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SUMMARY

The related concepts of protein dynamics, confor-
mational ensembles and allostery are often difficult
to study with molecular dynamics (MD) due to the
timescales involved. We present ExProSE (Explora-
tion of Protein Structural Ensembles), a distance ge-
ometry-based method that generates an ensemble
of protein structures from two input structures.
ExProSE provides a unified framework for the explo-
ration of protein structure and dynamics in a fast and
accessibleway. Using a dataset of apo/holo pairs it is
shown that existing coarse-grained methods often
cannot span large conformational changes. For T4-
lysozyme, ExProSE is able to generate ensembles
that are more native-like than tCONCOORD and
NMSim, and comparable with targeted MD. By add-
ing additional constraints representing potential
modulators, ExProSE can predict allosteric sites.
ExProSE ranks an allosteric pocket first or second
for 27 out of 58 allosteric proteins, which is similar
and complementary to existing methods. The
ExProSE source code is freely available.

INTRODUCTION

Proteins move on a variety of timescales, encompassing mo-

tions from the vibration of a single bond to the collective move-

ment of whole domains (Henzler-Wildman and Kern, 2007; Wei

et al., 2016). X-ray crystallography provides a static view of the

structure of proteins. However, when only static structures are

available the dynamic processes crucial to protein function

(Henzler-Wildman et al., 2007) are difficult to elucidate. Experi-

mental techniques to explore the dynamics of proteins, such as

nuclear magnetic resonance (NMR), are sophisticated and

time-consuming. Molecular dynamics (MD) is a widespread

computational method for predicting protein motions and

generating ensembles of protein structures. It is effective at

modeling motions up to the timescale of nanoseconds. How-

ever, the computational cost of modeling proteins on the scale

of microseconds or milliseconds means that MD is not suitable

for larger-scale transitions. Advanced MDmethods such as tar-

geted or accelerated MD can overcome this sampling problem

(Maximova et al., 2016), but these methods are not yet routinely
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applicable due to the parameterization required for each

protein.

Various non-MDmethods have been used to generate ensem-

bles of protein structures from a crystal input structure, and

hence explore protein dynamics. These ensembles have uses

in flexible ligand docking (Totrov and Abagyan, 2008), generating

poses for protein-protein docking (Mustard and Ritchie, 2005),

predicting structures on trajectories between two crystal struc-

tures (Weiss and Levitt, 2009), and predicting flexible regions

in proteins (Ahmed et al., 2011).

CONCOORD (de Groot et al., 1997, 1999) is a distance geom-

etry method to generate structures from an input structure, and

consists of a two-step process. First, the different types of

chemical interactions in the input structure, e.g., hydrogen

bonding and hydrophobic interactions, are converted to dis-

tance constraints with a given tolerance. Next, an iterative mini-

mization procedure is performed to move a set of randomly

placed coordinates such that most distance constraints are

satisfied. This generates a protein structure in a manner similar

to the way a structure is produced from NMR constraints. The

process is repeated to obtain an ensemble of structures.

tCONCOORD extends CONCOORD and gives better sampling

of proteins with large conformational changes by predicting

hydrogen bonds in the structure that are liable to break (Seeliger

et al., 2007).

Normal mode analysis (NMA) can also be used to generate

conformations of proteins, usually by modeling the protein along

the relevant vibrations. The NMSim web server (Kruger et al.,

2012; Ahmed et al., 2011) finds flexible and rigid protein regions

using the graph theoretical approach FIRST (Jacobs et al., 2001),

then generates conformations along low-frequency normal

modes. The generated structures are iteratively corrected to pro-

duce valid stereochemistry.

Modeling conformational transitions is essential in under-

standing biological processes such as allostery, whereby an

effector at a site distant from the active site causes a change

in structure or dynamics that leads to a functional change in

the protein (Nussinov and Tsai, 2013). Allostery can arise from

non-covalent interactions (e.g., drug binding), covalent interac-

tions (e.g., phosphorylation) and light absorption. This intrinsic

property of proteins (Gunasekaran et al., 2004) is important in

processes such as cellular signaling and disease, although

most allosteric mechanisms remain an enigma and a universal

mechanism has not been found (Nussinov and Tsai, 2013).

The discovery of new allosteric modulators is of pressing

concern, due to their considerable potential as therapeutics

(Lamba and Ghosh, 2012). Allosteric modulators have been
lished by Elsevier Ltd.
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elucidated for targets as diverse as the g-aminobutyric acid re-

ceptor, hepatitis C virus polymerase, and RNA. Allosteric modu-

lator discovery by virtual screening is an exciting prospect

furthered by the elucidation of previously unknown allosteric

sites found on solved protein structures (Panjkovich and Daura,

2010). There is an increasing number of entries in the AlloSteric

Database (ASD) (Shen et al., 2016), which currently contains

more than 1,400 proteins. This shows that a large variety of pro-

teins have allosteric character and implies that many proteins

have allosteric character yet to be discovered. However, discov-

ery of allosteric drugs presents challenges beyond those

encountered in orthosteric drug discovery. Whether the drug

will activate or inhibit the protein is difficult to predict, and in

many cases the location of allosteric sites is unknown. Existing

approaches for allosteric site prediction include using changes

in flexibility on ligand binding (Mitternacht and Berezovsky,

2011; Panjkovich and Daura, 2012; Greener and Sternberg,

2015), machine learning on pocket features (Huang et al.,

2013; Cimermancic et al., 2016) and structural conservation

(Panjkovich and Daura, 2010).

Allostery can be thought of as a property of the ensemble of

available protein structures (Motlagh et al., 2014). A perturbation

at any site in the structure leads to a shift in the occupancy of

states by the population. The conformational selection paradigm

suggests that all states available to the protein pre-exist, but

certain states (e.g., an allosteric inactive state) are only signifi-

cantly populated when the allosteric modulator is present. If a

method can model the structural ensemble in such a way that

the effect of modulators can be predicted, sites with allosteric

character can be found.

Here we present a novel distance geometry-based method,

named ExProSE (Exploration of Protein Structural Ensembles),

for protein ensemble generation and allosteric site prediction.

By using distance constraints from two crystal structures,

ExProSE produces ensembles of protein structures that sample

biologically relevant conformations. The ensemble differs from

an ensemble arising fromMD. The structures are not a snapshot

in time on a trajectory; instead, each structure is generated inde-

pendently. We show that ExProSE provides better coverage of

the conformational space than existing methods. Allosteric sites

on a set of proteins are predicted by examining the effect of

potential modulators on the population distribution of the

ensemble. To our knowledge, this is the first study to integrate

available structural data into a general framework that allows

exploration of protein dynamics and allostery, and that provides

models for further studies such as ligand docking.

RESULTS

ExProSE is able to (1) generate ensembles of protein struc-

tures from two input structures and (2) predict allosteric

pockets on proteins. First, it is shown using a dataset of struc-

tural pairs that two widely used methods for generating en-

sembles cannot span large conformational changes. The abil-

ity of ExProSE to produce native-like ensembles is exemplified

with T4-lysozyme. ExProSE ensembles can be perturbed to

reveal the location of allosteric sites, as demonstrated on cy-

clin-dependent kinase 2 (CDK2). The performance of ExProSE

in predicting allosteric sites is assessed on a dataset of 58
known allosteric proteins. Finally, a well-studied example of

dynamic allostery is examined.

Ensemble Generation
Apo/Holo Dataset

To examine the ability of existing non-MD methods to generate

ensembles that span conformational changes, we used a data-

set of apo (nomodulator) and holo (modulator bound) structures

(Atilgan et al., 2010). The proteins have a root-mean-square de-

viation (RMSD) between apo and holo structures ranging from 2

to 19 Å, and represent a variety of domain, subdomain, and sub-

unit motions. tCONCOORD (Seeliger et al., 2007) and NMSim

(Kruger et al., 2012) both seek to model conformational

changes such as those in the dataset. Default parameters

were used to produce 250 structures for each protein from

tCONCOORD and NMSim. The lowest RMSD of the structures

in an ensemble to a particular crystal structure was taken as a

measure of how close the ensemble came to exploring the

conformational space of that crystal structure. This can be

seen in Table 1.

When the apo structure is used as input, structures similar to

the apo structure are generated by both methods. The median

lowest RMSD to the apo crystal is 1.44 Å for tCONCOORD and

0.71 Å for NMSim. However, structures similar to the holo crystal

are not sampled. The median lowest RMSD to the holo crystal is

4.15 Å for tCONCOORD and 4.68 Å for NMSim. In a similar

manner, when the holo structure is used as input to

tCONCOORD and NMSim, the ensembles sample the holo

structure but not the apo structure.

