parentheses are those when the sample numbers are halved. Averaged values over 100 ensembles are presented. Halving was
performed within each of four classes. Thus, the ratio between classes was conserved.

Data set sam limma PCA based unsupervised FE
two classes four classes two classes four classes
1 17680 (18469) 16647 (7461) 54715 (54715*) 13506 (5706) 879 (826)
2 2427 (41) 865 (0) 21795 (19855) 20629 (17478) 275 (286)
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Figure S1. Top: Biplot of PC1 to PC3 for data set 1 (GSE51808). Open green circles are probes not selected as outliers.
Open blue circles are 879 probes identified as outliers. Black and red crossed represent patients with symptom (DF/DHF) and
those without symptom (HC/AC). Solid line represents the line PC2=-PC3 that roughly represents the distinction between
patients with/without symptom. Open magenta circles are probes associated with 46 genes commonly identified as outliers in
data set 1 and 2. Middle: Biplot of PC1 to PC3 for data set 2 (GSE13052). Open green circles are probes not selected as
outliers. Open blue circles are 275 probes identified as outliers. Black and red crossed represent patients with symptom (acute)
and those without symptom (convalescent). Solid line represents the line PC2=-PC3 that roughly represents the distinction
between patients with/without symptom. Open magenta circles are probes associated with 46 genes commonly identified as
outliers in data set 1 and 2. Bottom: Scatter plot of PC1 to PC3 scores attributed to probes for data set 3 (GSE25001). Open
cyan circles are probes not selected as outliers. Open magenta circles are probes identified as outliers. Blue crossed represents
probes associated with 46 genes commonly identified as outliers in data set 1 and 2. 6/14
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source

keg
keg
keg
keg

source

mi

source

omi
omi T=
omi

omi

omi

source

rea

rea T=
rea

rea
rea

rea 1=

rea
rea

rea 1=
rea

rea
rea
rea
rea
rea
rea

rea T=
rea

rea

source

term name
Gene Ontology (Biological process)

regulation of multi-organism process
regulation of symbiosis, encompassing mutualism through parasitism
regulation of viral process
regulation of viral life cycle
negative regulation of multi-organism process
viral genome replication
regulation of viral genome replication
negative regulation of viral process
negative regulation of viral life cycle
negative regulation of viral genome replication

cell division

cell cycle
mitotic cell cycle
chromosome segregation
regulation of chromosome segregation
organelle organization
organelle fission
nuclear division
single-organism organelle organization
chromosome condensation
negative regulation of organelle organization
chromosome organization
cell cycle process
nuclear chromosome segregation
sister chromatid segregation
cell cycle checkpoint
cell cycle phase transition
mitotic cell cycle process
mitotic cell cycle phase transition
mitotic nuclear division
mitotic sister chromatid segregation
regulation of cell cycle
regulation of cell cycle process
microtubule cytoskeleton organization
microtubule cytoskeleton organization involved in mitosis
microtubule polymerization or depolymerization
microtubule depolymerization
regulation of microtubule polymerization or depolymerization
negative regulation of microtubule polymerization or depolymerization
spindle organization
mitotic spindle assembly

biological_process
immune system process
immune effector process
response to stimulus
response to chemical
cellular response to chemical stimulus
response to organic substance
response to cytokine
response to interferon-alpha
cellular response to organic substance
cellular response to cytokine stimulus
cellular response to interferon-alpha
response to stress
defense response
response to biotic stimulus
immune response
innate immune response
response to interferon-gamma
response to type | interferon
cellular response to type | interferon
response to external biotic stimulus
response to other organism
response to virus
defense response to other organism
defense response to virus
cell surface receptor signaling pathway
cytokine-mediated signaling pathway
type | interferon signaling pathway

gas transport
oxygen transport

term name
Gene Ontology (Cellular component)

chromosome
condensed chromosome

endocytic vesicle lumen
nuclear lumen

chromosomal region
chromosome, centromeric region

cytosol

chromosome passenger complex
hemoglobin complex
haptoglobin-hemoglobin complex

term name
Gene Ontology (Molecular function)

2'-5'-oligoadenylate synthetase activity

tetrapyrrole binding
heme binding

oxygen transporter activity
oxygen binding
haptoglobin binding

term name
Protein databases (CORUM protein complexes)

Chromosomal passenger complex CPC (CDCA8, AURKB, BIRCYS)
CRM1-Survivin-AuroraB mitotic complex

Chromosomal passenger complex CPC (INCENP, CDCAS8, BIRC5, AURKB)
Chromosomal passenger complex CPC (INCENP, CDCAS8, BIRC5, AURKB)
Chromosomal passenger complex CPC (INCENP, BIRC5, AURKB)
Chromosomal passenger complex CPC (INCENP, CDCAS8, BIRC5)

term name
Human Phenotype Ontology

Cyanosis
Polycythemia

Abnormal hemoglobin
Hemoglobin H
Persistence of hemoglobin F
Imbalanced hemoglobin synthesis
Reduced alpha/beta synthesis ratio
Methemoglobinemia