ExProSE, as expected because it uses both the apo and holo

crystals as input, is able to generate structures close to both

crystals (Table 2). For 11 out of the 12 proteins ExProSE can

generate a structure closer to the holo crystal than the other

methods, where the other methods use the apo structure as

input. For the opposite case, compared with the apo crystal,

ExProSE also generates a closer structure for 11 out of 12 pro-

teins. Hence ExProSE is useful for generating ensembles when

two or more structures are available.

PROCHECK checks the stereochemical quality of protein

structures (Laskowski et al., 1993). The PROCHECK overall G

factor is a log-odds score based on the observed distributions

of various stereochemical parameters in reference proteins. A

lower overall G factor represents a low-probability conforma-

tion and indicates a less stereochemically valid structure.

Ideally, scores should be above �0.5, and values below �1.0

may need investigation (Esposito et al., 2006). The median

PROCHECK overall G factor across all generated structures

is �0.99 for ExProSE, indicating that PROCHECK produces

structures that are generally acceptable. The values for NMSim

and tCONCOORD are �0.32 and �1.83, respectively, indi-

cating that NMSim produces good-quality structures and

tCONCOORD produces structures with poor stereochemical

quality. The stereochemistry of generated structures can be

improved by energy minimization (see below).

T4-Lysozyme

Here, we demonstrate that ExProSE can generate structures

close to crystals not used as input. Lysozymes damage bacterial

cell walls by catalyzing the hydrolysis of peptidoglycans. Bacte-

riophage T4-lysozyme is a suitable protein for analyzing
Structure 25, 546–558, March 7, 2017 547



Table 1. Comparison of Ensemble Generation Methods

tCONCOORD

from Apo

tCONCOORD

from Holo NMSim from Apo NMSim from Holo

Lowest RMSD from 250 Generated Structures to Apo/Holo Crystal (Å)

Protein Name Apo PDB Holo PDB RMSD (Å) N Apo Holo Apo Holo Apo Holo Apo Holo

OxyR transcription factor 1I6A 1I69 2.44 206 1.18 2.69 2.66 1.12 1.04 2.61 2.51 0.72

Ferric binding protein 1D9V 1MRP 2.68 309 1.22 1.81 1.88 1.41 0.62 2.07 2.31 0.71

Aspartate receptor 1LIH 2LIG 2.77 157 1.16 2.73 2.94 1.48 0.94 2.45 2.65 0.80

HIV-1 reverse transcriptase 2HMI 3HVT 3.81 555 2.49 4.11 4.66 3.44 0.64 3.28 3.14 0.78

Maltose binding protein 1OMP 3MBP 3.88 370 0.97 2.62 2.66 0.89 0.71 2.35 2.39 0.57

Small G protein Arf6 1E0S 2J5X 4.44 164 0.99 4.18 4.23 0.96 0.66 4.00 4.23 0.86

Immunoglobulin 1MCP 4FAB 5.95 214 1.65 3.60 3.80 1.51 0.62 5.35 3.63 0.79

Myosin 1VOM 2AKA 6.23 730 2.60 5.11 5.63 2.38 0.73 5.53 5.77 0.63

Adenylate kinase 4AKE 1AKE 7.19 214 1.70 4.88 6.00 1.18 0.58 6.16 6.09 0.74

Serpin 1PSI 7API 8.96 372 1.20 8.71 8.93 1.51 0.71 8.22 8.97 0.97

GroEL 1AON 1OEL 12.6 524 3.01 9.72 9.61 2.45 0.87 10.8 10.1 0.48

Topoisomerase II 1BGW 1BJT 18.8 664 3.36 17.5 17.0 3.34 0.81 18.0 17.3 0.65

Median across all proteins 1.44 4.15 4.45 1.50 0.71 4.68 3.93 0.73

The columns Apo PDB and Holo PDB refer to the PDB IDs of the apo and holo structures used. RMSD is the all-atom RMSD (Å) between the apo and holo structures. The rows are ordered by

increasing RMSD. N is the number of residues in common between the apo and holo chains used. The values on the right are the lowest RMSD in Å of the structures in an ensemble produced using

themethod and input indicated, to the crystal structure indicated. A low value indicates that the ensemble sampled a structure close to the crystal structure. Themedian of the lowest RMSDs for each

method/input combination is also given.
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Table 2. Ability of ExProSE Ensembles to Reach Apo and Holo Structures

Lowest RMSD from 250

Generated ExProSE Structures to

Apo/Holo Crystal (Å)

Protein Name Apo PDB Holo PDB RMSD (Å) N Apo Holo

OxyR transcription factor 1I6A 1I69 2.44 206 1.02 1.16

Ferric binding protein 1D9V 1MRP 2.68 309 0.90 1.08

Aspartate receptor 1LIH 2LIG 2.77 157 1.25 0.88

HIV-1 reverse transcriptase 2HMI 3HVT 3.81 555 1.84 1.45

Maltose binding protein 1OMP 3MBP 3.88 370 0.85 1.50

Small G protein Arf6 1E0S 2J5X 4.44 164 1.70 1.88

Immunoglobulin 1MCP 4FAB 5.95 214 3.90 5.33

Myosin 1VOM 2AKA 6.23 730 2.38 1.89

Adenylate kinase 4AKE 1AKE 7.19 214 3.15 1.98

Serpin 1PSI 7API 8.96 372 1.08 1.01

GroEL 1AON 1OEL 12.6 524 3.13 3.70

Topoisomerase II 1BGW 1BJT 18.8 664 3.54 5.10

Median across all proteins 1.77 1.69

The columns Apo PDB, Holo PDB, RMSD, and N are the same as in Table 1. The values on the right are the lowest RMSD (Å) of the structures in an

ExProSE ensemble to the crystal structure indicated. A low value indicates that the ensemble sampled a structure close to the crystal structure. The

median of the lowest RMSDs is also given.
conformational variability, as there are many crystal structures

available andMD simulations of the protein have shown that sim-

ulations up to 200 ns do not reliably reach both the open and

closed conformations (Seeliger et al., 2007). The pairwise

RMSDs of the crystals range from 0.64 to 4.25 Å.

An ensemble was generated using ExProSE from the open

(PDB: 169L, chain E) and closed (PDB: 2LZM) conformations.

Four random structures from this ensemble are shown in com-

parison with the open and closed crystal structures in Figure 1A.
Principal components analysis (PCA) can be carried out on an

ensemble of structures to find the orthogonal motions that

describe the variation in the ensemble. Figure 1B shows the pro-

jections of the generated ensemble and the 38 crystal structures

used in a prior study (de Groot et al., 1998) onto the first and sec-

ond principal components (PCs), which account for 70% and

12% of the motion, respectively. The dominant first eigenvector

corresponds to opening and closing of the structure. It can be

seen that the method is able to sample conformations
Figure 1. T4-Lysozyme Ensembles

(A) Four structures generated from ExProSE using

the open (PDB: 169L, chain E) and closed (PDB:

2LZM) conformations as input are shown in or-

ange. The crystal structures of the open and

closed conformations are shown in blue and

green, respectively, for reference. The arrow

shows the openingmotion caused by the breaking

of a hydrogen bond between Arg137 and Glu22.

(B) Projections of the 38 crystal structures used in

a prior study (de Groot et al., 1998) onto the first (x

axis) and second (y axis) PCs of the PCA of the

crystal structures, which account for 70% and

12% of the motion, respectively (black dots).

Projections from the ensembles generated with

ExProSE are also shown (red dots).

(C) Projections of two tCONCOORD ensembles on

the same plot as (B). An ensemble using the open

structure as input (blue dots) and an ensemble using

the closed structure as input (yellow dots) are shown.

(D) Projections of two NMSim ensembles with

parameters for large-scale motions on the same

plot as (B). An ensemble using the open structure

as input (blue dots) and an ensemble using the

closed structure as input (yellow dots) are shown.

See also Figure S1 and Table S1.
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Figure 2. MD T4-Lysozyme Ensembles

Projections of two repeats of a particular MD run

onto the PCA of the crystal structures are shown

(blue and yellow dots), with snapshots taken every

100 ps. Similarly to Figure 1, in each graph the

projections of the crystals are also shown (black

dots).

(A) 50-ns MD runs starting from the closed struc-

ture (PDB: 2LZM).

(B) 50-ns MD runs starting from the open structure

(PDB: 169L).

(C) 20-ns targeted MD runs starting from the

closed structure and targeting the open structure.

(D) 20-ns targeted MD runs starting from the open

structure and targeting the closed structure.
corresponding to experimentally observed structures, as the en-

sembles largely overlap.

Ensembles produced by tCONCOORD starting from the open

and closed structures separately are shown in Figure 1C. As

demonstrated previously on other proteins, the ensemble gener-

ated from the open structure cannot reach all the way to the

closed structure, and vice versa. The tCONCOORD ensembles

also sample structures not found in the ensemble of crystal

structures, particularly when using the open conformation as

input. This tendency of tCONCOORD to produce ensembles

with toomuch structural variability was also noted by the authors

(Seeliger and de Groot, 2009).

Ensembles produced by NMSim starting from the open and

closed structures separately are shown in Figure 1D. In this

case, the ensemble generated from the open and closed struc-

tures can largely span the conformational space. Similar to

tCONCOORD, regions not explored by the crystals are sampled

by NMSim. For example, there is one model in the ensemble

generated from the open structure that has an RMSD of 7.38 Å

to the nearest crystal structure.

Alternative parameters were also used for tCONCOORD and

NMSim to discern how the ensembles varied (Figure S1). For

tCONCOORD, decreasing the upper bound for long-range con-

straints and/or turning off close pairs as constraints had little ef-

fect on the distribution of the ensembles. For NMSim, using the

parameters for small-scale motions led to ensembles that could

not span the conformational space. In each case the default pa-

rameters gave similar or better coverage of the conformational

space of the crystals by visual inspection, and were hence

used for the analysis described below.

T4-lysozyme was also studied with MD. MD runs of 50 ns

starting from the closed conformation were not able to reach

the open conformation and vice versa (Figures 2A and 2B).

Targeted MD runs starting from the closed conformation and

targeting the open conformation (and vice versa) were also car-

ried out. In targeted MD the atoms are guided to a target

structure with the use of a steering force that seeks to minimize

the RMSD of the structure to the target structure. These ensem-

bles can be seen in Figures 2C and 2D, and are generally able

to cross conformational space over the course of around
550 Structure 25, 546–558, March 7, 2017
20 ns. However, beyond this time they show unpredictable

behavior and can deviate from the experimental structures. Re-

taining only the structures up to 20 ns, as in Figures 2C and 2D,

gives ensembles that largely overlap with the experimental

structures.

By combining tCONCOORD, NMSim, and targeted MD en-

sembles generated using the open and closed structures as

input, a fair comparison with ExProSE can bemade. A generated

ensemble should ideally contain models close to all the crystal

structures. The degree to which this occurs for ExProSE ensem-

bles, and combined ensembles for tCONCOORD, NMSim, and

targeted MD up to 20 ns, is shown in Figure 3A. It can be seen

that ExProSE is able to generate structures close to all crystals,

with all crystals having an RMSD of 1.7 Å or less to a generated

structure. For 26 out of 38 crystals ExProSE generates a model

closer to the crystal than NMSim, and generates a closer model

than tCONCOORD in all cases. For 15 out of 38 crystals ExProSE

generates a model closer to the crystal than targeted MD. How-

ever, this is the case for 14 out of the 27 structures that have an

RMSD of more than 1.0 Å to both the open and closed reference

structures. Of these 27, ExProSE performs better for all of the

four structures that have an RMSD of more than 1.5 Å. Hence,

ExProSE is able to generate better models than the other

methods for crystals which are far from either input structure,

as seen on the right side of Figure 3A. The PROCHECK overall

G factor of the closest models for each method is shown in Fig-

ure 3B. ExProSE is able to produce models of acceptable quality

close to all the crystals, even for those further from the input

structures.

To determine whether the stereochemical quality of generated

structures could be improved, we carried out energy minimiza-

tion on all structures. For all methods, energy minimization

improved median PROCHECK overall G factors. Across the en-

sembles the median values increased from the range [�2.23,

�0.45] to the range [�0.31, �0.17] (Table S1). This shows that

stereochemical problems in generated structures can in general

be improved by energy minimization, which is important if using

generated structures for docking studies.

By using two input structures rather than one, ExProSE is able

to produce models of acceptable quality close to that of other



Figure 3. Closest Models from Each Ensemble to T4-Lysozyme

Crystal Structures

(A) The RMSD of the closest model from each generated ensemble to the

crystal structures. The crystal structures are sorted by the lower of the two

RMSD values to the open and closed crystals used as input. The crystals used

as inputs are omitted from the graph.

(B) PROCHECK overall G factors of the closest model from each generated

ensemble to the crystal structures. The crystal structures are sorted as in (A).
crystal structures. It can explore conformational space better

than methods that use a single structure as input.

Ensemble Perturbation for CDK2
Here, we demonstrate that ExProSE ensembles can be per-

turbed to reveal modulating sites. CDK2 is a protein kinase

essential for the G1/S phase transition in the cell cycle (Peyres-

satre et al., 2015). It associates with, and is regulated by, cyclins.
It has been a major target of drug discovery efforts due to its

essential role. An ExProSE ensemble was generated using the

apo native structure (PDB: 1HCL) and the holo structure bound

to two ANS molecules in an allosteric site (PDB: 3PXF). The

ANS-bound structure is inactive, as ANS binding causes a

conformational shift in the C helix that prevents cyclin binding

(Betzi et al., 2011). A further screening study has found potential

modulators for the ANS binding site (Rastelli et al., 2014).

Figure 4A shows the pockets predicted by LIGSITEcs (Huang

and Schroeder, 2006) on CDK2 bound to two ANS molecules.

The ensemble perturbation procedure was carried out at each

of the eight pocket centers as described in Experimental Proced-

ures. In brief, additional constraints are added representing a

modulator bound in the selected pocket. Projections of the

structures of the unperturbed ensemble and the structures of

the ensemble with perturbation at the pocket center are shown

in Figure 4B, one graph per pocket center. The third PC was

chosen for visualization instead of the second as it represents

the inactivating motion of the C helix, whereas the second PC

represents a rotation in the region of the protein considered to

be functionally less important, the C lobe.

Site 1 in Figures 4A and 4B is the ANS allosteric pocket. Simu-

lating a modulator there shifts the ensemble toward the inactive

state, agreeing with previous experimental data (Betzi et al.,

2011). Site 2 is the ATP binding site, where there is no change

in the ensemble upon simulating a modulator there. This is

encouraging, as ATP binding does not cause structural changes

that lead to cyclin dissociation. Site 3 is found in a pocket near

the activation segment. A shift in the ensemble toward the inac-

tive state is seen on perturbation at this site. In fact, this site is

close to a potential allosteric site suggested in another computa-

tional study (Pitt et al., 2014) and is part of the region associated

with cyclin binding. This indicates that the site could potentially

be an allosteric site, although further effort would be required

to determine whether it is druggable. Simulating modulators at

sites 4–8 does not shift the ensemble, suggesting that binding

at these sites is unable to cause an allosteric effect. No allosteric

modulators have been reported experimentally for these sites.

Allosteric Site Prediction
Systematic methods to predict allosteric sites on proteins are

necessary to utilize the potential advantages of allosteric drugs.

A diverse dataset of 58 apo/holo pairs representing the unbound

protein and the protein bound to a known allosteric modulator

was assembled from the ASD (Shen et al., 2016). This dataset

showed a large range in protein size (153–955 residues) and

included a variety of proteins including transcriptional regulators,

transporters, and protein kinases.

LIGSITEcs was used to predict pockets on the holo crystal

structures and ExProSE was used to generate a perturbed

ensemble for each pocket center, as described in Experimental

Procedures. These perturbed ensembles were used to rank the

pockets in terms of predicted allosteric effect. In this study a cor-

rect prediction for a protein indicates that an allosteric pocket

was ranked first or second. This criterion was chosen as a mea-

sure of success because typically the top few pockets predicted

by a method would be examined and studied further.

The ability of ExProSE to predict allosteric pockets on the da-

taset is compared with existing allosteric prediction methods,
Structure 25, 546–558, March 7, 2017 551



Figure 4. CDK2 Pockets and Projections of Ensembles

(A) CDK2 in its holo conformation bound to two ANS molecules in the allosteric site (PDB: 3PXF). CDK2 is shown as a green cartoon with the two bound ANS

shown as blue sticks. Pocket centers predicted by LIGSITEcs are shown as purple spheres. The pockets are numbered by descending volume. Pocket 1 rep-

resents the ANS allosteric pocket. Pocket 2 represents the ATP binding pocket.