Anemia due to reduced life span of red cells
Hemolytic anemia
Nonspherocytic hemolytic anemia
Heinz body anemia

Pallor

Decreased serum complement C4
Decreased serum complement C4b

Chronic active hepatitis
Hashimoto thyroiditis

Anemia of inadequate production
Microcytic anemia
Hypochromic anemia
Hypochromic microcytic anemia

Abnormality of the heme biosynthetic pathway
Triangular nasal tip
Hypersplenism

term name
Protein databases (Human Protein Atlas)

soft tissue 2; peripheral nerve

term name
Biological pathways (KEGG)

African trypanosomiasis
Measles
Influenza A

Malaria

term name
Regulatory motifs in DNA (miRBase microRNAS)

Ml:hsa-miR-922

term name
Online Mendelian Inheritance in Man

HEINZ BODY ANEMIAS
Hydrops Fetalis

term ID

G0:0043900
G0:0043903
G0:0050792
G0:1903900
G0:0043901
G0:0019079
G0:0045069
G0:0048525
G0:1903901
G0:0045071

G0:0051301

G0:0007049
G0:0000278
G0:0007059
G0:0051983
G0:0006996
G0:0048285
G0:0000280
G0:1902589
G0:0030261
G0:0010639
G0:0051276
G0:0022402
G0:0098813
G0:0000819
G0:0000075
G0:0044770
G0:1903047
G0:0044772
G0:0007067
G0:0000070
G0:0051726
G0:0010564
G0:0000226
G0:1902850
G0:0031109
G0:0007019
G0:0031110
GO:0031111
G0:0007051
G0:0090307

G0:0008150
G0:0002376
G0:0002252
G0:0050896
G0:0042221
G0O:0070887
G0:0010033
G0:0034097
G0:0035455
G0:0071310
G0:0071345
G0:0035457
G0:0006950
G0:0006952
G0:0009607
G0:0006955
G0:0045087
G0:0034341
G0:0034340
G0O:0071357
G0:0043207
G0:0051707
G0O:0009615
G0:0098542
G0:0051607
G0:0007166
G0:0019221
G0:0060337

G0:0015669
G0:0015671

term ID

G0:0005694
G0:0000793

G0:0071682
G0:0031981

G0:0098687
G0O:0000775

G0:0005829
G0:0032133
G0:0005833
G0:0031838

term ID

G0:0001730

G0:0046906
G0:0020037

G0:0005344
G0:0019825
G0:0031720

term ID

CORUM:2582
CORUM:1116
CORUM:1118
CORUM:1119
CORUM:2579
CORUM:1120

term ID

HP:0000961
HP:0001901

HP:0011902
HP:0011903
HP:0011904
HP:0005560
HP:0011907
HP:0012119

HP:0011895
HP:0001878
HP:0001930
HP:0005511

HP:0000980

HP:0045042
HP:0045044

HP:0200120
HP:0000872

HP:0010972
HP:0001935
HP:0001931
HP:0004840

HP:0010472
HP:0000451
HP:0001971

term ID

HPA:040040

term ID

KEGG:05143
KEGG:05162
KEGG:05164
KEGG:05144

term ID

Ml:hsa-miR-922

term ID

OMIM:140700
OMIM:236750

HEMOGLOBIN H DISEASE; HBH;;ALPHA-THALASSEMIA, HEMOGLOBIN H TYPE;;HEMOGOMIM:613978
FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 1; HBFQTL1;;HEMOGLOBIN F, HERE ..OMIM: 141749

ALPHA-THALASSEMIA

term name
Biological pathways (Reactome)

SUMQOylation of DNA replication proteins

Immune System
Cytokine Signaling in Immune system
Interferon Signaling
Interferon alpha/beta signaling

02/CO2 exchange in erythrocytes
Erythrocytes take up carbon dioxide and release oxygen
Erythrocytes take up oxygen and release carbon dioxide

Cell Cycle
Cell Cycle, Mitotic
M Phase

Mitotic Prometaphase
Resolution of Sister Chromatid Cohesion

Mitotic Metaphase and Anaphase
Mitotic Anaphase

Separation of Sister Chromatids

RHO GTPase Effectors
RHO GTPases Activate Formins

Polo-like kinase mediated events

term name
Regulatory motifs in DNA (TRANSFAC TFBS)

Factor: ICSBP; motif: RAARTGAAACTG; match class: 0

Factor: IRF-4; motif: KRAAMNGAAANYN; match class: 1

Factor: IRF5; motif: CCGAAACCGAAACY; match class: 0

Factor: ISGF-3; motif: CAGTTTCWCTTTYCC; match class: 0
Factor: IRF1; motif: NNNYASTTTCACTTTCNNTTT; match class: 0