(B) Structures generated using ExProSE, with input structures the apo and holo structures (PDB: 1HCL and 3PXF, respectively), are shown as red dots. The axes

are projections onto the first (x axis) and third (y axis) PCs of the ExProSE ensemble, which account for 35% and 8% of the motion, respectively. The blue dots

represent the structures in the ensemble with perturbation at pocket centers 1–8 from (A).
which are run with the holo crystal structures as input. This was

found to give better results for the existing methods than using

the apo crystals. PARS (Panjkovich and Daura, 2014) uses
Table 3. Performance of Allosteric Site Prediction Methods on a

Dataset of 58 Known Allosteric Proteins

Method

Correct in Top 2

(Out of 58)

Unique from

LIGSITEcs

Unique from

Fpocket

ExProSE 27 6/27 8/27

PARS 25 3/25 7/25

STRESS 18 6/18 8/18

AlloPred 26 5/26 1/26

LIGSITEcs 31 – 8/31

Fpocket 31 8/31 –

Correct in Top 2 is the number of proteins for which the method success-

fully ranked an allosteric pocket first or second. The definition of an allo-

steric pocket is given in Experimental Procedures. The number of correct

predictions by each method that are unique from the correct predictions

of LIGSITEcs and Fpocket is also shown. STRESS could not run on four

proteins as they were too small. See also Table S2.
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NMAwith and without a predicted modulator to predict changes

in flexibility. STRESS (Clarke et al., 2016) is an implementation of

the earlier binding leverage algorithm (Mitternacht and Berezov-

sky, 2011), which models how perturbations due to binding

couple to the motions of the protein as expressed by low-fre-

quency normal modes. AlloPred (Greener and Sternberg, 2015)

uses perturbation of normal modes and pocket features in a ma-

chine-learning approach to predict allosteric pockets. It should

be noted that different criteria are used to define an allosteric

pocket for each method, due to the nature of their output (see

Experimental Procedures). For 27 of 58 proteins ExProSE ranked

an allosteric pocket first or second, performing better than the

other three methods. This is shown in Table 3. Only seven pro-

teins have an allosteric pocket ranked first or second by all

four methods. In three cases ExProSE makes a correct predic-

tion for a protein while none of the other methods did.

The performance of the allosteric prediction methods is also

compared with the pocket prediction methods LIGSITEcs and

Fpocket (Le Guilloux et al., 2009) in Table 3. LIGSITEcs and

Fpocket are effective at finding allosteric sites, both ranking an

allosteric pocket first or second for 31 out of 58 proteins, even



Figure 5. Mean Square Fluctuations across

CAP Ensembles Compared with Apo-CAP

The four ensembles are generated separately.

Apo-CAP has no cAMP. The other ensembles

have additional constraints (see Experimental

Procedures) representing cAMP bound to chain A,

cAMP bound to chain B, or cAMP bound to both

chains A and B. The bound cAMP molecules are

shown for reference as green sticks. Red regions

indicate residues with more flexibility compared

with apo-CAP, and blue regions indicate residues

with less flexibility compared with apo-CAP.
though they are not designed specifically for allosteric site

prediction. This is not too surprising as the holo structures

were used as input, so the modulator had a reasonable chance

of being in one of the two largest pockets. However, ExProSE

is still valuable as it finds smaller, less obvious allosteric pockets.

This could be due to the extra structural information used as

input. For example, in six cases ExProSE finds sites not ranked

in the top 2 by LIGSITEcs and in eight cases finds sites not ranked

in the top 2 by Fpocket. ExProSE shows the best complemen-

tarity to the pocket prediction methods along with STRESS,

which makes fewer correct predictions. ExProSE also gives

information on how the ensemble may be affected by the

modulators, as demonstrated in Figure 4, allowing inspection

of the predicted structural and dynamic changes arising from

perturbation.

The performance on each protein by each method is shown in

Table S2. This is, to our knowledge, the first systematic compar-

ison of multiple allosteric prediction methods. Forty-nine of 58

proteins had an allosteric pocket ranked first or second by at

least one of the six methods compared in Table 3. This comple-

mentarity indicates the potential for a meta-approach that com-

bines predictions from multiple methods.

Dynamic Allostery in CAP
Catabolite activator protein (CAP) is a transcriptional activator

that exists as a homodimer. Each subunit has a ligand binding

domain at the N terminus and a DNA binding domain at the C

terminus. Two cyclic AMP (cAMP) molecules bind CAP with

negative cooperativity and increase the affinity of the protein

for DNA. The negative cooperativity of cAMP binding is a

well-studied example of dynamic, or entropic, allostery (Popo-

vych et al., 2006). The binding of one cAMP does not signifi-

cantly change the structure of the other cAMP binding site,

but changes in the dynamics at the other site make binding

entropically unfavorable (Popovych et al., 2006; Louet

et al., 2015).

ExProSE was used to explore the dynamic allostery in CAP. A

single structure was used as input (PDB: 1G6N) and four ensem-

bles were generated with perturbations representing no cAMP
bound (apo-CAP), cAMP bound to chain

A, cAMP bound to chain B, and cAMP

bound to both chains A and B. Note that

this is the only case in this study whereby

a single structure, rather than two, was

used as input. The mean square fluctua-
tion across each ensemble was calculated for each residue

and gives a measure of the conformational flexibility of the resi-

due across the ensemble. By comparing the mean square fluc-

tuation of the ensembles with one or two cAMP bound to the

ensemble of apo-CAP, we can see how the binding of cAMP af-

fects the conformational flexibility of the protein. Figure 5 shows

this visually.

On binding cAMP to chain A, the surrounding regions of chain

A become more rigid. This is to be expected on ligand binding.

However, significant regions of chain B have the same flexibility

(gray regions in Figure 5) or are more flexible (red regions) on

ligand binding to chain A. The corresponding effect happens

on a single cAMP binding to chain B. However, on cAMP binding

to both chains, both binding sites become significantly rigid and

nearly all regions of the protein aremore constrained than in apo-

CAP. The ratio of mean square fluctuations as seen in Figure 5

follows the order parameter data and amide exchange rates,

which from a previous study are a measure of flexibility in the

protein (Popovych et al., 2006). The explanation for the negative

cooperativity given in the existing study is that the binding of the

second cAMP significantly quenches motions in the protein; this

has an associated entropic cost that leads to negative coopera-

tivity between the cAMP sites. The data from ExProSE support

this conclusion.

The structural changes on cAMP binding were also measured

using ExProSE. The average structures across the ensembles of

apo-CAP, and CAP with cAMP bound to chain A, were

compared. The RMSD of chain A and chain B between the aver-

ages of the ensembles was 0.16 Å and 0.08 Å, respectively. This

indicates minor structural rearrangement in chain A due to ligand

binding, but almost no change in chain B. This agreeswith chem-

ical shift mapping in the existing study (Popovych et al., 2006).

These results indicate that ExProSE is able to reproduce dy-

namic allostery in a model system.

DISCUSSION

The allosteric prediction methods PARS, STRESS, and AlloPred

all use NMA to predict allosteric sites. NMA is computationally
Structure 25, 546–558, March 7, 2017 553



Table 4. Interaction Types between Atom Pairs

Number Interaction Name Constraint Tolerance (Å) Definition

1 covalent bond 0.02 pairs that are covalently bonded

2 bond angle 0.05 pairs where both atoms are covalently bonded to the same atom

3 ring 0.1 pairs that are part of ring systems

4 double bond 1–4 0.1 1–4 dihedral angle restricted pairs in side chain double bonds (found in Asn, Gln, and Arg)

5 omega 1–4 0.1 1–4 pairs constrained by the rigid u dihedral angle

6 tight phi/psi 1–4 0.2 1–4 pairs constrained by the 4/c dihedral angle where one residue is a proline or both residues are in

the same helix/strand

7 loose phi/psi 1–4 0.4 1–4 pairs constrained by the 4/c dihedral angle where one residue is a glycine or both residues are in a

loop region

8 other phi/psi 1–4 0.3 1–4 pairs constrained by the 4/c dihedral angle that do not fall into the above two categories

9 other 1–4 0.4 other 1–4 dihedral angle restricted pairs that do not fall into the above categories

10 secondary structure 0.5 pairs of backbone atoms that are in the same helix/strand and are not more than 4 residues apart

11 salt bridge 0.75 pairs from oppositely charged groups in close proximity (less than 4 Å apart)

12 hydrogen bond 0.5 pairs that are part of a hydrogen bond; donor-acceptor distance is no more than 3.5 Å, hydrogen-

acceptor distance is no more than 2.5 Å, and the donor-hydrogen-acceptor angle is at least 90�

13 tight hydrophobic 0.5 pairs where the interatomic distance is less than the sum of the van der Waals radii of the atoms plus

0.5 Å; only C and H atoms are counted

14 loose hydrophobic 1.0 pairs where the interatomic distance is less than the sum of the van der Waals radii of the atoms plus

1.0 Å; only C and H atoms are counted

15 all other pairs 5.0 pairs that do not fall into any of the above categories

These are the same as in CONCOORD (de Groot et al., 1997). The constraint tolerance values are used to generate lower and upper distance constraints between atoms.
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inexpensive and hence suitable for high-throughput, automated

approaches. However, the assumption of harmonic fluctuations

around an energetically minimum structure often makes predic-

tion of conformational changes difficult, particularly for transi-

tions with a low degree of collectivity (Yang et al., 2007). In addi-

tion, the choice of which normal modes to use is non-trivial.

Larger conformational changes are associated with low-fre-

quency normal modes, but higher-frequency modes are also

required to take into account local effects. The focus of NMA

on changes in dynamics is also important: while NMA-based

methods might be expected to reveal perturbations to vibrations

in proteins, there are a variety of other motions that contribute to

allostery, such as local unfolding and rigid body movements

(Motlagh et al., 2014). By contrast, ExProSE generates native-

like protein structures accounting for various interactions (Table

4) that can span large conformational changes. The structure

generation process is then perturbed to predict allosteric sites.

This has the potential to discover effects not revealed by NMA-

based methods while retaining the low computational cost and

ease of use. It also provides an ensemble of structures under

the influence of the predicted modulator that can be used, for

example, in flexible ligand docking. Energy minimization pro-

vides a way to improve the stereochemistry of generated struc-

tures for use in such approaches.

ExProSE requires two structures for each protein, whereas

other methods only require one. It also requires the structures

to be different from each other in order to generate structures

that span the conformational space. This makes the method un-

suitable for use on proteins where only one structure, or highly

similar structures, is available. However, many medically impor-

tant proteins have multiple structures available, including the ex-

amples used in this study. In these cases it makes sense to use

the additional structural information. The method also was suc-

cessful at reproducing the allostery in CAP using only one struc-

ture as input. For proteins with multiple different conformational

states, more than two structures could be used as input to

ExProSE to explore further regions of conformational space:

the constraint combination procedure can be applied to an arbi-

trary number of structures.

For many ensemble generation methods, such as MD and

tCONCOORD, the choice of parameters has a large effect on

the structures produced. The parameter in ExProSE with the

largest effect is WB (see Experimental Procedures), which af-

fects the conformational spread of the ensemble. Without

any user input, the auto-parameterization step of ExProSE se-

lects a value that gives an ensemble a wide spread over the

conformational space between the two input structures.

Once WB has been selected automatically, an ensemble that

spans the correct space is generally produced without any

further choice of parameters. This makes the method suitable

for high-throughput structure generation across multiple pro-

teins, as users do not need to make any parameter choices

themselves. The auto-parameterization procedure can be

adjusted to obtain the desired level of structural flexibility using

the parameter F, which is intuitive in terms of the spread of

structures over conformational space (see Experimental Pro-

cedures). This provides a way to generate an ensemble with

more flexibility if the input structures are similar, as mentioned

above.
In this study, LIGSITEcs was used to predict pockets for

ExProSE. However, it is worth noting that any pocket prediction

method that outputs pocket points is compatible with ExProSE

without modification. One of the challenges in allosteric site pre-

diction is discovery of transient pockets, i.e., pockets that are

only present in some structures of the ensemble. There are

currently no general methods that use transient pockets for allo-

steric site prediction (Boehr et al., 2009), although recent studies

have used Markov state models on MD simulations to predict

cryptic allosteric sites on multiple proteins (Bowman and Geiss-

ler, 2012; Bowman et al., 2015). These studies concluded that

cryptic allosteric sites are more ubiquitous than previously

thought. ExProSE has the potential to identify transient pockets

and predict their ability as allosteric sites. For example, an

ensemble could be clustered into a few representative struc-

tures, and perturbation at sites on these structures could be

used to predict transient allosteric pockets.

ExProSE builds on existing methods by using more structural

information as input. It is able to generate ensembles of protein

structures that span relevant conformational changes in pro-

teins. This makes it an effective alternative to similar methods

and to MD, which is often not feasible for running on timescales

long enough to explore large motions of interest without

specialist approaches. The perturbation procedure can be

applied systematically to predict allosteric sites. In a comparison

of multiple allosteric site predictors, ExProSE showed perfor-

mance similar to and complementary with existing methods.

Experimental results in the well-studied CAP were also repro-

duced by ExProSE. The ability to generate ensembles of protein

structures and investigate the response of an ensemble to per-

turbations should prove useful for both the exploration of individ-

ual proteins and the systematic study of the whole PDB. Such

methods are required to make sense of the increasing volume

of structural data and to understand the crucial importance of

dynamics to protein function.

EXPERIMENTAL PROCEDURES

ExProSE is based on the CONCOORD distance geometry method (de Groot

et al., 1997), but has important differences that make it suitable for modeling

conformational transitions and ensemble perturbations. These are primarily

the use of two input structures instead of one, a different procedure for

achieving convergence, the ability to predict the effect of a modulator, and

an auto-parameterization procedure. ExProSE is implemented in Julia, a lan-

guage that combines readable syntax similar to Python with performance ap-

proaching statically compiled languages such as C. Use of Julia allows good

computational performance at the limiting steps, but also allows compact

and easy-to-use code that others can modify. The code, documentation, de-

tails of the datasets, and instructions for reproducing the data are freely avail-

able under the MIT license as a Julia package at https://github.com/

jgreener64/ProteinEnsembles.jl. The code is written in a modular way with

associated unit tests and an automated building and testing procedure.

Distance Constraint Generation

The first step is to obtain a set of distance constraints from a protein structure.

Contrary to similar studies (Panjkovich and Daura, 2012; Huang et al., 2013)

the smallest biological assembly of the protein is used, rather than only the

chain containing the allosteric modulator. Hetero atom records, including the

allosteric modulators, are removed. Any existing hydrogens are removed

and polar hydrogens are added using an in-house script. Secondary structure

assignments, required to obtain additional distance constraints, are obtained

using the DSSP software (Touw et al., 2015). As two structures for the same
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protein are utilized to generate distance constraints, only atoms common to

both structures are used. Every atom pair is examined and assigned an inter-

action type. The criteria for each interaction are the same as in CONCOORD

(de Groot et al., 1997) and are shown in Table 4.

Each atom pair is assigned the first interaction for which it fulfills the crite-

rion. If an atom pair is not assigned any of the first 14 specific interactions, it

is assigned the generic ‘‘all other pairs’’ interaction type. Lower and upper dis-

tance constraints lij and uij are generated for each atom pair ij based on the

interatomic distance dij, the constraint tolerance for the interaction tij and a

tolerance weighting factor WB that is between 0.0 and 1.0:

lij = dij � WBtij, uij = dij + WBtij

The selection of WB is described below. For example, two atoms 1.54 Å

apart and in a covalent bond withWB equal to 0.5 would have a lower distance

constraint of 1.53 Å and an upper distance constraint of 1.55 Å, as the

constraint tolerancemultiplied byWB is 0.01 Å. This process yields a set of dis-

tance constraints for each crystal structure of a protein.

The distance constraints generated from the two structures for the same

protein are combined to get a set of combined constraints. The constraints

are combined in such a way that the new constraints for a given atom pair

cover the distance of both the individual constraints for that pair. For example,

if two atoms have a lower and upper distance constraint of 6.0 Å and 7.0 Å in

structure 1 and 6.5 Å and 7.5 Å in structure 2, then the new constraints will be

6.0 Å and 7.5 Å.

It is undesirable to retain all the ‘‘all other pairs’’ interactions (type 15 in Table

4) as they vastly outnumber the specific interactions (types 1–14). Specific in-

teractions scale with the atom number NA whereas other pairs scale as N2
A.

Hence only a fraction of the other pairs are retained as distance constraints.

The probability of retaining an other pair is chosen so that the final number

of other pairs is roughly 20NA, the value used by studies utilizing CONCOORD

(de Groot et al., 1999).