Factor: IRF-7; motif: TNSGAAWNCGAAANTNNN; match class: 0
Factor: IRF-7; motif: TNSGAAWNCGAAANTNNN; match class: 1

OMIM:604131

term ID

REAC:4615885

REAC:168256

REAC:1280215

REAC:913531
REAC:909733

REAC:1480926
REAC:1237044
REAC:1247673

REAC:1640170

REAC:69278
REAC:68886
REAC:68877

REAC:2500257
REAC:2555396

REAC:68882

REAC:2467813

REAC:195258

REAC:5663220

REAC:156711

term ID

TF:M00699 0
TF:M07323_1
TF:M04016_0
TF:M00258_0
TF:M07216_0

TF:M00453_0
TF:M00453_1

n. of

term
genes

479
218
194
181
148
90
71
87
84
47

625

1742
1000
269
86
3556
556
525
2543
31
415
1077
1262
207
149
244
494
831
471
409
124
1006
524
404
45
188
153
171
151
123
45

16636
2587
759
8357
4374
2852
3004
847
19
2368
747
10
3974
1800
943
1679
1097
154
81
79
905
905
407
553
325
2758
604
79

20
15

n. of

term
genes

860
193

17
3405

303
172

3200
5

12

4

n. of

term
genes

136
127

14
38

n. of

term
genes

W W A b~ W®

n. of

term
genes

n. of

term
genes

6967

n. of

term
genes

34
136
174
48

n. of

term
genes

633

n. of

term
genes

N W NO w

n. of

term
genes

45

1566
625
196
69

13
13
9

602
496
302
108
100
176
175
164

290
115

16

n. of

term
genes

3727
3362
787
1741
841

5414
816

corrected
p-value

3.69e-03
1.85e-03
8.40e-04
5.25e-04
1.32e-04
4.09e-06
7.53e-07
3.22e-06
2.51e-06
3.71e-08

2.98e-07

3.90e-09
5.91e-09
3.03e-07
4.79e-03
1.01e-02
3.28e-11
1.06e-11
9.89e-03
2.36e-02
2.84e-02
2.89e-02
3.43e-10
3.36e-06
3.86e-05
2.60e-03
2.10e-02
8.87e-09
1.34e-02
3.38e-09
1.53e-04
8.98e-05
8.58e-04
2.25e-02
3.55e-03
3.72e-03
1.09e-02
2.26e-02
9.97e-03
3.82e-02
3.55e-03

2.25e-02
4.80e-06
3.15e-05
1.67e-03
2.19e-02
2.30e-02
4.93e-02
7.18e-09
3.00e-02
6.89e-03
1.42e-08
3.77e-03
6.83e-07
1.12e-04
3.14e-03
5.05e-06
3.06e-04
1.14e-02
7.59e-12
5.84e-12
2.03e-03
2.03e-03
2.86e-07
9.35e-06
2.11e-08
1.03e-04
5.63e-10
5.84e-12

2.25e-06
4.40e-07

corrected
p-value

1.59e-03
3.60e-04

2.11e-02
3.55e-02

1.53e-02
1.90e-03

7.17e-03
1.97e-03
1.17e-07
1.27e-04

corrected
p-value

4.25e-02

4 27e-02
3.06e-02

2.94e-07
7.06e-05
3.18e-05

corrected
p-value

1.27e-04
5.00e-02
5.03e-04
5.03e-04
5.00e-02
5.00e-02

corrected
p-value

2.96e-02
2.36e-02

1.10e-05
2.50e-02
3.17e-02
4.23e-04
2.50e-02
2.12e-04

1.26e-02
1.26e-02
7.39e-04
2.13e-05

4.60e-02

2.51e-02
2.51e-02

4.89e-02
4.89e-02

1.19e-04
7.54e-08
4.15e-04
3.36e-06

1.61e-08
2.50e-02
3.46e-03

corrected
p-value

2.27e-02

corrected
p-value

9.71e-03
3.73e-03
8.88e-04
8.87e-04

corrected
p-value

3.68e-02

corrected
p-value

2.01e-06

2.00e-02
5.65e-04

2.01e-06
5.65e-04

corrected
p-value

4.66e-02

2.84e-04
2.61e-06
4.13e-10
8.59%e-14

3.16e-03
3.16e-03
9.38e-04

4.08e-08
1.19e-08
6.00e-05
4.48e-06
4.19e-05
2.70e-02
2.60e-02
1.72e-02

1.73e-02
1.71e-03

3.45e-02

corrected
p-value

8.70e-04
2.07e-02
7.41e-04
1.55e-06
1.17e-02

4.94e-03
7.01e-07
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