WB is chosen for each protein in the apo/holo and allosteric datasets by a

process of auto-parameterization. WB equal to 0.0 usually results in a narrow

range of structures that are midway between the two input structures. By

contrast,WB equal to 1.0 usually results in structures that cover a wide confor-

mational space beyond the input structures. A measure for the conformational

spread of the ensemble was developed. Thismeasure F is the fraction of struc-

tures S in the ensemble for which TM(S,A) > TM(B,A) and TM(S,B) > TM(A,B)

where TM(X,Y) is the TM score between model X and reference Y, and A

and B are the two input crystal structures. The TM score is a measure of sim-

ilarity between two protein structures. F therefore gives the proportion of struc-

tures that are closer to both input structures than the input structures are to

each other. F equal to 0.9 indicates an ensemble that effectively covers the

conformational space of the input structures. Ensembles of 50 structures are

generated with WB starting at 1.0 and decreasing in steps of 0.1. When the

ensemble generated has an F value of at least 0.9, that WB is chosen. For

the specific examples T4-lysozyme and CDK2, WB is equal to 0.2 and 0.3,

respectively. It should be noted that the above auto-parameterization proced-

ure to select WB is implemented automatically and requires no input by the

user. For CAP only one input structure is used, so WB is selected manually

as 0.4. This value allows flexibility in the ensemble while giving good-quality

structures.
Protein Structure Generation

Once the distance constraints have been generated, an iterative process is

used to generate structures that satisfy the constraints. Stochastic proximity

embedding (SPE) (Agrafiotis et al., 2013) was selected, as it has been shown

to converge effectively and scales well with system size. This procedure pro-

vides better convergence than the CONCOORDprocedure of moving atoms to

a random distance within the distance constraints. The pseudocode for the

SPE algorithm, rephrased from an existing review (Agrafiotis et al., 2013), is

shown in Algorithm S1. The distance constraints do not include favorability

for a particular chirality, so coordinates produced from SPE are examined

and structures with the incorrect chirality are reversed by mirroring all coordi-

nates in the xy plane.

Once a set of coordinates has been generated, an SPE error score can be

calculated that measures howwell the distance constraints are satisfied (Agra-

fiotis et al., 2013). This score is calculated as shown in Algorithm S2. Structures
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with a high error score tend to have more violations of allowed stereochemis-

try, which is to be expected as there aremore violations of allowed constraints.

More structures are generated than required and those with the highest scores

are discarded to account for this. The ratio is set to be 1.5. So if the final

ensemble had 200 structures, initially 300 are generated, and the 100 with

the highest error score are discarded. This was found during development to

generally produce ensembles of structures with acceptable stereochemical

quality.

The number of iterations per atom, the product of the number of cycles C

and the number of steps S from Algorithm S1, is taken as 60,000. This was

chosen because the SPE error score did not generally decrease for iterations

beyond this. The ratio of S to C is taken as 50:1, as in practice any value of

S > C will give similar results (Agrafiotis et al., 2013). The reduction in learning

rate over the course of the minimization makes this process similar to simu-

lated annealing. Initially large movements through the conformational space

allow the correct region to be found. The movements are dampened over

time to allow the system to converge to a solution. This procedure is carried

out separately multiple times to obtain an ensemble.

Ensemble Analysis

Ensembles of structures produced are iteratively aligned following the proced-

ure described in the methodology of a previous study (Bakan and Bahar,

2009). This aligns an ensemble without the use of a reference structure. The

average structure of the ensemble is taken as the centroid of the coordinates

across the ensemble following this superimposition.

PCA is carried out on the generated ensemble. The coordinates across the

ensemble are compared with the average coordinates, and a set of orthog-

onal motions are found that describe the variation in the ensemble. The

covariance matrix Cij is a matrix where i and j represent the indices of the

3NC atomic coordinates of the NC Ca atoms. Cij is calculated as

Cij = h(xi � hxii),(xj � hxji)i,

where the averages in angle brackets are over the ensemble and x represents

the atomic coordinates. C is then diagonalized to yield the PCs.

Modulator Constraint Generation

Additional distance constraints representing themodulator need to be gener-

ated to predict how a modulator binding to the protein affects the distribution

of structures in conformational space. Potential binding sites are predicted

using LIGSITEcs (Huang and Schroeder, 2006), which is a development of

the original LIGSITE algorithm (Hendlich et al., 1997). Additional constraints

are generated based on pocket points predicted by LIGSITEcs. A total of

120 points are chosen randomly to keep the number of additional points

the same for pockets of different sizes. If fewer than 120 points are predicted

by LIGSITEcs, points are resampled. Using 120 points was found for CDK2

and CAP to add enough constraints to potentially alter the distribution of

the ensemble and observe an effect, but not so many that invalid structures

are produced. Changing this parameter changes the strength of the perturba-

tions but does not generally change the ranking of pockets by RMSD (see

below). For CAP a different procedure was used, as the location of the bound

cAMP molecules is known from the crystal structure. In this case 120 fake

points are added at 1.2-Å gaps in a ball around the location of the C10

atom in cAMP, while the cAMP molecules are themselves omitted from the

simulation. Selected points have distance constraints of tolerance of 0.1 Å

with all protein atoms within 7 Å. Addition of the new distance constraints

leads to ensembles that may differ significantly from the unperturbed

ensemble.

In theallostericpredictionprocedure,ensemblesaregeneratedwithadditional

constraints (termed ‘‘perturbation’’) at selected pockets in turn, then compared

with the original ‘‘unperturbed’’ ensemble. Eachpocket greater than a size cutoff

of13 Å3 isselected, up toamaximumofeight pocketsperprotein.Below this size

a small-molecule modulator is unlikely to have enough space to bind. Eight

pockets gives a reasonable sampling of the surface of a protein and generally in-

cludes all sizable pockets. The Ca RMSD between the average structure in the

unperturbed ensemble and the average structure in the perturbed ensemble is

used to compare ensembles. This RMSD is used to rank the perturbed pockets

in terms of their predicted allosteric nature (largest to smallest RMSD). A pocket

is consideredallosteric for validationpurposes if the pocket center iswithin6 Å of



at least oneatomof themodulator definedas theallostericmodulator in theASD.

This is similar to previous studies (Panjkovich and Daura, 2012).

Apo/Holo Dataset

Of the 25 proteins used in a prior study (Atilgan et al., 2010), the 12 with apo/

holo all-atom RMSD greater than 2 Å are selected in order to focus on larger

conformational changes.

Allosteric Dataset

All 150 proteins in the ASD (Shen et al., 2016) with apo and holo structures

available in the PDB are examined. Fifty-eight proteins with apo and holo

structures are selected using the following criteria: (1) apo/holo all-atom

RMSD greater than 0.25 Å, (2) TM score greater than 0.5, and (3) no more

than two chains and 1,000 residues in the smallest biological assembly. Pro-

teins are also clustered by sequence identity at a threshold of 30%, with rep-

resentatives being the proteins with the highest apo/holo RMSD, to remove

similar proteins.

Method Comparison

Ensemble Generation

tCONCOORD (Seeliger et al., 2007) is run with default parameters. NMSim is

run via the NMSim web server (Kruger et al., 2012) with the default parameters

for large-scale motions. This produces five trajectories of 500 structures.

Every tenth structure is taken from each trajectory to yield representative en-

sembles of 250 structures. Alternative parameters for tCONCOORD and

NMSim are used to generate the results in Figure S1, and these are described

in the figure.

Molecular Dynamics

All MD runs are carried out using the GROMACS package (Abraham et al.,

2015). Energy minimization to improve the stereochemistry of T4-lysozyme

structures is conducted using a steepest descent energy minimization of

5,000 steps in a vacuum and the OPLS-AA force field. MD runs of T4-lysozyme

are conducted using periodic boundary conditions, SPC water, charge-

neutralizing counter ions, the OPLS-AA force field, and a 2-fs time step. An

initial energy minimization is followed by a constant temperature and volume

equilibration for 100 ps, then a constant pressure and temperature equilibra-

tion for 100 ps. MD is run for 50 ns. PLUMED (Tribello et al., 2014) with

GROMACS is used to carry out targeted MD. Ca RMSD to the target structure

is used as a collective variable with a k value starting at 0 kJ mol�1 Å�2 and

increasing linearly to 1,000 kJmol�1 Å�2 over 10 ps, and remaining at this value

for the rest of the run.

Allosteric Site Prediction

LIGSITEcs (Huang and Schroeder, 2006) and Fpocket (Le Guilloux et al., 2009)

are run with default parameters. The procedure for determining whether an

Fpocket pocket is allosteric is as follows: the average of the locations of the

vertices in the pocket is taken as the pocket center, and the pocket is consid-

ered allosteric if this center was within 6 Å of at least one atom of themodulator

defined as the allosteric modulator in the ASD. This is consistent with the cri-

terion for determining LIGSITEcs allosteric pockets defined previously. PARS

results are obtained by using the PARS web server (Panjkovich and Daura,

2014). PARS uses LIGSITEcs, so the same criterion as LIGSITEcs is used to

determine allosteric pockets. AlloPred is run using the offline version (Greener

and Sternberg, 2015) and default parameters. The active-site residues are

retrieved from the Catalytic Site Atlas (CSA) (Furnham et al., 2014), or from

literature inspection when not available in the CSA. AlloPred uses Fpocket,

so the same criterion as Fpocket is used to determine allosteric pockets.

STRESS (Clarke et al., 2016) is run offline using the source code. Since the

output of STRESS is pocket residues, a pocket is called as allosteric if there

is at least one modulator atom within 3 Å of any atom in the given residues

of the pocket. This represents the modulator being close to part of the pre-

dicted pocket. This value of 3 Å is less than the value of 6 Å used previously,

as there are many residues which the modulator can be close to, rather than a

single pocket center.

Computation Time

ExProSE generates 250 structures in �20 min for T4-lysozyme on a

3.1-GHz Intel Core i7 processor. For tCONCOORD the time is �10 min.

NMSim is run via the NMSim web server and takes �5 hr. MD and targeted

MD use considerably more resources, with a 50-ns run taking �60 hr on 16
cores (2.3-GHz Intel Xeon CPU E5-2698) or �20 days on the single proces-

sor above.

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure, two tables, and two algorithms

and can be foundwith this article online at http://dx.doi.org/10.1016/j.str.2017.

01.008.

AUTHOR CONTRIBUTIONS

J.G.G., I.F., and M.J.E.S. conceived and designed the study. J.G.G. wrote the

software, performed the computational work, analyzed the data, and prepared

the manuscript. All authors edited the manuscript.

ACKNOWLEDGMENTS

This work was supported by Biotechnology and Biological Sciences Research

Council grant BB/J014575/1. M.J.E.S. is a director and shareholder in Equinox

Pharma Ltd, which is involved in computer-aided drug discovery.

Received: August 11, 2016

Revised: November 24, 2016

Accepted: January 19, 2017

Published: February 9, 2017

REFERENCES

Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and
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Figure	  S1.	  Related	  to	  Figure	  1	  Ensemble	  generation	  for	  T4-‐lysozyme	  with	  different	  parameters.	  Projections	  
of	  tCONCOORD/NMSim	  ensembles	  from	  the	  open	  (blue	  dots)	  and	  closed	  (yellow	  dots)	  structures	  onto	  the	  
PCA	  of	  the	  crystal	  structures	  are	  shown.	  Similar	  to	  Figure	  1,	  in	  each	  graph	  the	  projections	  of	  the	  crystals	  
(black	  dots)	  and	  projections	  from	  the	  ensembles	  generated	  with	  ExProSE	  (red	  dots)	  are	  also	  shown.	  (A)	  
tCONCOORD	  ensembles	  with	  the	  upper	  bound	  for	  long	  range	  constraints	  set	  to	  1.3	  Å	  (default	  2.0	  Å).	  (B)	  
tCONCOORD	  ensembles	  with	  the	  upper	  bound	  for	  long	  range	  constraints	  set	  to	  1.3	  Å	  and	  close	  pairs	  not	  
used	  as	  constraints.	  (C)	  NMSim	  ensembles	  using	  the	  default	  parameters	  for	  small	  scale	  motions.	  
	   	  



	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Table	  S1.	  Related	  to	  Figure	  1	  Improvement	  in	  stereochemical	  quality	  on	  energy	  minimisation.	  The	  
structures	  in	  each	  ensemble	  were	  analysed	  with	  PROCHECK	  and	  the	  median	  overall	  G-‐factor	  across	  the	  
ensemble	  was	  noted.	  The	  median	  of	  the	  overall	  G-‐factor	  of	  each	  structure	  after	  energy	  minimisation	  was	  
also	  recorded.	  
	   	  

Method	   Structure(s)	  used	   Median	  overall	  G-‐factor	  
before	  energy	  minimisation	  

Median	  overall	  G-‐factor	  
after	  energy	  minimisation	  

ExProSE	   open	  and	  closed	   -‐0.58	   -‐0.26	  
tCONCOORD	   open	   -‐2.23	   -‐0.31	  
tCONCOORD	   closed	   -‐2.09	   -‐0.27	  
NMSim	   open	   -‐0.50	   -‐0.31	  
NMSim	   closed	   -‐0.45	   -‐0.29	  
targeted	  MD	   starting	  open,	  targeting	  closed	   -‐0.56	   -‐0.17	  
targeted	  MD	   starting	  closed,	  targeting	  open	   -‐0.57	   -‐0.20	  
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Pyruvate	  kinase	   1A3X	   1A3W	   AB	   AB	   955	   	   	   	   	   	   	  
Antithrombin-‐III	   1ANT	   3KCG	   I	   I	   399	   	   	   	   	   	   	  
HIV-‐1	  integrase	   1BIZ	   4CHO	   AB	   AB	   276	   	   	   	   	   	   	  

Chorismate	  mutase	   1CSM	   2CSM	   AB	   2	  x	  A	   490	   	   	   	   	   	   	  
Plasminogen	  activator	  inhibitor	  1	   1DB2	   4AQH	   A	   A	   377	   	   	   	   	   	   	  

HTH-‐type	  transcriptional	  repressor	  purR	   1DBQ	   1JH9	   AB	   2	  x	  A	   550	   	   	   	   	   	   	  
Ribose-‐phosphate	  pyrophosphokinase	   1DKR	   1DKU	   AB	   AB	   588	   	   	   	   	   	   	  

Fatty	  acid	  metabolism	  regulator	  protein	   1E2X	   1H9G	   2	  x	  A	   2	  x	  A	   444	   	   	   	   	   	   	  
Androgen	  receptor	   1E3G	   4K7A	   A	   A	   242	   	   	   	   	   	   	  

Herpesvirus	  protease	   1FL1	   4P3H	   A	   A	   153	   	   	   	   	   	   	  
Glutamate	  receptor	  2	   1FTO	   3ILT	   A	   B	   257	   	   	   	   	   	   	  

Annexin	  A5	   1HVG	   1HAK	   A	   A	   313	   	   	   	   	   	   	  
Neurolysin,	  mitochondrial	   1I1I	   4FXY	   P	   P	   664	   	   	   	   	   	   	  

Cell	  division	  control	  protein	  4	   1NEX	   3MKS	   AB	   CD	   572	   	   	   	   	   	   	  
Phospho-‐2-‐dehydro-‐3-‐deoxyheptonate	  aldolase	   1OFP	   1OFR	   AB	   GH	   628	   	   	   	   	   	   	  

Organophosphorus	  hydrolase	   1PTA	   1QW7	   2	  x	  A	   AB	   636	   	   	   	   	   	   	  
Ribonucleotide	  reductase	   1RLR	   3UUS	   A	   A	   727	   	   	   	   	   	   	  

Cytochrome	  P450	  3A4	   1W0E	   1W0F	   A	   A	   452	   	   	   	   	   	   	  
Acetyl-‐CoA	  carboxylase	   1W93	   1W96	   A	   A	   549	   	   	   	   	   	   	  

Hypothetical	  biotin-‐-‐[acetyl-‐CoA-‐carboxylase]	  ligase	   1WQ7	   2DVE	   AB	   AB	   456	   	   	   	   	   	   	  
Putative	  uncharacterized	  protein	  PH0207	   1X0M	   3ATH	   A	   A	   403	   	   	   	   	   	   	  

Integrin	  alpha-‐L	   1ZON	   1RD4	   A	   A	   181	   	   	   	   	   	   	  
Pyruvate	  dehydrogenase	  kinase	  isoform	  2	   2BTZ	   2BU2	   2	  x	  A	   2	  x	  A	   708	   	   	   	   	   	   	  

Farnesyl	  pyrophosphate	  synthase	   2F7M	   3N45	   2	  x	  F	   2	  x	  F	   682	   	   	   	   	   	   	  
Fructose-‐1,6-‐bisphosphatase	   2FBP	   1Q9D	   AB	   AB	   630	   	   	   	   	   	   	  

Protein	  arginine	  N-‐methyltransferase	  3	   2FYT	   3SMQ	   A	   A	   299	   	   	   	   	   	   	  
Glycogen	  phosphorylase	   2GPN	   1PYG	   A	   A	   787	   	   	   	   	   	   	  

Glutamate	  racemase	   2JFX	   4B1F	   AB	   AB	   498	   	   	   	   	   	   	  
Myosin-‐2	  heavy	  chain	   2JJ9	   2JHR	   A	   A	   692	   	   	   	   	   	   	  

Ubiquitin-‐conjugating	  enzyme	  E2	  R1	   2OB4	   3RZ3	   A	   A	   153	   	   	   	   	   	   	  
Cytosolic	  purine	  5'-‐nucleotidase	   2XCX	   2JC9	   2	  x	  A	   2	  x	  A	   916	   	   	   	   	   	   	  

cAMP	  receptor	  protein	   3D0S	   3I54	   AB	   AB	   422	   	   	   	   	   	   	  
Endothelial	  PAS	  domain-‐containing	  protein	  1	   3F1P	   3H82	   AB	   AB	   222	   	   	   	   	   	   	  

Acetylcholinesterase	   3GEL	   2J3Q	   A	   A	   527	   	   	   	   	   	   	  
NAD-‐dependent	  deacetylase	  sirtuin-‐3,	  mitochondrial	   3GLU	   4C7B	   AB	   AB	   261	   	   	   	   	   	   	  

FimX	   3HV9	   3HV8	   A	   A	   242	   	   	   	   	   	   	  
Glucokinase	   3IDH	   4ISE	   A	   A	   419	   	   	   	   	   	   	  

Glutamate	  receptor	  ionotropic,	  NMDA	  2B	   3JPW	   3QEL	   A	   B	   349	   	   	   	   	   	   	  
Global	  nitrogen	  regulator	   3LA7	   3LA3	   AB	   AB	   382	   	   	   	   	   	   	  

Genome	  polyprotein	   3MWV	   4JTZ	   A	   A	   559	   	   	   	   	   	   	  
Beta-‐lactamase	  SHV-‐1	   3N4I	   1VM1	   A	   A	   265	   	   	   	   	   	   	  

DNA	  double-‐strand	  break	  repair	  Rad50	  ATPase	   3QG5	   3THO	   A	   A	   349	   	   	   	   	   	   	  
N-‐acetylglutamate	  kinase	  /	  N-‐acetylglutamate	  synthase	   3S7Y	   4KZT	   AX	   AX	   862	   	   	   	   	   	   	  

Leucine	  transporter	   3TU0	   2QEI	   A	   A	   509	   	   	   	   	   	   	  
6-‐phosphofructokinase	  isozyme	  2	   3UMP	   3CQD	   AB	   AB	   612	   	   	   	   	   	   	  

Kinesin-‐like	  protein	  KIF11	   4A28	   4BXN	   A	   A	   330	   	   	   	   	   	   	  
Eukaryotic	  translation	  initiation	  factor	  4E	   4BEA	   4TQC	   A	   A	   174	   	   	   	   	   	   	  

Penicillin	  binding	  protein	  2	  prime	   4BL2	   3ZG0	   A	   A	   636	   	   	   	   	   	   	  
CAMP-‐dependent	  protein	  kinase	   4DFY	   4DFX	   A	   E	   311	   	   	   	   	   	   	  

Casein	  kinase	  II	   4DGL	   3H30	   C	   A	   333	   	   	   	   	   	   	  
Mitogen-‐activated	  protein	  kinase	  14	   4E5B	   3NNX	   A	   A	   321	   	   	   	   	   	   	  

PelD	   4ETX	   4ETZ	   A	   A	   285	   	   	   	   	   	   	  
Caspase	  7	   4FDL	   4FEA	   AB	   AB	   365	   	   	   	   	   	   	  

Glucose-‐1-‐phosphate	  thymidylyltransferase	   4HO0	   4HO9	   A	   A	   285	   	   	   	   	   	   	  
GTPase	  Kras	   4LPK	   4LUC	   A	   A	   156	   	   	   	   	   	   	  

CRP	  transcriptional	  dual	  regulator	   4N9H	   4N9I	   AB	   AB	   402	   	   	   	   	   	   	  
2-‐C-‐methyl-‐D-‐erythritol	  4-‐phosphate	  cytidylyltransferase	   4NAI	   2YC3	   2	  x	  A	   2	  x	  A	   428	   	   	   	   	   	   	  

Adenylate	  cyclase	  type	  10	   4OYW	   4USW	   A	   A	   458	   	   	   	   	   	   	  
Found	  in	  top	  2	  predicted	  –	  out	  of	  58	  (54	  for	  STRESS)	   27	  	  	  	  25	  	  	  	  18	  	  	  	  	  26	  	  	  	  31	  	  	  31	  

	  
	   	  



	  
	  
Table	  S2.	  Related	  to	  Table	  3	  Performance	  of	  allosteric	  site	  prediction	  methods	  on	  a	  dataset	  of	  58	  known	  
allosteric	  proteins.	  Apo	  PDB	  and	  Holo	  PDB	  refer	  to	  the	  PDB	  IDs	  of	  the	  apo	  and	  holo	  structures	  used.	  Apo	  
chains	  and	  Holo	  chains	  are	  the	  chains	  utilised	  from	  the	  apo	  and	  holo	  structures.	  2	  x	  A	  means	  chain	  A	  is	  
duplicated	  as	  part	  of	  a	  biological	  assembly.	  N	  is	  the	  number	  of	  residues	  in	  common	  between	  the	  apo	  and	  
holo	  chains	  used.	  A	  green	  square	  indicates	  that	  the	  method	  ranked	  an	  allosteric	  pocket	  first	  or	  second	  for	  
that	  protein.	  The	  definition	  for	  an	  allosteric	  pocket	  is	  given	  in	  the	  experimental	  procedures.	  A	  red	  square	  
indicates	  that	  the	  method	  failed	  to	  rank	  an	  allosteric	  pocket	  first	  or	  second.	  STRESS	  could	  not	  run	  on	  4	  
proteins	  as	  they	  were	  too	  small	  -‐	  this	  is	  indicated	  by	  a	  yellow	  square.	  
	   	  



	  
	  

	  
	  

Define	  lower	  and	  upper	  distance	  constraints	  lij	  and	  uij	  for	  atom	  pairs	  i	  and	  j	  
Define	  an	  initial	  learning	  rate	  λd	  =	  1.0	  
Randomise	  atomic	  coordinates	  xi	  within	  a	  cube	  of	  100	  Å	  
for	  C	  cycles	  do	  

for	  S	  steps	  do	  
Randomly	  select	  a	  pair	  of	  atoms	  i	  and	  j	  for	  which	  a	  constraint	  exists	  
Compute	  the	  distance	  dij	  =	  ‖xi	  -‐	  xj‖	  
if	  dij	  <	  lij	  or	  dij	  >	  uij	  then	  

Update	  the	  coordinates	  xi	  and	  xj	  by	  
	  

𝑥" = 𝑥" +
𝜆&
2
𝑡")	  -‐‑	  𝑑")
𝑑")

(𝑥"	  -‐‑	  𝑥))	  

𝑥) = 𝑥) +
𝜆&
2
𝑡")	  -‐‑	  𝑑")
𝑑")

(𝑥)	  -‐‑	  𝑥")	  

	  
where	  tij	  is	  the	  nearest	  constraint	  to	  dij	  

end	  if	  
end	  for	  
Decrease	  the	  learning	  rate	  λd	  by	  1/C	  

end	  for	  
	  
	  
Algorithm	  S1.	  Related	  to	  the	  Experimental	  Procedures	  The	  stochastic	  proximity	  embedding	  (SPE)	  
algorithm	  used	  to	  move	  atoms	  to	  satisfy	  distance	  constraints.	  Rephrased	  from	  Agrafiotis	  et	  al.	  2013.	  
	  
	  
	  
	  
	  

Set	  score	  s	  =	  0	  
for	  each	  atom	  pair	  i,	  j	  with	  a	  distance	  constraint	  do	  

if	  dij	  <	  lij	  or	  dij	  >	  uij	  then	  
Increase	  s	  by	  

(𝑑")	  -‐‑	  𝑡"))/

max	  (𝑢")	  -‐‑	  𝑙"), 0.001)
	  

	  
where	  tij	  is	  the	  nearest	  constraint	  to	  dij	  

end	  if	  
end	  for	  

	  
	  
Algorithm	  S2.	  Related	  to	  the	  Experimental	  Procedures	  The	  scoring	  algorithm	  to	  calculate	  the	  SPE	  error	  
score.	  Rephrased	  from	  Agrafiotis	  et	  al.	  2013.	  
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